Simplified optimal design of MDOF structures with negative stiffness amplifying dampers based on effective damping

SUMMARY This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, subs...

Full description

Saved in:
Bibliographic Details
Published inThe structural design of tall and special buildings Vol. 28; no. 15
Main Authors Wang, Meng, Sun, Fei‐fei, Nagarajaiah, Satish
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 25.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, substantially reducing a NSD's requirement for high additional damping, which is used to contain the increased displacements resulting from the reduction in overall stiffness of a system. The dynamic equations of MDOF systems with NSADs are described in state–space representation, and the effective damping and frequencies are parametrically studied. Then, a simple optimization method is proposed. A study of the 20‐storey benchmark building shows that NSADs are the most efficient of supplemental devices in reducing interstorey drifts compared with viscous dampers (VDs) and viscoelastic dampers (VEDs) with the same supplemental damping coefficient. For instance, when compared with that of VEDs, the maximal peak interstorey of NSADs can be further reduced by about 30%. In terms of reducing acceleration responses, NSADs perform much better than VDs and VEDs owing to their negative stiffness feature. Partially arranged, NSADs are best implemented at the storeys that have smaller interstorey drift responses. This is because the negative stiffness preserved by NSADs significantly reduces the interstorey drift of storeys without NSADs.
AbstractList SUMMARYThis paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, substantially reducing a NSD's requirement for high additional damping, which is used to contain the increased displacements resulting from the reduction in overall stiffness of a system. The dynamic equations of MDOF systems with NSADs are described in state–space representation, and the effective damping and frequencies are parametrically studied. Then, a simple optimization method is proposed. A study of the 20‐storey benchmark building shows that NSADs are the most efficient of supplemental devices in reducing interstorey drifts compared with viscous dampers (VDs) and viscoelastic dampers (VEDs) with the same supplemental damping coefficient. For instance, when compared with that of VEDs, the maximal peak interstorey of NSADs can be further reduced by about 30%. In terms of reducing acceleration responses, NSADs perform much better than VDs and VEDs owing to their negative stiffness feature. Partially arranged, NSADs are best implemented at the storeys that have smaller interstorey drift responses. This is because the negative stiffness preserved by NSADs significantly reduces the interstorey drift of storeys without NSADs.
SUMMARY This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, substantially reducing a NSD's requirement for high additional damping, which is used to contain the increased displacements resulting from the reduction in overall stiffness of a system. The dynamic equations of MDOF systems with NSADs are described in state–space representation, and the effective damping and frequencies are parametrically studied. Then, a simple optimization method is proposed. A study of the 20‐storey benchmark building shows that NSADs are the most efficient of supplemental devices in reducing interstorey drifts compared with viscous dampers (VDs) and viscoelastic dampers (VEDs) with the same supplemental damping coefficient. For instance, when compared with that of VEDs, the maximal peak interstorey of NSADs can be further reduced by about 30%. In terms of reducing acceleration responses, NSADs perform much better than VDs and VEDs owing to their negative stiffness feature. Partially arranged, NSADs are best implemented at the storeys that have smaller interstorey drift responses. This is because the negative stiffness preserved by NSADs significantly reduces the interstorey drift of storeys without NSADs.
This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only preserves the negative stiffness feature of negative stiffness devices (NSDs) but also achieves prominent damping magnification effect, substantially reducing a NSD's requirement for high additional damping, which is used to contain the increased displacements resulting from the reduction in overall stiffness of a system. The dynamic equations of MDOF systems with NSADs are described in state–space representation, and the effective damping and frequencies are parametrically studied. Then, a simple optimization method is proposed. A study of the 20‐storey benchmark building shows that NSADs are the most efficient of supplemental devices in reducing interstorey drifts compared with viscous dampers (VDs) and viscoelastic dampers (VEDs) with the same supplemental damping coefficient. For instance, when compared with that of VEDs, the maximal peak interstorey of NSADs can be further reduced by about 30%. In terms of reducing acceleration responses, NSADs perform much better than VDs and VEDs owing to their negative stiffness feature. Partially arranged, NSADs are best implemented at the storeys that have smaller interstorey drift responses. This is because the negative stiffness preserved by NSADs significantly reduces the interstorey drift of storeys without NSADs.
Author Nagarajaiah, Satish
Wang, Meng
Sun, Fei‐fei
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0003-0432-8313
  surname: Wang
  fullname: Wang, Meng
  organization: Tongji University
– sequence: 2
  givenname: Fei‐fei
  surname: Sun
  fullname: Sun, Fei‐fei
  email: ffsun@tongji.edu.cn
  organization: Tongji University
– sequence: 3
  givenname: Satish
  surname: Nagarajaiah
  fullname: Nagarajaiah, Satish
  organization: Rice University
BookMark eNp1kM1OwzAQhC1UJNqCxCNY4sIlxb-Jc6wKBaSiHijnKHHs4ip1gu1S9e1xWrggOO2s9ttZ7YzAwLZWAXCN0QQjRO5C2UxwmrIzMMSc4SQTSAx-dJazCzDyfoMQzhGnQ-BezbZrjDaqhm0XzLZsYK28WVvYavhyv5xDH9xOhp1THu5NeIdWrctgPlUcGK2t8h6WR4-DsWtYR62ch1Xpe0sLldZKHvl-FJFLcK7Lxqur7zoGb_OH1ewpWSwfn2fTRSJJTlnC64xLgrXgCGPEK8EJllznsUsJwTVDosKSMlWTOseY5aWWkmqCaS6FVhUdg5uTb-faj53yodi0O2fjyYJQxFKRUSoiNTlR0rXeO6ULaUL8r7XBlaYpMCr6XIuYa9HnGhdufy10LsbmDn-hyQndm0Yd_uWK1XRx5L8AmzyJxA
CitedBy_id crossref_primary_10_1016_j_jobe_2024_109225
crossref_primary_10_1007_s10518_022_01372_5
crossref_primary_10_1016_j_ijmecsci_2023_108261
crossref_primary_10_1080_15397734_2024_2319113
crossref_primary_10_1016_j_engstruct_2025_119676
crossref_primary_10_1016_j_tust_2023_105019
crossref_primary_10_1016_j_soildyn_2023_107857
crossref_primary_10_1007_s11803_020_0609_3
crossref_primary_10_1016_j_ymssp_2022_108965
crossref_primary_10_1061__ASCE_ST_1943_541X_0002846
crossref_primary_10_1088_1742_6596_2647_3_032016
crossref_primary_10_1016_j_jweia_2021_104761
crossref_primary_10_1016_j_engstruct_2024_119247
crossref_primary_10_1016_j_engstruct_2020_111312
crossref_primary_10_1016_j_ijmecsci_2021_106805
crossref_primary_10_1016_j_jobe_2025_112203
crossref_primary_10_1061_PPSCFX_SCENG_1306
crossref_primary_10_3389_fbuil_2021_773622
crossref_primary_10_1002_stc_2482
crossref_primary_10_1038_s41598_023_31482_2
crossref_primary_10_1016_j_istruc_2024_107966
crossref_primary_10_1007_s42417_021_00362_2
crossref_primary_10_1016_j_istruc_2024_105860
crossref_primary_10_3390_buildings12081214
crossref_primary_10_1016_j_engstruct_2023_116793
crossref_primary_10_1016_j_engstruct_2022_114394
crossref_primary_10_1016_j_ymssp_2025_112397
crossref_primary_10_1061__ASCE_ST_1943_541X_0003472
crossref_primary_10_1155_2023_4024741
crossref_primary_10_1016_j_jobe_2024_108674
crossref_primary_10_3390_buildings13071803
crossref_primary_10_3390_buildings15030441
crossref_primary_10_1016_j_jobe_2022_104428
crossref_primary_10_1002_eqe_3693
crossref_primary_10_1002_eqe_3891
crossref_primary_10_1002_eqe_4302
crossref_primary_10_1002_stc_2988
crossref_primary_10_3390_buildings13123008
crossref_primary_10_1002_eqe_3502
crossref_primary_10_1007_s41062_023_01350_z
crossref_primary_10_46300_9104_2022_16_3
crossref_primary_10_1016_j_engstruct_2020_111615
crossref_primary_10_1016_j_engstruct_2025_119849
crossref_primary_10_1061_AJRUA6_RUENG_1360
crossref_primary_10_3390_buildings14030744
crossref_primary_10_1016_j_oceaneng_2024_120099
crossref_primary_10_1016_j_istruc_2023_02_065
crossref_primary_10_1002_tal_1793
crossref_primary_10_1016_j_jcsr_2022_107494
crossref_primary_10_1002_stc_2829
Cites_doi 10.1061/(ASCE)ST.1943-541X.0000830
10.1002/eqe.3034
10.1016/j.ymssp.2016.08.018
10.1016/j.jsv.2015.11.005
10.1061/(ASCE)ST.1943-541X.0000616
10.1002/(SICI)1096-9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X
10.1193/101913EQS273M
10.1002/eqe.2318
10.1061/(ASCE)BE.1943-5592.0001136
10.1061/(ASCE)EM.1943-7889.0001289
10.1016/0022-460X(92)90422-T
10.1177/1077546316646514
10.1016/j.jsv.2018.02.052
10.1177/1077546315585435
10.1061/(ASCE)EM.1943-7889.0000692
10.1016/j.engstruct.2019.03.110
10.1016/j.engstruct.2018.01.071
10.1088/0964-1726/25/7/075044
10.1002/(SICI)1099-1794(199812)7:4<323::AID-TAL115>3.0.CO;2-L
10.1016/j.sna.2017.03.026
10.1016/j.engstruct.2017.10.044
10.1061/(ASCE)0733-9445(1992)118:5(1375)
10.1088/0964-1726/24/7/072002
10.1002/(SICI)1096-9845(199906)28:6<655::AID-EQE833>3.0.CO;2-T
10.12989/sss.2006.2.4.339
10.1002/stc.345
10.1061/(ASCE)ST.1943-541X.0001323
10.1080/13632469.2014.962672
10.1002/eqe.1023
10.1061/(ASCE)ST.1943-541X.0001658
10.1061/(ASCE)ST.1943-541X.0001805
10.1016/j.engstruct.2018.09.049
10.1002/eqe.2495
10.1002/1096-9845(200009)29:9<1307::AID-EQE972>3.0.CO;2-D
10.1061/(ASCE)ST.1943-541X.0001455
10.1061/(ASCE)ST.1943-541X.0001077
10.1002/eqe.862
10.1016/j.compstruc.2017.07.022
10.1002/stc.1968
10.1061/(ASCE)0733-9399(2002)128:10(1088)
10.12989/sss.2015.15.3.627
10.1061/(ASCE)ST.1943-541X.0000615
10.1061/(ASCE)ST.1943-541X.0001680
10.1061/(ASCE)0733-9445(1996)122:12(1394)
10.1002/eqe.359
10.1002/(SICI)1099-1794(199609)5:3<217::AID-TAL70>3.0.CO;2-R
10.1016/j.jsv.2015.02.028
10.1061/(ASCE)0733-9399(2003)129:3(273)
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/tal.1664
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1541-7808
EndPage n/a
ExternalDocumentID 10_1002_tal_1664
TAL1664
Genre article
GrantInformation_xml – fundername: China Scholarship Council
– fundername: Ministry of Science and Technology of China
  funderid: SLDRCE19‐B‐16
– fundername: National Natural Science Foundation of China
  funderid: 51778488
GroupedDBID .3N
.GA
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
I-F
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XV2
~IA
~IF
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
1OB
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2934-5d75c21f8501105b8521c5f90116221d408b1c34ed2d91149afcc3f2139c8feb3
IEDL.DBID DR2
ISSN 1541-7794
IngestDate Wed Aug 13 04:50:18 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Tue Jul 01 04:31:26 EDT 2025
Wed Jan 22 16:37:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-5d75c21f8501105b8521c5f90116221d408b1c34ed2d91149afcc3f2139c8feb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0432-8313
PQID 2304687338
PQPubID 2034345
PageCount 26
ParticipantIDs proquest_journals_2304687338
crossref_citationtrail_10_1002_tal_1664
crossref_primary_10_1002_tal_1664
wiley_primary_10_1002_tal_1664_TAL1664
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 October 2019
PublicationDateYYYYMMDD 2019-10-25
PublicationDate_xml – month: 10
  year: 2019
  text: 25 October 2019
  day: 25
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The structural design of tall and special buildings
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 141
2017; 85
2018; 161
2015; 346
2018; 207
2015; 31
2016; 143
2017; 153
2016; 142
2018; 47
2004; 33
2018; 177
2003; 129
1992; 158
2015; 44
1992; 118
1996; 5
2009; 16
2015; 15
2000; 29
2015; 19
2019; 190
2010
1997; 26
1999; 28
2011; 40
2017; 24
2013; 42
2018; 423
2017; 23
1998
2009
2016; 365
1996; 122
2006; 2
2018; 23
2017; 259
2015; 24
2013; 139
2002; 128
2019
2018
2009; 8
2014; 140
2017; 143
1998; 7
2016; 25
2009; 38
2016; 24
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
Pasala D. T. R. (e_1_2_9_45_1) 2019
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
Cimellaro G. P. (e_1_2_9_40_1) 2018
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Huang H. C. (e_1_2_9_12_1) 2009; 8
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
FEMA. P695 (e_1_2_9_55_1) 2009
e_1_2_9_29_1
References_xml – year: 2009
– volume: 141
  year: 2015
  publication-title: J. Struct. Eng.
– volume: 139
  start-page: 1124
  year: 2013
  publication-title: J. Struct. Eng.
– start-page: 1
  year: 2018
  publication-title: J. Struct. Eng.
– volume: 47
  start-page: 1651
  year: 2018
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 346
  start-page: 37
  year: 2015
  publication-title: J. Sound Vib.
– volume: 140
  year: 2014
  publication-title: J. Struct. Eng.
– volume: 129
  start-page: 273
  year: 2003
  publication-title: J. Eng. Mech.
– volume: 26
  start-page: 1113
  year: 1997
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 15
  start-page: 627
  year: 2015
  publication-title: Smart Struct. Syst.
– volume: 259
  start-page: 14
  year: 2017
  publication-title: Sens. Act. A: Phys.
– volume: 85
  start-page: 193
  year: 2017
  publication-title: Mech. Syst. Signal Process.
– volume: 24
  start-page: 588
  year: 2016
  publication-title: J. Vib. Control.
– volume: 24
  year: 2015
  publication-title: Smart Mater. Struct.
– year: 1998
– volume: 190
  start-page: 128
  issue: 7
  year: 2019
  publication-title: Eng. Struct.
– volume: 177
  start-page: 30
  year: 2018
  publication-title: Eng. Struct.
– volume: 161
  start-page: 96
  year: 2018
  publication-title: Eng. Struct.
– volume: 153
  start-page: 525
  year: 2017
  publication-title: Eng. Struct.
– volume: 44
  start-page: 973
  year: 2015
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 365
  start-page: 1
  year: 2016
  publication-title: J. Sound Vib.
– volume: 33
  start-page: 465
  year: 2004
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 29
  start-page: 1307
  year: 2000
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 23
  start-page: 853
  year: 2017
  publication-title: J. Vib. Control.
– volume: 5
  start-page: 217
  year: 1996
  publication-title: Struct. Des. Tall Build.
– volume: 24
  year: 2017
  publication-title: Struct. Control Health Monit.
– volume: 42
  start-page: 2151
  issue: 14
  year: 2013
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 122
  start-page: 1394
  issue: 12
  year: 1996
  publication-title: J. Struct. Eng.
– volume: 38
  start-page: 377
  year: 2009
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 143
  year: 2017
  publication-title: J. Struct. Eng.
– volume: 8
  start-page: 521
  year: 2009
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 143
  year: 2016
  publication-title: J. Eng. Mech.
– volume: 118
  start-page: 1375
  issue: 5
  year: 1992
  publication-title: J. Struct. Eng.
– volume: 143
  year: 2016
  publication-title: J. Struct. Eng.
– volume: 423
  start-page: 18
  year: 2018
  publication-title: J. Sound Vib.
– volume: 16
  start-page: 784
  year: 2009
  publication-title: Struct. Control Health Monit.
– volume: 2
  start-page: 339
  year: 2006
  publication-title: Smart Struct. Syst.
– volume: 7
  start-page: 323
  year: 1998
  publication-title: Struct. Des. Tall Build.
– volume: 139
  start-page: 1112
  year: 2013
  publication-title: J. Struct. Eng.
– volume: 23
  year: 2018
  publication-title: J. Bridge Eng.
– volume: 25
  year: 2016
  publication-title: Smart Mater. Struct.
– volume: 158
  start-page: 517
  year: 1992
  publication-title: J. Sound Vib.
– year: 2010
– year: 2019
  publication-title: Earthq. Spectra
– volume: 207
  start-page: 121
  year: 2018
  publication-title: Comput. Struct.
– volume: 31
  start-page: 2163
  year: 2015
  publication-title: Earthq. Spectra
– volume: 19
  start-page: 249
  year: 2015
  publication-title: J. Earthq. Eng.
– volume: 140
  issue: 5
  year: 2014
  publication-title: J. Eng. Mech.
– volume: 28
  start-page: 655
  year: 1999
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 40
  start-page: 75
  year: 2011
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 128
  start-page: 1088
  year: 2002
  publication-title: J. Eng. Mech.
– volume: 142
  year: 2016
  publication-title: J. Struct. Eng.
– ident: e_1_2_9_36_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000830
– ident: e_1_2_9_20_1
  doi: 10.1002/eqe.3034
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ymssp.2016.08.018
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jsv.2015.11.005
– ident: e_1_2_9_21_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000616
– year: 2019
  ident: e_1_2_9_45_1
  publication-title: Earthq. Spectra
– ident: e_1_2_9_6_1
  doi: 10.1002/(SICI)1096-9845(199711)26:11<1113::AID-EQE696>3.0.CO;2-X
– ident: e_1_2_9_33_1
  doi: 10.1193/101913EQS273M
– ident: e_1_2_9_17_1
– ident: e_1_2_9_38_1
  doi: 10.1002/eqe.2318
– ident: e_1_2_9_26_1
  doi: 10.1061/(ASCE)BE.1943-5592.0001136
– ident: e_1_2_9_29_1
  doi: 10.1061/(ASCE)EM.1943-7889.0001289
– volume-title: Quantification of building seismic performance factors
  year: 2009
  ident: e_1_2_9_55_1
– ident: e_1_2_9_3_1
  doi: 10.1016/0022-460X(92)90422-T
– ident: e_1_2_9_42_1
  doi: 10.1177/1077546316646514
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jsv.2018.02.052
– ident: e_1_2_9_27_1
  doi: 10.1177/1077546315585435
– ident: e_1_2_9_52_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000692
– ident: e_1_2_9_48_1
  doi: 10.1016/j.engstruct.2019.03.110
– ident: e_1_2_9_49_1
  doi: 10.1016/j.engstruct.2018.01.071
– ident: e_1_2_9_30_1
  doi: 10.1088/0964-1726/25/7/075044
– ident: e_1_2_9_10_1
  doi: 10.1002/(SICI)1099-1794(199812)7:4<323::AID-TAL115>3.0.CO;2-L
– ident: e_1_2_9_31_1
  doi: 10.1016/j.sna.2017.03.026
– ident: e_1_2_9_43_1
  doi: 10.1016/j.engstruct.2017.10.044
– ident: e_1_2_9_2_1
  doi: 10.1061/(ASCE)0733-9445(1992)118:5(1375)
– ident: e_1_2_9_28_1
  doi: 10.1088/0964-1726/24/7/072002
– ident: e_1_2_9_7_1
  doi: 10.1002/(SICI)1096-9845(199906)28:6<655::AID-EQE833>3.0.CO;2-T
– ident: e_1_2_9_16_1
  doi: 10.12989/sss.2006.2.4.339
– ident: e_1_2_9_18_1
  doi: 10.1002/stc.345
– ident: e_1_2_9_23_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001323
– ident: e_1_2_9_34_1
  doi: 10.1080/13632469.2014.962672
– ident: e_1_2_9_13_1
  doi: 10.1002/eqe.1023
– ident: e_1_2_9_39_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001658
– ident: e_1_2_9_47_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001805
– ident: e_1_2_9_19_1
  doi: 10.1016/j.engstruct.2018.09.049
– ident: e_1_2_9_32_1
  doi: 10.1002/eqe.2495
– ident: e_1_2_9_8_1
  doi: 10.1002/1096-9845(200009)29:9<1307::AID-EQE972>3.0.CO;2-D
– ident: e_1_2_9_35_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001455
– ident: e_1_2_9_37_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001077
– ident: e_1_2_9_54_1
  doi: 10.1002/eqe.862
– ident: e_1_2_9_14_1
  doi: 10.1016/j.compstruc.2017.07.022
– start-page: 1
  year: 2018
  ident: e_1_2_9_40_1
  publication-title: J. Struct. Eng.
– ident: e_1_2_9_25_1
  doi: 10.1002/stc.1968
– volume: 8
  start-page: 521
  year: 2009
  ident: e_1_2_9_12_1
  publication-title: Earthq. Eng. Struct. Dyn.
– ident: e_1_2_9_15_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:10(1088)
– ident: e_1_2_9_24_1
  doi: 10.12989/sss.2015.15.3.627
– ident: e_1_2_9_22_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000615
– ident: e_1_2_9_51_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001680
– ident: e_1_2_9_5_1
  doi: 10.1061/(ASCE)0733-9445(1996)122:12(1394)
– ident: e_1_2_9_11_1
  doi: 10.1002/eqe.359
– ident: e_1_2_9_4_1
  doi: 10.1002/(SICI)1099-1794(199609)5:3<217::AID-TAL70>3.0.CO;2-R
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jsv.2015.02.028
– ident: e_1_2_9_9_1
  doi: 10.1061/(ASCE)0733-9399(2003)129:3(273)
– ident: e_1_2_9_53_1
SSID ssj0019053
Score 2.4225876
Snippet SUMMARY This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only...
This paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only...
SUMMARYThis paper presents a study on multi‐degree‐of‐freedom (MDOF) structures equipped with a negative stiffness amplifying damper (NSAD). The NSAD not only...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acceleration
Amplification
benchmark study
Dampers
damping magnification
Drift
effective damping
negative stiffness amplifying dampers
Optimization
passive structural control
simplified optimal design
Stiffness
System effectiveness
Viscoelasticity
Viscous damping
Title Simplified optimal design of MDOF structures with negative stiffness amplifying dampers based on effective damping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftal.1664
https://www.proquest.com/docview/2304687338
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-yJ33wW5xOiSD61G1Nk659HOoY4hR0g4EPpfmSoXbithf_eu_SdpuiID61kEtoesnd78LdL4Sc2paC4NiPPWuF8HgolBfrIPZSQBuBjKCTKxTu3YbdAb8eimGRVYm1MDk_xPzADXeGs9e4wVM5aSxIQxGb-mGIVKCYqoV46H7OHAVuzhFQAkDwAUDGvOSdbbJG2fGrJ1rAy2WQ6rxMZ4M8lt-XJ5c812dTWVcf36gb_zeBTbJegE_azlfLFlkx2TZZW6Ik3CHvDyPMMbeATOkYzMkryGuX5UHHlvYu7zo0p5ydQZxO8RSXZubJsYdDw8haNJ00dWNgBRXV8A4Qk6K7hCEzmmeQoDw2gcguGXSu-hddr7iXwVMADrgndEso5ttIIHgQMgIIoITFItaQMV_zZiR9FXCjmQZbyuPUKhVYBupXkYXofY9UsnFm9gmVLLBaaBMiJ48yOmWmGRkNpsBwyaOgSs5LHSWqIC3HuzNekpxumSV4swr-xSo5mUu-5UQdP8jUSjUnxVadJHgqHkYtCNWr5Mzp69f-Sb99g8-DvwoeklUAWDH6OiZqpAL6MUcAYqby2C3XT4dE7-w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSDb7FadQXRU2yz2U0TPBW1VG0VtIIHITT7kKKm4uPir3dm09QHCuIpgcwuSWZ35pth5luAbVtXGBz7sWetlJ4IpfJiHcReD9FGkEY4yDUKd87C1pU4uZbXY7Bf9MLk_BCjhBvtDGevaYNTQrr6wRpK4NQPQzEOE3Sgt4unLkbcUejoHAUlQgQfIWQsCubZGq8WI7_6og-A-RmmOj_TnIWb4g3z8pK7vdeXdE-9fSNv_OcnzMHMEH-yRr5g5mHMZAsw_YmVcBGeLvtUZm4RnLIBWpQHlNeu0IMNLOscnjdZzjr7iqE6o0Quy8ytIxDHB31ryXqynpuDmqiYxntEmYw8Jk6ZsbyIhOTpEYoswVXzqHvQ8oZHM3gK8YHwpK5LxX0bScIPMo0QBShpqY815NzXohalvgqE0VyjORVxzyoVWI4rQEUWA_hlKGWDzKwAS3lgtdQmJFoeZXSPm1pkNFoDI1IRBWXYLZSUqCFvOR2fcZ_kjMs8ocNV6C-WYWsk-ZhzdfwgUyn0nAx363NCifEwqmO0XoYdp7BfxyfdRpuuq38V3ITJVrfTTtrHZ6drMIV4KybXx2UFSqgrs46Y5iXdcGv3HXrO9Ac
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50BdEHb3E9I4g-Vbdp0k0fxXXxVjxA8KFsc4io3cXjxV_vTNquBwriUwuZhKaTzHwTZr4ArLmmxuA4TALnpAxELHWQmCgJOog2okxhJ18ofHwS712Jg2t5XWZVUi1MwQ_RP3CjneHtNW3wnnFbH6ShhE3DOBaDMCTihqIV3TrvU0ehn_MMlIgQQkSQiaiIZxt8q-r51RV94MvPKNW7mfY43FQfWGSX3G--vmSb-u0bd-P_ZjABYyX6ZNvFcpmEAZtPwegnTsJpeLq4oyRzh9CUddGePKK88WkerOvYceu0zQrO2VcM1Bkd47Lc3nr6cGy4c45sJ-v4MaiEihl8R4zJyF_ikDkrUkhInppQZAau2ruXO3tBeTFDoBEdiECaptQ8dEoSepCZQgygpaMq1pjz0IiGykIdCWu4QWMqko7TOnIc9a-Vw_B9Fmp5N7dzwDIeOSONjYmUR1vT4bahrEFbYEUmVFSHjUpHqS5Zy-nyjIe04FvmKV2tQn-xDqt9yV7B1PGDzGKl5rTcq88pHYvHqomxeh3Wvb5-7Z9ebh_Rc_6vgiswfNZqp0f7J4cLMIJgKyG_x-Ui1FBVdgkBzUu27FfuO80l8r8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplified+optimal+design+of+MDOF+structures+with+negative+stiffness+amplifying+dampers+based+on+effective+damping&rft.jtitle=The+structural+design+of+tall+and+special+buildings&rft.au=Wang%2C+Meng&rft.au=Sun%2C+Fei%E2%80%90fei&rft.au=Nagarajaiah%2C+Satish&rft.date=2019-10-25&rft.issn=1541-7794&rft.eissn=1541-7808&rft.volume=28&rft.issue=15&rft_id=info:doi/10.1002%2Ftal.1664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tal_1664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7794&client=summon