Simplified optimal design of MDOF structures with negative stiffness amplifying dampers based on effective damping
SUMMARY This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, subs...
Saved in:
Published in | The structural design of tall and special buildings Vol. 28; no. 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
25.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, substantially reducing a NSD's requirement for high additional damping, which is used to contain the increased displacements resulting from the reduction in overall stiffness of a system. The dynamic equations of MDOF systems with NSADs are described in state–space representation, and the effective damping and frequencies are parametrically studied. Then, a simple optimization method is proposed. A study of the 20‐storey benchmark building shows that NSADs are the most efficient of supplemental devices in reducing interstorey drifts compared with viscous dampers (VDs) and viscoelastic dampers (VEDs) with the same supplemental damping coefficient. For instance, when compared with that of VEDs, the maximal peak interstorey of NSADs can be further reduced by about 30%. In terms of reducing acceleration responses, NSADs perform much better than VDs and VEDs owing to their negative stiffness feature. Partially arranged, NSADs are best implemented at the storeys that have smaller interstorey drift responses. This is because the negative stiffness preserved by NSADs significantly reduces the interstorey drift of storeys without NSADs. |
---|---|
AbstractList | SUMMARYThis paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, substantially reducing a NSD's requirement for high additional damping, which is used to contain the increased displacements resulting from the reduction in overall stiffness of a system. The dynamic equations of MDOF systems with NSADs are described in state–space representation, and the effective damping and frequencies are parametrically studied. Then, a simple optimization method is proposed. A study of the 20‐storey benchmark building shows that NSADs are the most efficient of supplemental devices in reducing interstorey drifts compared with viscous dampers (VDs) and viscoelastic dampers (VEDs) with the same supplemental damping coefficient. For instance, when compared with that of VEDs, the maximal peak interstorey of NSADs can be further reduced by about 30%. In terms of reducing acceleration responses, NSADs perform much better than VDs and VEDs owing to their negative stiffness feature. Partially arranged, NSADs are best implemented at the storeys that have smaller interstorey drift responses. This is because the negative stiffness preserved by NSADs significantly reduces the interstorey drift of storeys without NSADs. SUMMARY This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, substantially reducing a NSD's requirement for high additional damping, which is used to contain the increased displacements resulting from the reduction in overall stiffness of a system. The dynamic equations of MDOF systems with NSADs are described in state–space representation, and the effective damping and frequencies are parametrically studied. Then, a simple optimization method is proposed. A study of the 20‐storey benchmark building shows that NSADs are the most efficient of supplemental devices in reducing interstorey drifts compared with viscous dampers (VDs) and viscoelastic dampers (VEDs) with the same supplemental damping coefficient. For instance, when compared with that of VEDs, the maximal peak interstorey of NSADs can be further reduced by about 30%. In terms of reducing acceleration responses, NSADs perform much better than VDs and VEDs owing to their negative stiffness feature. Partially arranged, NSADs are best implemented at the storeys that have smaller interstorey drift responses. This is because the negative stiffness preserved by NSADs significantly reduces the interstorey drift of storeys without NSADs. This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, substantially reducing a NSD's requirement for high additional damping, which is used to contain the increased displacements resulting from the reduction in overall stiffness of a system. The dynamic equations of MDOF systems with NSADs are described in state–space representation, and the effective damping and frequencies are parametrically studied. Then, a simple optimization method is proposed. A study of the 20‐storey benchmark building shows that NSADs are the most efficient of supplemental devices in reducing interstorey drifts compared with viscous dampers (VDs) and viscoelastic dampers (VEDs) with the same supplemental damping coefficient. For instance, when compared with that of VEDs, the maximal peak interstorey of NSADs can be further reduced by about 30%. In terms of reducing acceleration responses, NSADs perform much better than VDs and VEDs owing to their negative stiffness feature. Partially arranged, NSADs are best implemented at the storeys that have smaller interstorey drift responses. This is because the negative stiffness preserved by NSADs significantly reduces the interstorey drift of storeys without NSADs. |
Author | Nagarajaiah, Satish Wang, Meng Sun, Fei‐fei |
Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0003-0432-8313 surname: Wang fullname: Wang, Meng organization: Tongji University – sequence: 2 givenname: Fei‐fei surname: Sun fullname: Sun, Fei‐fei email: ffsun@tongji.edu.cn organization: Tongji University – sequence: 3 givenname: Satish surname: Nagarajaiah fullname: Nagarajaiah, Satish organization: Rice University |
BookMark | eNp1kM1OwzAQhC1UJNqCxCNY4sIlxb-Jc6wKBaSiHijnKHHs4ip1gu1S9e1xWrggOO2s9ttZ7YzAwLZWAXCN0QQjRO5C2UxwmrIzMMSc4SQTSAx-dJazCzDyfoMQzhGnQ-BezbZrjDaqhm0XzLZsYK28WVvYavhyv5xDH9xOhp1THu5NeIdWrctgPlUcGK2t8h6WR4-DsWtYR62ch1Xpe0sLldZKHvl-FJFLcK7Lxqur7zoGb_OH1ewpWSwfn2fTRSJJTlnC64xLgrXgCGPEK8EJllznsUsJwTVDosKSMlWTOseY5aWWkmqCaS6FVhUdg5uTb-faj53yodi0O2fjyYJQxFKRUSoiNTlR0rXeO6ULaUL8r7XBlaYpMCr6XIuYa9HnGhdufy10LsbmDn-hyQndm0Yd_uWK1XRx5L8AmzyJxA |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_109225 crossref_primary_10_1007_s10518_022_01372_5 crossref_primary_10_1016_j_ijmecsci_2023_108261 crossref_primary_10_1080_15397734_2024_2319113 crossref_primary_10_1016_j_engstruct_2025_119676 crossref_primary_10_1016_j_tust_2023_105019 crossref_primary_10_1016_j_soildyn_2023_107857 crossref_primary_10_1007_s11803_020_0609_3 crossref_primary_10_1016_j_ymssp_2022_108965 crossref_primary_10_1061__ASCE_ST_1943_541X_0002846 crossref_primary_10_1088_1742_6596_2647_3_032016 crossref_primary_10_1016_j_jweia_2021_104761 crossref_primary_10_1016_j_engstruct_2024_119247 crossref_primary_10_1016_j_engstruct_2020_111312 crossref_primary_10_1016_j_ijmecsci_2021_106805 crossref_primary_10_1016_j_jobe_2025_112203 crossref_primary_10_1061_PPSCFX_SCENG_1306 crossref_primary_10_3389_fbuil_2021_773622 crossref_primary_10_1002_stc_2482 crossref_primary_10_1038_s41598_023_31482_2 crossref_primary_10_1016_j_istruc_2024_107966 crossref_primary_10_1007_s42417_021_00362_2 crossref_primary_10_1016_j_istruc_2024_105860 crossref_primary_10_3390_buildings12081214 crossref_primary_10_1016_j_engstruct_2023_116793 crossref_primary_10_1016_j_engstruct_2022_114394 crossref_primary_10_1016_j_ymssp_2025_112397 crossref_primary_10_1061__ASCE_ST_1943_541X_0003472 crossref_primary_10_1155_2023_4024741 crossref_primary_10_1016_j_jobe_2024_108674 crossref_primary_10_3390_buildings13071803 crossref_primary_10_3390_buildings15030441 crossref_primary_10_1016_j_jobe_2022_104428 crossref_primary_10_1002_eqe_3693 crossref_primary_10_1002_eqe_3891 crossref_primary_10_1002_eqe_4302 crossref_primary_10_1002_stc_2988 crossref_primary_10_3390_buildings13123008 crossref_primary_10_1002_eqe_3502 crossref_primary_10_1007_s41062_023_01350_z crossref_primary_10_46300_9104_2022_16_3 crossref_primary_10_1016_j_engstruct_2020_111615 crossref_primary_10_1016_j_engstruct_2025_119849 crossref_primary_10_1061_AJRUA6_RUENG_1360 crossref_primary_10_3390_buildings14030744 crossref_primary_10_1016_j_oceaneng_2024_120099 crossref_primary_10_1016_j_istruc_2023_02_065 crossref_primary_10_1002_tal_1793 crossref_primary_10_1016_j_jcsr_2022_107494 crossref_primary_10_1002_stc_2829 |
Cites_doi | 10.1061/(ASCE)ST.1943-541X.0000830 10.1002/eqe.3034 10.1016/j.ymssp.2016.08.018 10.1016/j.jsv.2015.11.005 10.1061/(ASCE)ST.1943-541X.0000616 10.1002/(SICI)1096-9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X 10.1193/101913EQS273M 10.1002/eqe.2318 10.1061/(ASCE)BE.1943-5592.0001136 10.1061/(ASCE)EM.1943-7889.0001289 10.1016/0022-460X(92)90422-T 10.1177/1077546316646514 10.1016/j.jsv.2018.02.052 10.1177/1077546315585435 10.1061/(ASCE)EM.1943-7889.0000692 10.1016/j.engstruct.2019.03.110 10.1016/j.engstruct.2018.01.071 10.1088/0964-1726/25/7/075044 10.1002/(SICI)1099-1794(199812)7:4<323::AID-TAL115>3.0.CO;2-L 10.1016/j.sna.2017.03.026 10.1016/j.engstruct.2017.10.044 10.1061/(ASCE)0733-9445(1992)118:5(1375) 10.1088/0964-1726/24/7/072002 10.1002/(SICI)1096-9845(199906)28:6<655::AID-EQE833>3.0.CO;2-T 10.12989/sss.2006.2.4.339 10.1002/stc.345 10.1061/(ASCE)ST.1943-541X.0001323 10.1080/13632469.2014.962672 10.1002/eqe.1023 10.1061/(ASCE)ST.1943-541X.0001658 10.1061/(ASCE)ST.1943-541X.0001805 10.1016/j.engstruct.2018.09.049 10.1002/eqe.2495 10.1002/1096-9845(200009)29:9<1307::AID-EQE972>3.0.CO;2-D 10.1061/(ASCE)ST.1943-541X.0001455 10.1061/(ASCE)ST.1943-541X.0001077 10.1002/eqe.862 10.1016/j.compstruc.2017.07.022 10.1002/stc.1968 10.1061/(ASCE)0733-9399(2002)128:10(1088) 10.12989/sss.2015.15.3.627 10.1061/(ASCE)ST.1943-541X.0000615 10.1061/(ASCE)ST.1943-541X.0001680 10.1061/(ASCE)0733-9445(1996)122:12(1394) 10.1002/eqe.359 10.1002/(SICI)1099-1794(199609)5:3<217::AID-TAL70>3.0.CO;2-R 10.1016/j.jsv.2015.02.028 10.1061/(ASCE)0733-9399(2003)129:3(273) |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/tal.1664 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1541-7808 |
EndPage | n/a |
ExternalDocumentID | 10_1002_tal_1664 TAL1664 |
Genre | article |
GrantInformation_xml | – fundername: China Scholarship Council – fundername: Ministry of Science and Technology of China funderid: SLDRCE19‐B‐16 – fundername: National Natural Science Foundation of China funderid: 51778488 |
GroupedDBID | .3N .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N QB0 QRW R.K ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XV2 ~IA ~IF ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 1OB 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2934-5d75c21f8501105b8521c5f90116221d408b1c34ed2d91149afcc3f2139c8feb3 |
IEDL.DBID | DR2 |
ISSN | 1541-7794 |
IngestDate | Wed Aug 13 04:50:18 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Tue Jul 01 04:31:26 EDT 2025 Wed Jan 22 16:37:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2934-5d75c21f8501105b8521c5f90116221d408b1c34ed2d91149afcc3f2139c8feb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0432-8313 |
PQID | 2304687338 |
PQPubID | 2034345 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2304687338 crossref_citationtrail_10_1002_tal_1664 crossref_primary_10_1002_tal_1664 wiley_primary_10_1002_tal_1664_TAL1664 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 25 October 2019 |
PublicationDateYYYYMMDD | 2019-10-25 |
PublicationDate_xml | – month: 10 year: 2019 text: 25 October 2019 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The structural design of tall and special buildings |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 141 2017; 85 2018; 161 2015; 346 2018; 207 2015; 31 2016; 143 2017; 153 2016; 142 2018; 47 2004; 33 2018; 177 2003; 129 1992; 158 2015; 44 1992; 118 1996; 5 2009; 16 2015; 15 2000; 29 2015; 19 2019; 190 2010 1997; 26 1999; 28 2011; 40 2017; 24 2013; 42 2018; 423 2017; 23 1998 2009 2016; 365 1996; 122 2006; 2 2018; 23 2017; 259 2015; 24 2013; 139 2002; 128 2019 2018 2009; 8 2014; 140 2017; 143 1998; 7 2016; 25 2009; 38 2016; 24 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 Pasala D. T. R. (e_1_2_9_45_1) 2019 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 Cimellaro G. P. (e_1_2_9_40_1) 2018 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Huang H. C. (e_1_2_9_12_1) 2009; 8 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 FEMA. P695 (e_1_2_9_55_1) 2009 e_1_2_9_29_1 |
References_xml | – year: 2009 – volume: 141 year: 2015 publication-title: J. Struct. Eng. – volume: 139 start-page: 1124 year: 2013 publication-title: J. Struct. Eng. – start-page: 1 year: 2018 publication-title: J. Struct. Eng. – volume: 47 start-page: 1651 year: 2018 publication-title: Earthq. Eng. Struct. Dyn. – volume: 346 start-page: 37 year: 2015 publication-title: J. Sound Vib. – volume: 140 year: 2014 publication-title: J. Struct. Eng. – volume: 129 start-page: 273 year: 2003 publication-title: J. Eng. Mech. – volume: 26 start-page: 1113 year: 1997 publication-title: Earthq. Eng. Struct. Dyn. – volume: 15 start-page: 627 year: 2015 publication-title: Smart Struct. Syst. – volume: 259 start-page: 14 year: 2017 publication-title: Sens. Act. A: Phys. – volume: 85 start-page: 193 year: 2017 publication-title: Mech. Syst. Signal Process. – volume: 24 start-page: 588 year: 2016 publication-title: J. Vib. Control. – volume: 24 year: 2015 publication-title: Smart Mater. Struct. – year: 1998 – volume: 190 start-page: 128 issue: 7 year: 2019 publication-title: Eng. Struct. – volume: 177 start-page: 30 year: 2018 publication-title: Eng. Struct. – volume: 161 start-page: 96 year: 2018 publication-title: Eng. Struct. – volume: 153 start-page: 525 year: 2017 publication-title: Eng. Struct. – volume: 44 start-page: 973 year: 2015 publication-title: Earthq. Eng. Struct. Dyn. – volume: 365 start-page: 1 year: 2016 publication-title: J. Sound Vib. – volume: 33 start-page: 465 year: 2004 publication-title: Earthq. Eng. Struct. Dyn. – volume: 29 start-page: 1307 year: 2000 publication-title: Earthq. Eng. Struct. Dyn. – volume: 23 start-page: 853 year: 2017 publication-title: J. Vib. Control. – volume: 5 start-page: 217 year: 1996 publication-title: Struct. Des. Tall Build. – volume: 24 year: 2017 publication-title: Struct. Control Health Monit. – volume: 42 start-page: 2151 issue: 14 year: 2013 publication-title: Earthq. Eng. Struct. Dyn. – volume: 122 start-page: 1394 issue: 12 year: 1996 publication-title: J. Struct. Eng. – volume: 38 start-page: 377 year: 2009 publication-title: Earthq. Eng. Struct. Dyn. – volume: 143 year: 2017 publication-title: J. Struct. Eng. – volume: 8 start-page: 521 year: 2009 publication-title: Earthq. Eng. Struct. Dyn. – volume: 143 year: 2016 publication-title: J. Eng. Mech. – volume: 118 start-page: 1375 issue: 5 year: 1992 publication-title: J. Struct. Eng. – volume: 143 year: 2016 publication-title: J. Struct. Eng. – volume: 423 start-page: 18 year: 2018 publication-title: J. Sound Vib. – volume: 16 start-page: 784 year: 2009 publication-title: Struct. Control Health Monit. – volume: 2 start-page: 339 year: 2006 publication-title: Smart Struct. Syst. – volume: 7 start-page: 323 year: 1998 publication-title: Struct. Des. Tall Build. – volume: 139 start-page: 1112 year: 2013 publication-title: J. Struct. Eng. – volume: 23 year: 2018 publication-title: J. Bridge Eng. – volume: 25 year: 2016 publication-title: Smart Mater. Struct. – volume: 158 start-page: 517 year: 1992 publication-title: J. Sound Vib. – year: 2010 – year: 2019 publication-title: Earthq. Spectra – volume: 207 start-page: 121 year: 2018 publication-title: Comput. Struct. – volume: 31 start-page: 2163 year: 2015 publication-title: Earthq. Spectra – volume: 19 start-page: 249 year: 2015 publication-title: J. Earthq. Eng. – volume: 140 issue: 5 year: 2014 publication-title: J. Eng. Mech. – volume: 28 start-page: 655 year: 1999 publication-title: Earthq. Eng. Struct. Dyn. – volume: 40 start-page: 75 year: 2011 publication-title: Earthq. Eng. Struct. Dyn. – volume: 128 start-page: 1088 year: 2002 publication-title: J. Eng. Mech. – volume: 142 year: 2016 publication-title: J. Struct. Eng. – ident: e_1_2_9_36_1 doi: 10.1061/(ASCE)ST.1943-541X.0000830 – ident: e_1_2_9_20_1 doi: 10.1002/eqe.3034 – ident: e_1_2_9_41_1 doi: 10.1016/j.ymssp.2016.08.018 – ident: e_1_2_9_46_1 doi: 10.1016/j.jsv.2015.11.005 – ident: e_1_2_9_21_1 doi: 10.1061/(ASCE)ST.1943-541X.0000616 – year: 2019 ident: e_1_2_9_45_1 publication-title: Earthq. Spectra – ident: e_1_2_9_6_1 doi: 10.1002/(SICI)1096-9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X – ident: e_1_2_9_33_1 doi: 10.1193/101913EQS273M – ident: e_1_2_9_17_1 – ident: e_1_2_9_38_1 doi: 10.1002/eqe.2318 – ident: e_1_2_9_26_1 doi: 10.1061/(ASCE)BE.1943-5592.0001136 – ident: e_1_2_9_29_1 doi: 10.1061/(ASCE)EM.1943-7889.0001289 – volume-title: Quantification of building seismic performance factors year: 2009 ident: e_1_2_9_55_1 – ident: e_1_2_9_3_1 doi: 10.1016/0022-460X(92)90422-T – ident: e_1_2_9_42_1 doi: 10.1177/1077546316646514 – ident: e_1_2_9_50_1 doi: 10.1016/j.jsv.2018.02.052 – ident: e_1_2_9_27_1 doi: 10.1177/1077546315585435 – ident: e_1_2_9_52_1 doi: 10.1061/(ASCE)EM.1943-7889.0000692 – ident: e_1_2_9_48_1 doi: 10.1016/j.engstruct.2019.03.110 – ident: e_1_2_9_49_1 doi: 10.1016/j.engstruct.2018.01.071 – ident: e_1_2_9_30_1 doi: 10.1088/0964-1726/25/7/075044 – ident: e_1_2_9_10_1 doi: 10.1002/(SICI)1099-1794(199812)7:4<323::AID-TAL115>3.0.CO;2-L – ident: e_1_2_9_31_1 doi: 10.1016/j.sna.2017.03.026 – ident: e_1_2_9_43_1 doi: 10.1016/j.engstruct.2017.10.044 – ident: e_1_2_9_2_1 doi: 10.1061/(ASCE)0733-9445(1992)118:5(1375) – ident: e_1_2_9_28_1 doi: 10.1088/0964-1726/24/7/072002 – ident: e_1_2_9_7_1 doi: 10.1002/(SICI)1096-9845(199906)28:6<655::AID-EQE833>3.0.CO;2-T – ident: e_1_2_9_16_1 doi: 10.12989/sss.2006.2.4.339 – ident: e_1_2_9_18_1 doi: 10.1002/stc.345 – ident: e_1_2_9_23_1 doi: 10.1061/(ASCE)ST.1943-541X.0001323 – ident: e_1_2_9_34_1 doi: 10.1080/13632469.2014.962672 – ident: e_1_2_9_13_1 doi: 10.1002/eqe.1023 – ident: e_1_2_9_39_1 doi: 10.1061/(ASCE)ST.1943-541X.0001658 – ident: e_1_2_9_47_1 doi: 10.1061/(ASCE)ST.1943-541X.0001805 – ident: e_1_2_9_19_1 doi: 10.1016/j.engstruct.2018.09.049 – ident: e_1_2_9_32_1 doi: 10.1002/eqe.2495 – ident: e_1_2_9_8_1 doi: 10.1002/1096-9845(200009)29:9<1307::AID-EQE972>3.0.CO;2-D – ident: e_1_2_9_35_1 doi: 10.1061/(ASCE)ST.1943-541X.0001455 – ident: e_1_2_9_37_1 doi: 10.1061/(ASCE)ST.1943-541X.0001077 – ident: e_1_2_9_54_1 doi: 10.1002/eqe.862 – ident: e_1_2_9_14_1 doi: 10.1016/j.compstruc.2017.07.022 – start-page: 1 year: 2018 ident: e_1_2_9_40_1 publication-title: J. Struct. Eng. – ident: e_1_2_9_25_1 doi: 10.1002/stc.1968 – volume: 8 start-page: 521 year: 2009 ident: e_1_2_9_12_1 publication-title: Earthq. Eng. Struct. Dyn. – ident: e_1_2_9_15_1 doi: 10.1061/(ASCE)0733-9399(2002)128:10(1088) – ident: e_1_2_9_24_1 doi: 10.12989/sss.2015.15.3.627 – ident: e_1_2_9_22_1 doi: 10.1061/(ASCE)ST.1943-541X.0000615 – ident: e_1_2_9_51_1 doi: 10.1061/(ASCE)ST.1943-541X.0001680 – ident: e_1_2_9_5_1 doi: 10.1061/(ASCE)0733-9445(1996)122:12(1394) – ident: e_1_2_9_11_1 doi: 10.1002/eqe.359 – ident: e_1_2_9_4_1 doi: 10.1002/(SICI)1099-1794(199609)5:3<217::AID-TAL70>3.0.CO;2-R – ident: e_1_2_9_44_1 doi: 10.1016/j.jsv.2015.02.028 – ident: e_1_2_9_9_1 doi: 10.1061/(ASCE)0733-9399(2003)129:3(273) – ident: e_1_2_9_53_1 |
SSID | ssj0019053 |
Score | 2.4225876 |
Snippet | SUMMARY
This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only... This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only... SUMMARYThis paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acceleration Amplification benchmark study Dampers damping magnification Drift effective damping negative stiffness amplifying dampers Optimization passive structural control simplified optimal design Stiffness System effectiveness Viscoelasticity Viscous damping |
Title | Simplified optimal design of MDOF structures with negative stiffness amplifying dampers based on effective damping |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftal.1664 https://www.proquest.com/docview/2304687338 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-yJ33wW5xOiSD61G1Nk659HOoY4hR0g4EPpfmSoXbithf_eu_SdpuiID61kEtoesnd78LdL4Sc2paC4NiPPWuF8HgolBfrIPZSQBuBjKCTKxTu3YbdAb8eimGRVYm1MDk_xPzADXeGs9e4wVM5aSxIQxGb-mGIVKCYqoV46H7OHAVuzhFQAkDwAUDGvOSdbbJG2fGrJ1rAy2WQ6rxMZ4M8lt-XJ5c812dTWVcf36gb_zeBTbJegE_azlfLFlkx2TZZW6Ik3CHvDyPMMbeATOkYzMkryGuX5UHHlvYu7zo0p5ydQZxO8RSXZubJsYdDw8haNJ00dWNgBRXV8A4Qk6K7hCEzmmeQoDw2gcguGXSu-hddr7iXwVMADrgndEso5ttIIHgQMgIIoITFItaQMV_zZiR9FXCjmQZbyuPUKhVYBupXkYXofY9UsnFm9gmVLLBaaBMiJ48yOmWmGRkNpsBwyaOgSs5LHSWqIC3HuzNekpxumSV4swr-xSo5mUu-5UQdP8jUSjUnxVadJHgqHkYtCNWr5Mzp69f-Sb99g8-DvwoeklUAWDH6OiZqpAL6MUcAYqby2C3XT4dE7-w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSDb7FadQXRU2yz2U0TPBW1VG0VtIIHITT7kKKm4uPir3dm09QHCuIpgcwuSWZ35pth5luAbVtXGBz7sWetlJ4IpfJiHcReD9FGkEY4yDUKd87C1pU4uZbXY7Bf9MLk_BCjhBvtDGevaYNTQrr6wRpK4NQPQzEOE3Sgt4unLkbcUejoHAUlQgQfIWQsCubZGq8WI7_6og-A-RmmOj_TnIWb4g3z8pK7vdeXdE-9fSNv_OcnzMHMEH-yRr5g5mHMZAsw_YmVcBGeLvtUZm4RnLIBWpQHlNeu0IMNLOscnjdZzjr7iqE6o0Quy8ytIxDHB31ryXqynpuDmqiYxntEmYw8Jk6ZsbyIhOTpEYoswVXzqHvQ8oZHM3gK8YHwpK5LxX0bScIPMo0QBShpqY815NzXohalvgqE0VyjORVxzyoVWI4rQEUWA_hlKGWDzKwAS3lgtdQmJFoeZXSPm1pkNFoDI1IRBWXYLZSUqCFvOR2fcZ_kjMs8ocNV6C-WYWsk-ZhzdfwgUyn0nAx363NCifEwqmO0XoYdp7BfxyfdRpuuq38V3ITJVrfTTtrHZ6drMIV4KybXx2UFSqgrs46Y5iXdcGv3HXrO9Ac |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50BdEHb3E9I4g-Vbdp0k0fxXXxVjxA8KFsc4io3cXjxV_vTNquBwriUwuZhKaTzHwTZr4ArLmmxuA4TALnpAxELHWQmCgJOog2okxhJ18ofHwS712Jg2t5XWZVUi1MwQ_RP3CjneHtNW3wnnFbH6ShhE3DOBaDMCTihqIV3TrvU0ehn_MMlIgQQkSQiaiIZxt8q-r51RV94MvPKNW7mfY43FQfWGSX3G--vmSb-u0bd-P_ZjABYyX6ZNvFcpmEAZtPwegnTsJpeLq4oyRzh9CUddGePKK88WkerOvYceu0zQrO2VcM1Bkd47Lc3nr6cGy4c45sJ-v4MaiEihl8R4zJyF_ikDkrUkhInppQZAau2ruXO3tBeTFDoBEdiECaptQ8dEoSepCZQgygpaMq1pjz0IiGykIdCWu4QWMqko7TOnIc9a-Vw_B9Fmp5N7dzwDIeOSONjYmUR1vT4bahrEFbYEUmVFSHjUpHqS5Zy-nyjIe04FvmKV2tQn-xDqt9yV7B1PGDzGKl5rTcq88pHYvHqomxeh3Wvb5-7Z9ebh_Rc_6vgiswfNZqp0f7J4cLMIJgKyG_x-Ui1FBVdgkBzUu27FfuO80l8r8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplified+optimal+design+of+MDOF+structures+with+negative+stiffness+amplifying+dampers+based+on+effective+damping&rft.jtitle=The+structural+design+of+tall+and+special+buildings&rft.au=Wang%2C+Meng&rft.au=Sun%2C+Fei%E2%80%90fei&rft.au=Nagarajaiah%2C+Satish&rft.date=2019-10-25&rft.issn=1541-7794&rft.eissn=1541-7808&rft.volume=28&rft.issue=15&rft_id=info:doi/10.1002%2Ftal.1664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tal_1664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7794&client=summon |