Frontal person image generation based on arbitrary‐view human images

Frontal person images contain the richest detailed features of humans, which can effectively assist in behavioral recognition, virtual dress fitting and other applications. While many remarkable networks are devoted to the person image generation task, most of them need accurate target poses as the...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 4
Main Authors Zhang, Yong, Zhang, Yuqing, Chen, Lufei, Yin, Baocai, Sun, Yongliang
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frontal person images contain the richest detailed features of humans, which can effectively assist in behavioral recognition, virtual dress fitting and other applications. While many remarkable networks are devoted to the person image generation task, most of them need accurate target poses as the network inputs. However, the target pose annotation is difficult and time‐consuming. In this work, we proposed a first frontal person image generation network based on the proposed anchor pose set and the generative adversarial network. Specifically, our method first classify a rough frontal pose to the input human image based on the proposed anchor pose set, and regress all key points of the rough frontal pose to estimate an accurate frontal pose. Then, we consider the estimated frontal pose as the target pose, and construct a two‐stream generator based on the generative adversarial network to update the person's shape and appearance feature in a crossing way and generate a realistic frontal person image. Experiments on the challenging CMU Panoptic dataset show that our method can generate realistic frontal images from arbitrary‐view human images. The process of frontal person image generation based on arbitrary‐view human images.
AbstractList Frontal person images contain the richest detailed features of humans, which can effectively assist in behavioral recognition, virtual dress fitting and other applications. While many remarkable networks are devoted to the person image generation task, most of them need accurate target poses as the network inputs. However, the target pose annotation is difficult and time‐consuming. In this work, we proposed a first frontal person image generation network based on the proposed anchor pose set and the generative adversarial network. Specifically, our method first classify a rough frontal pose to the input human image based on the proposed anchor pose set, and regress all key points of the rough frontal pose to estimate an accurate frontal pose. Then, we consider the estimated frontal pose as the target pose, and construct a two‐stream generator based on the generative adversarial network to update the person's shape and appearance feature in a crossing way and generate a realistic frontal person image. Experiments on the challenging CMU Panoptic dataset show that our method can generate realistic frontal images from arbitrary‐view human images.
Frontal person images contain the richest detailed features of humans, which can effectively assist in behavioral recognition, virtual dress fitting and other applications. While many remarkable networks are devoted to the person image generation task, most of them need accurate target poses as the network inputs. However, the target pose annotation is difficult and time‐consuming. In this work, we proposed a first frontal person image generation network based on the proposed anchor pose set and the generative adversarial network. Specifically, our method first classify a rough frontal pose to the input human image based on the proposed anchor pose set, and regress all key points of the rough frontal pose to estimate an accurate frontal pose. Then, we consider the estimated frontal pose as the target pose, and construct a two‐stream generator based on the generative adversarial network to update the person's shape and appearance feature in a crossing way and generate a realistic frontal person image. Experiments on the challenging CMU Panoptic dataset show that our method can generate realistic frontal images from arbitrary‐view human images. The process of frontal person image generation based on arbitrary‐view human images.
Author Yin, Baocai
Sun, Yongliang
Chen, Lufei
Zhang, Yuqing
Zhang, Yong
Author_xml – sequence: 1
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  email: zhangyong2010@bjut.edu.cn
  organization: Beijing Institute of Artificial Intelligence, Department of Information Science, Beijing University of Technology
– sequence: 2
  givenname: Yuqing
  orcidid: 0000-0002-0015-8874
  surname: Zhang
  fullname: Zhang, Yuqing
  organization: Beijing Institute of Artificial Intelligence, Department of Information Science, Beijing University of Technology
– sequence: 3
  givenname: Lufei
  surname: Chen
  fullname: Chen, Lufei
  organization: Beijing Institute of Artificial Intelligence, Department of Information Science, Beijing University of Technology
– sequence: 4
  givenname: Baocai
  surname: Yin
  fullname: Yin, Baocai
  organization: Beijing Institute of Artificial Intelligence, Department of Information Science, Beijing University of Technology
– sequence: 5
  givenname: Yongliang
  surname: Sun
  fullname: Sun, Yongliang
  organization: Taiji Co LTD
BookMark eNp1kLtOwzAUhi1UJNqCxCNEYmFJsJ3EsceqooBUiQUQm2Unx8VVmhQ7bdWNR-AZeRLcixgQTOei7z-Xf4B6TdsAQpcEJwRjelOqdUJpmp2gPskzFme0eO395IycoYH380AySnAfTSaubTpVR0twvm0iu1AziGbQgFOdDQ2tPFRRSJTTtnPKbb8-PtcWNtHbaqGOAn-OTo2qPVwc4xA9T26fxvfx9PHuYTyaxiUVaRZnWgtFlQJulChKUbFQVrQoMqCa5blRRhTaaMYrnDIjmMYCMs5zbjgBVqZDdHWYu3Tt-wp8J-ftyjVhpUyxyLnAOKeBuj5QpWu9d2Dk0oU73VYSLHcuyeCS3LkU0OQXWtpu_3n41dZ_CeKDYGNr2P47WI5HL3v-G3toe08
CitedBy_id crossref_primary_10_1007_s00371_025_03803_1
Cites_doi 10.1109/CVPR.2017.495
10.1109/CVPR.2017.170
10.1007/978-3-319-46484-8_29
10.1109/CVPR.2018.00870
10.1145/3343031.3350980
10.1109/TPAMI.2016.2577031
10.1109/AVSS.2019.8909823
10.1109/CVPR52729.2023.00464
10.1016/j.neucom.2021.03.059
10.1109/ICCV.2019.00911
10.1007/978-3-030-58595-2_43
10.1016/j.patcog.2022.109246
10.1109/CVPR.2019.01225
10.1109/CVPR.2018.00018
10.1109/CVPR.2017.106
10.1109/CVPR.2019.00245
10.1007/978-3-319-49409-8_15
10.1109/ICCV.2017.405
10.1109/WACV45572.2020.9093602
10.1007/978-3-030-11012-3_30
10.1109/TPAMI.2017.2782743
10.1007/978-3-030-01252-6_26
10.1016/j.eswa.2023.123073
10.1109/CVPR52729.2023.00578
10.1109/CVPR52729.2023.00457
10.1109/ICCV.2017.244
10.1109/ICCV.2019.01023
10.1109/ACCESS.2021.3053408
10.1109/ICCV.2019.00600
10.1007/978-3-030-01240-3_40
10.1109/CVPR.2017.632
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2234
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2234
CAV2234
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2021ZD0111902
– fundername: National Natural Science Foundation of China
  funderid: U21B2038; 61772209; 62072015
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2934-4bb9a2aae8fa97c9d69a2d2774e2b655faf97bfb68d036f96b09e48858f81e6c3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 02:28:52 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Thu Apr 24 22:58:58 EDT 2025
Wed Jan 22 17:14:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-4bb9a2aae8fa97c9d69a2d2774e2b655faf97bfb68d036f96b09e48858f81e6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0015-8874
PQID 3095890052
PQPubID 2034909
PageCount 16
ParticipantIDs proquest_journals_3095890052
crossref_primary_10_1002_cav_2234
crossref_citationtrail_10_1002_cav_2234
wiley_primary_10_1002_cav_2234_CAV2234
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July/August 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July/August 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2023
2019; 41
2017; 39
2020; 11:2227‐39
2020
2021; 449
2019
2018
2023; 137
2017
2020; 36
2016
2015
IEEE / CVF; 2018
2014
2024; 246
e_1_2_7_6_1
Peng H (e_1_2_7_12_1) 2020; 11
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
Vidanpathirana M (e_1_2_7_11_1) 2020; 36
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_44_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
Siarohin A (e_1_2_7_17_1) 2018
Cipolla R (e_1_2_7_41_1) 2018
He K (e_1_2_7_38_1) 2016
Benzine A (e_1_2_7_39_1) 2020
Chen Y (e_1_2_7_27_1) 2018
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Cao Z (e_1_2_7_25_1) 2017
e_1_2_7_36_1
e_1_2_7_37_1
References_xml – volume: 36
  issue: 5
  year: 2020
  article-title: Tracking and frame‐rate enhancement for real‐time 2d human pose estimation
  publication-title: Vis Comput
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  end-page: 1149
  article-title: Faster r‐cnn: towards real‐time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 449
  start-page: 330
  year: 2021
  end-page: 341
  article-title: Pccm‐gan: photographic text‐to‐image generation with pyramid contrastive consistency model
  publication-title: Neurocomputing
– start-page: 7482
  year: 2018
  end-page: 7491
– volume: 41
  start-page: 190
  issue: 1
  year: 2019
  end-page: 204
  article-title: Panoptic studio: a massively multiview system for social interaction capture
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 6855
  year: 2020
  end-page: 6864
– volume: 137
  year: 2023
  article-title: Pose‐driven attention‐guided image generation for person re‐identification
  publication-title: Pattern Recognit
– start-page: 2342
  year: 2019
  end-page: 2351
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
  publication-title: Comput Vis Pattern Recognit
– volume: 11:2227‐39
  year: 2020
  article-title: 3d hand mesh reconstruction from a monocular rgb image
  publication-title: Vis Comput
– start-page: 99
  year: 2018
  end-page: 108
– start-page: 5967
  year: 2017
  end-page: 5976
– year: 2016
– year: 2018
– start-page: 1302
  year: 2017
  end-page: 1310
– year: 2014
– volume: 246
  year: 2024
  article-title: Attentional pixel‐wise deformation for pose‐based human image generation
  publication-title: Expert Syst Appl
– start-page: 11969
  year: 2019
  end-page: 11978
– year: 2020
– year: 2023
– start-page: 3408
  year: 2018
  end-page: 3416
– start-page: 8340
  year: IEEE / CVF; 2018
  end-page: 8348
– start-page: 1561
  year: 2017
  end-page: 1570
– start-page: 4654
  year: 2017
  end-page: 4663
– year: 2017
– volume: 9
  start-page: 16591
  year: 2021
  end-page: 16603
  article-title: Inet: convolutional networks for biomedical image segmentation
  publication-title: IEEE Access
– year: 2019
– year: 2015
– start-page: 7103
  year: 2018
  end-page: 7112
– start-page: 936
  year: 2017
  end-page: 944
– ident: e_1_2_7_30_1
  doi: 10.1109/CVPR.2017.495
– ident: e_1_2_7_31_1
  doi: 10.1109/CVPR.2017.170
– ident: e_1_2_7_20_1
– ident: e_1_2_7_46_1
  doi: 10.1007/978-3-319-46484-8_29
– ident: e_1_2_7_3_1
  doi: 10.1109/CVPR.2018.00870
– volume: 11
  year: 2020
  ident: e_1_2_7_12_1
  article-title: 3d hand mesh reconstruction from a monocular rgb image
  publication-title: Vis Comput
– ident: e_1_2_7_43_1
  doi: 10.1145/3343031.3350980
– start-page: 3408
  volume-title: Computer vision and pattern recognition
  year: 2018
  ident: e_1_2_7_17_1
– ident: e_1_2_7_40_1
  doi: 10.1109/TPAMI.2016.2577031
– ident: e_1_2_7_45_1
– ident: e_1_2_7_28_1
  doi: 10.1109/AVSS.2019.8909823
– start-page: 770
  year: 2016
  ident: e_1_2_7_38_1
  article-title: Deep residual learning for image recognition
  publication-title: Comput Vis Pattern Recognit
– start-page: 6855
  volume-title: Computer vision and pattern recognition
  year: 2020
  ident: e_1_2_7_39_1
– start-page: 7103
  volume-title: Computer vision and pattern recognition
  year: 2018
  ident: e_1_2_7_27_1
– ident: e_1_2_7_35_1
  doi: 10.1109/CVPR52729.2023.00464
– ident: e_1_2_7_21_1
  doi: 10.1016/j.neucom.2021.03.059
– ident: e_1_2_7_33_1
– ident: e_1_2_7_8_1
  doi: 10.1109/ICCV.2019.00911
– ident: e_1_2_7_47_1
– ident: e_1_2_7_44_1
– ident: e_1_2_7_23_1
  doi: 10.1007/978-3-030-58595-2_43
– ident: e_1_2_7_18_1
  doi: 10.1016/j.patcog.2022.109246
– ident: e_1_2_7_13_1
  doi: 10.1109/CVPR.2019.01225
– ident: e_1_2_7_16_1
  doi: 10.1109/CVPR.2018.00018
– start-page: 1302
  volume-title: Computer vision and pattern recognition
  year: 2017
  ident: e_1_2_7_25_1
– start-page: 7482
  volume-title: Computer vision and pattern recognition
  year: 2018
  ident: e_1_2_7_41_1
– ident: e_1_2_7_29_1
  doi: 10.1109/CVPR.2017.106
– ident: e_1_2_7_5_1
  doi: 10.1109/CVPR.2019.00245
– ident: e_1_2_7_32_1
  doi: 10.1007/978-3-319-49409-8_15
– ident: e_1_2_7_7_1
  doi: 10.1109/ICCV.2017.405
– ident: e_1_2_7_22_1
  doi: 10.1109/WACV45572.2020.9093602
– ident: e_1_2_7_4_1
  doi: 10.1007/978-3-030-11012-3_30
– ident: e_1_2_7_24_1
  doi: 10.1109/TPAMI.2017.2782743
– ident: e_1_2_7_26_1
  doi: 10.1007/978-3-030-01252-6_26
– ident: e_1_2_7_19_1
  doi: 10.1016/j.eswa.2023.123073
– ident: e_1_2_7_37_1
  doi: 10.1109/CVPR52729.2023.00578
– ident: e_1_2_7_14_1
  doi: 10.1109/CVPR52729.2023.00457
– ident: e_1_2_7_42_1
– ident: e_1_2_7_10_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_7_34_1
  doi: 10.1109/ICCV.2019.01023
– ident: e_1_2_7_36_1
  doi: 10.1109/ACCESS.2021.3053408
– ident: e_1_2_7_2_1
  doi: 10.1109/ICCV.2019.00600
– ident: e_1_2_7_6_1
  doi: 10.1007/978-3-030-01240-3_40
– ident: e_1_2_7_9_1
  doi: 10.1109/CVPR.2017.632
– volume: 36
  issue: 5
  year: 2020
  ident: e_1_2_7_11_1
  article-title: Tracking and frame‐rate enhancement for real‐time 2d human pose estimation
  publication-title: Vis Comput
– ident: e_1_2_7_15_1
SSID ssj0026210
Score 2.351083
Snippet Frontal person images contain the richest detailed features of humans, which can effectively assist in behavioral recognition, virtual dress fitting and other...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Annotations
arbitrary‐view images
deep learning
Feature recognition
frontal person image generation
frontal pose estimation
Generative adversarial networks
Image processing
Virtual networks
Title Frontal person image generation based on arbitrary‐view human images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2234
https://www.proquest.com/docview/3095890052
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA_iSQ_-F6dTKoieunVpkjbHMSxD0IO4MfBQkjSRoc6xbh48-RH8jH4S85p2U1EQT21KHrTv5eX9kr78HkInRIcC0hb9EFY6RBvqx4JEPhfW8zAOTBTDaeTLK9btkYsBHZRZlXAWxvFDzDfcwDOK-RocXMi8uSANVeK5YWMbUIFCqhbgoes5cxRm2BERUMJ8WCVUvLMBblaCXyPRAl5-BqlFlEnW0W31fi655L4xm8qGevlG3fi_D9hAayX49NputGyiJT3aQqv9YT5zT_NtlCTAaGCb4wKKe8NHO-F4dwU5NdjQg7CXefZGTOSwOLP__voG_xe8otyfE8h3UC85v-l0_bLWgq9swCc-kZILLISOjeCR4hmzzQxbcKixZJQaYXgkjWRxZmOe4UwGXFvnp7GJW5qpcBctj55Geg95caitjaWFJpkhUaB4qFtYaooDomgQmBo6q_SeqpKIHOphPKSOQhmnVjMpaKaGjuc9x45844c-9cp0ael-eRpa4Bhz2PKuodPCBr_Kp512H677f-14gFawBTYuZbeOlqeTmT60wGQqj4oh-AFd1994
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5ROLQceLRFLCwQpD5OWYLjPHzggIDV8jxUgLildmKjFbCgzS4ITvwE_gd_hV_BL2EmThZaUakXDpzykB0lnhnPN874G4BvXPuS0hZdnyIdrk3gxpJHrpBoeYx5JoppN_LuXtg64FtHwdEQ3Fd7YSw_xGDBjSyjmK_JwGlBeumZNTSVlw10brzMqNzW11cYr-Urm-so3O-MNTf211puWVLATdGvcZcrJSSTUsdGiigVWYiXGUMMpJkKg8BIIyJlVBhnOLUbESpPaNTxIDbxsg5TH5_7AUaogDgR9a__GnBVsZBZ6oOAhy7FJRXTrceWqjf90_c9A9qXsLjwa81xeKhGxKaznDT6PdVIb_4ii3wnQzYBYyW-dlatQUzCkO58htHDdt63d_Mv0GwSaQNeXhTRhtM-wznVOS74t0lNHfLsmYMnsqvaBS3B4-0d_UJxioqGtkP-FQ7e5EOmYLhz3tHT4MS-RjVWiL4ywyMvFb5eZkoHzONp4HmmBj8rQSdpybVOJT9OE8sSzRKUREKSqMHioOWF5Rd5pU290pWknGHyxEdsHAta1a_Bj0Lo_-yfrK0e0nHmfxsuwMfW_u5OsrO5tz0LnxjiOJuhXIfhXrev5xCH9dR8of8O_H5r7XkCmsY_AQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB6lqVTBgdIWRCClrtSfk4NZr9feQw9RUiuUNqoqQNzMrr2LIiBEcUJVTjxCn6OvwlvwJJ312klbUamXHHryj3Yte2dm55v17DcAr6jyhUlbdH0T6VClAzcSNHS5QMsjxNNhZHYjf-qz3iH9cBwc1-BHtRfG8kPMFtyMZRTztTHwUaZ35qShqbhqoW-jZULlvvr2FcO1_N1eF2X7mpD4_UGn55YVBdwU3Rp1qZRcECFUpAUPU54xvMwIQiBFJAsCLTQPpZYsynBm15xJjytU8SDS0a5iqY_PfQAPKfO4KRPR_TKjqiKMWOaDgDLXhCUV0a1Hdqo3_d31zfHsr6i4cGvxY7itBsRms5y1phPZSq__4Ir8P0ZsFVZKdO20rTk8gZoaPoXlo0E-tXfzZxDHhrIBL0dFrOEMLnBGdU4L9m2jpI7x65mDJ2IsBwUpwd3Nd_MDxSnqGdoO-RocLuRD1qE-vByqDXAiX6ESS8Remaahl3Jf7RKpAuLRNPA83YC3lZyTtGRaNwU_zhPLEU0SlERiJNGAl7OWI8suck-bZqUqSTm_5ImPyDjiZk2_AW8Kmf-1f9JpH5nj5r82fAGPPnfj5ONef38LlgiCOJue3IT6ZDxVzxGETeR2of0OnCxaeX4Cizs9sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frontal+person+image+generation+based+on+arbitrary%E2%80%90view+human+images&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhang%2C+Yong&rft.au=Zhang%2C+Yuqing&rft.au=Chen%2C+Lufei&rft.au=Yin%2C+Baocai&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1002%2Fcav.2234&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon