Constructive conditions for consensus of multi‐agents under fast switching networks: A time‐delay approach
This article studies consensus problem of multi‐agent systems under fast switching networks depending on a small parameter ε>0$$ \varepsilon >0 $$. In contrast to the existing methods that are qualitative, we present, for the first time, constructive and quantitative results for finding an upp...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 33; no. 1; pp. 659 - 679 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
10.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1049-8923 1099-1239 |
DOI | 10.1002/rnc.6413 |
Cover
Abstract | This article studies consensus problem of multi‐agent systems under fast switching networks depending on a small parameter ε>0$$ \varepsilon >0 $$. In contrast to the existing methods that are qualitative, we present, for the first time, constructive and quantitative results for finding an upper bound on ε$$ \varepsilon $$ that preserves the consensus and for designing the consensus protocol that includes the designs of continuous‐time controller and of sampled‐data controller. We first employ a time‐delay approach to periodic averaging for continuous‐time control of multi‐agent systems under fast switching networks leading to a time‐delay model where the delay length is equal to ε$$ \varepsilon $$. We construct an appropriate Lyapunov functional for finding sufficient stability conditions in the form of linear matrix inequalities (LMIs). The upper bound on ε$$ \varepsilon $$ that preserves the exponential stability is found from LMIs. Moreover, sufficient conditions on the existence of controller gain are, for the first time, derived for the multi‐agent systems under fast switching networks. For the implementation of consensus protocol, we further extend our method to sampled‐data consensus of multi‐agent systems under fast switching networks where additional Lyapunov functionals are presented to compensate the term due to the sampling. Finally, an example of Caltech multivehicle wireless test bed vehicles is given to illustrate the efficiency of the method. |
---|---|
AbstractList | This article studies consensus problem of multi‐agent systems under fast switching networks depending on a small parameter ε>0$$ \varepsilon >0 $$. In contrast to the existing methods that are qualitative, we present, for the first time, constructive and quantitative results for finding an upper bound on ε$$ \varepsilon $$ that preserves the consensus and for designing the consensus protocol that includes the designs of continuous‐time controller and of sampled‐data controller. We first employ a time‐delay approach to periodic averaging for continuous‐time control of multi‐agent systems under fast switching networks leading to a time‐delay model where the delay length is equal to ε$$ \varepsilon $$. We construct an appropriate Lyapunov functional for finding sufficient stability conditions in the form of linear matrix inequalities (LMIs). The upper bound on ε$$ \varepsilon $$ that preserves the exponential stability is found from LMIs. Moreover, sufficient conditions on the existence of controller gain are, for the first time, derived for the multi‐agent systems under fast switching networks. For the implementation of consensus protocol, we further extend our method to sampled‐data consensus of multi‐agent systems under fast switching networks where additional Lyapunov functionals are presented to compensate the term due to the sampling. Finally, an example of Caltech multivehicle wireless test bed vehicles is given to illustrate the efficiency of the method. This article studies consensus problem of multi‐agent systems under fast switching networks depending on a small parameter . In contrast to the existing methods that are qualitative, we present, for the first time, constructive and quantitative results for finding an upper bound on that preserves the consensus and for designing the consensus protocol that includes the designs of continuous‐time controller and of sampled‐data controller. We first employ a time‐delay approach to periodic averaging for continuous‐time control of multi‐agent systems under fast switching networks leading to a time‐delay model where the delay length is equal to . We construct an appropriate Lyapunov functional for finding sufficient stability conditions in the form of linear matrix inequalities (LMIs). The upper bound on that preserves the exponential stability is found from LMIs. Moreover, sufficient conditions on the existence of controller gain are, for the first time, derived for the multi‐agent systems under fast switching networks. For the implementation of consensus protocol, we further extend our method to sampled‐data consensus of multi‐agent systems under fast switching networks where additional Lyapunov functionals are presented to compensate the term due to the sampling. Finally, an example of Caltech multivehicle wireless test bed vehicles is given to illustrate the efficiency of the method. |
Author | Zhang, Jin Shi, Jing Ding, Lei Peng, Chen |
Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0002-6043-309X surname: Zhang fullname: Zhang, Jin organization: Tel Aviv University – sequence: 2 givenname: Jing surname: Shi fullname: Shi, Jing email: jingshi@shu.edu.cn organization: Shanghai University – sequence: 3 givenname: Lei surname: Ding fullname: Ding, Lei organization: Nanjing University of Posts and Telecommunications – sequence: 4 givenname: Chen surname: Peng fullname: Peng, Chen email: c.peng@shu.edu.cn organization: Shanghai University |
BookMark | eNp1kMtKAzEUhoNUsK2CjxBw42ZqkrnGXSneoCiIrodM5qRNnSY1yVi68xF8Rp_EGetKdHVu3zk_5x-hgbEGEDqlZEIJYRfOyEmW0PgADSnhPKIs5oM-T3hUcBYfoZH3K0K6GUuGyMys8cG1Mug3wNKaWgfdtbCyri89GN96bBVet03Qn-8fYgEmeNyaGhxWwgfstzrIpTYLbCBsrXvxl3iKg15Dh9fQiB0Wm42zQi6P0aESjYeTnzhGz9dXT7PbaP5wczebziPJeBxHCgSpGU9kImVFKTCWCQCWFVWRcQE5y4WoEs4znuYVZHlNMwJJWvNUxVKJIh6js_3dTva1BR_KlW2d6SRLlqcJy3nOSEdN9pR01nsHqpQ6iP7_4IRuSkrK3tOy87TsPe0Wzn8tbJxeC7f7C4326FY3sPuXKx_vZ9_8F4h-i_o |
CitedBy_id | crossref_primary_10_1109_TCSII_2023_3242298 crossref_primary_10_1002_rnc_6863 |
Cites_doi | 10.1016/j.automatica.2020.109101 10.1109/MCAS.2013.2271443 10.1109/TCYB.2019.2917179 10.1016/j.automatica.2017.12.001 10.1016/j.automatica.2010.10.014 10.1016/j.sigpro.2019.04.012 10.1109/TSMC.2021.3090024 10.1016/j.sysconle.2018.12.007 10.1109/TCYB.2019.2894294 10.1137/050625229 10.1080/00207179.2016.1177776 10.1109/9.618250 10.1080/00207170500324175 10.1109/TCYB.2020.2977720 10.1109/TAC.2021.3056364 10.1016/j.automatica.2021.110126 10.1016/j.automatica.2012.09.025 10.1016/j.automatica.2013.07.024 10.1016/j.ifacol.2021.11.112 10.1002/rnc.1631 10.1109/TAC.2007.904603 10.1080/00207721.2019.1575486 10.1109/TAC.2004.834113 10.1109/TNNLS.2019.2917137 10.1007/978-3-319-09393-2 10.1109/TAC.2009.2017963 10.1007/978-1-4613-0163-9 10.1016/j.automatica.2020.109287 10.1109/TAC.2004.834433 10.1002/rnc.2779 10.1016/j.automatica.2013.08.025 10.1016/j.automatica.2016.07.034 10.1109/TCYB.2017.2779120 10.1002/rnc.4370 10.1016/j.ins.2018.04.055 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.6413 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 679 |
ExternalDocumentID | 10_1002_rnc_6413 RNC6413 |
Genre | article |
GrantInformation_xml | – fundername: Israel Science Foundation funderid: 673/19 – fundername: National Key Research and Development Program of China funderid: 2020YFB1708200 – fundername: National Natural Science Foundation of China funderid: 61833011; 62173218 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2933-fea0d294c4ccb11e226aee268b869ae727aab4996957be67d160e45d95f3cfa83 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Sun Jul 13 05:32:47 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Tue Jul 01 01:03:11 EDT 2025 Wed Jan 22 16:20:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2933-fea0d294c4ccb11e226aee268b869ae727aab4996957be67d160e45d95f3cfa83 |
Notes | Funding information Israel Science Foundation, Grant/Award Number: 673/19; National Key Research and Development Program of China, Grant/Award Number: 2020YFB1708200; National Natural Science Foundation of China, Grant/Award Numbers: 61833011; 62173218 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6043-309X |
PQID | 2754279720 |
PQPubID | 1026344 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2754279720 crossref_citationtrail_10_1002_rnc_6413 crossref_primary_10_1002_rnc_6413 wiley_primary_10_1002_rnc_6413_RNC6413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 January 2023 |
PublicationDateYYYYMMDD | 2023-01-10 |
PublicationDate_xml | – month: 01 year: 2023 text: 10 January 2023 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 28 2013; 49 2019; 50 2019; 31 2004; 49 1997; 42 2013; 23 2022; 67 2006; 5 2016; 74 2019; 124 2020; 122 2007; 52 2002 2018; 89 2019; 162 2022; 137 2007; 59 2021; 54 2017; 90 2009; 54 2001 2018; 457 2013; 13 2020; 50 2019; 49 2011; 21 2022; 52 2014 2011; 47 2020; 119 2005; 78 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 Sanders JA (e_1_2_9_19_1) 2007 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 Khalil HK (e_1_2_9_22_1) 2002 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 457 start-page: 113 year: 2018 end-page: 125 article-title: A survey on recent advances in event‐triggered communication and control publication-title: Inf Sci – volume: 13 start-page: 21 issue: 3 year: 2013 end-page: 34 article-title: Multi‐agent systems with dynamical topologies: consensus and applications publication-title: IEEE Circuits Syst Mag – volume: 54 start-page: 1607 issue: 7 year: 2009 end-page: 1613 article-title: Consensus of multi‐agent systems in directed networks with nonuniform time‐varying delays publication-title: IEEE Trans Autom Control – volume: 50 start-page: 2851 issue: 6 year: 2019 end-page: 2860 article-title: Output feedback stabilization of networked control systems under a stochastic scheduling protocol publication-title: IEEE Trans Cybern – volume: 50 start-page: 1306 issue: 3 year: 2020 end-page: 1320 article-title: Distributed event‐triggered estimation over sensor networks: a survey publication-title: IEEE Trans Cybern – volume: 124 start-page: 83 year: 2019 end-page: 91 article-title: Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay publication-title: Syst Control Lett – year: 2001 – volume: 5 start-page: 140 issue: 1 year: 2006 end-page: 156 article-title: Sufficient conditions for fast switching synchronization in time‐varying network topologies publication-title: SIAM J Appl Dyn Syst – volume: 54 start-page: 35 issue: 18 year: 2021 end-page: 40 article-title: A time‐delay approach to vibrational control with square wave dithers publication-title: IFAC‐PapersOnLine – volume: 47 start-page: 235 year: 2011 end-page: 238 article-title: Reciprocally convex approach to stability of systems with time‐varying delays publication-title: Automatica – volume: 59 year: 2007 – volume: 90 start-page: 275 issue: 2 year: 2017 end-page: 288 article-title: Sampled‐data consensus of general linear multi‐agent systems under switching topologies: averaging method publication-title: Int J Control – volume: 78 start-page: 1302 issue: 16 year: 2005 end-page: 1313 article-title: A sub‐optimal algorithm to synthesize control laws for a network of dynamic agents publication-title: Int J Control – volume: 49 start-page: 505 issue: 2 year: 2019 end-page: 516 article-title: Consensus of discrete‐time multiagent systems with input delays by truncated pseudo‐predictor feedback publication-title: IEEE Trans Cybern – volume: 162 start-page: 97 year: 2019 end-page: 105 article-title: Partial‐information‐based consensus of network systems with time‐varying delay via sampled‐data control publication-title: Signal Process – volume: 49 start-page: 1520 issue: 9 year: 2004 end-page: 1533 article-title: Consensus problems in networks of agents with switching topology and time‐delays publication-title: IEEE Trans Autom Control – volume: 23 start-page: 602 issue: 6 year: 2013 end-page: 619 article-title: Consensus of multi‐agent systems with nonlinear dynamics and sampled‐data information: a delayed‐input approach publication-title: Int J Robust Nonlinear Control – volume: 49 start-page: 267 issue: 1 year: 2013 end-page: 272 article-title: Consensus of output‐coupled linear multi‐agent systems under fast switching network: averaging approach publication-title: Automatica – volume: 52 start-page: 4200 issue: 7 year: 2022 end-page: 4210 article-title: Stochastic event‐triggered control for networked systems under denial of service attacks publication-title: IEEE Trans Syst Man Cybern Syst – volume: 42 start-page: 1171 issue: 8 year: 1997 end-page: 1176 article-title: A cone complementarity linearization algorithm for static output‐feedback and related problems publication-title: IEEE Trans Autom Control – volume: 52 start-page: 128 issue: 1 year: 2022 end-page: 137 article-title: Sampled‐data consensus of linear time‐varying multiagent networks with time‐varying topologies publication-title: IEEE Trans Cybern – year: 2014 – volume: 74 start-page: 288 year: 2016 end-page: 296 article-title: Delay‐induced stability of vector second‐order systems via simple Lyapunov functionals publication-title: Automatica – volume: 52 start-page: 1767 issue: 9 year: 2007 end-page: 1773 article-title: Consensus seeking over random weighted directed graphs publication-title: IEEE Trans Autom Control – volume: 137 year: 2022 article-title: ‐gain analysis via time‐delay approach to periodic averaging with stochastic extension publication-title: Automatica – volume: 49 start-page: 3467 issue: 11 year: 2013 end-page: 3475 article-title: New stability conditions for systems with distributed delays publication-title: Automatica – volume: 31 start-page: 1036 issue: 3 year: 2019 end-page: 1045 article-title: Consensus tracking control of switched stochastic nonlinear multiagent systems via event‐triggered strategy publication-title: IEEE Trans Neural Networks Learn Syst – volume: 67 start-page: 351 issue: 1 year: 2022 end-page: 358 article-title: Digital implementation of derivative‐dependent control by using delays for stochastic multiagents publication-title: IEEE Trans Autom Control – volume: 119 year: 2020 article-title: Improved derivative‐dependent control of stochastic systems via delayed feedback implementation publication-title: Automatica – year: 2002 – volume: 122 year: 2020 article-title: Averaging of linear systems with almost periodic coefficients: a time‐delay approach publication-title: Automatica – volume: 21 start-page: 945 issue: 9 year: 2011 end-page: 956 article-title: Consensus of second‐order multi‐agent systems with exogenous disturbances publication-title: Int J Robust Nonlinear Control – volume: 49 start-page: 1465 issue: 9 year: 2004 end-page: 1476 article-title: Information flow and cooperative control of vehicle formations publication-title: IEEE Trans Autom Control – volume: 89 start-page: 316 year: 2018 end-page: 324 article-title: Network‐based practical set consensus of multi‐agent systems subject to input saturation publication-title: Automatica – volume: 49 start-page: 3125 issue: 10 year: 2013 end-page: 3132 article-title: Consensus condition for linear multi‐agent systems over randomly switching topologies publication-title: Automatica – volume: 50 start-page: 843 issue: 4 year: 2019 end-page: 857 article-title: Non‐fragile sampled‐data control of network systems subject to time‐delay publication-title: Int J Syst Sci – volume: 28 start-page: 6180 issue: 18 year: 2018 end-page: 6201 article-title: Distributed adaptive model‐based event‐triggered predictive control for consensus of multiagent systems publication-title: Int J Robust Nonlinear Control – ident: e_1_2_9_33_1 doi: 10.1016/j.automatica.2020.109101 – ident: e_1_2_9_16_1 doi: 10.1109/MCAS.2013.2271443 – ident: e_1_2_9_5_1 doi: 10.1109/TCYB.2019.2917179 – ident: e_1_2_9_4_1 doi: 10.1016/j.automatica.2017.12.001 – volume-title: Nonlinear Systems year: 2002 ident: e_1_2_9_22_1 – ident: e_1_2_9_36_1 doi: 10.1016/j.automatica.2010.10.014 – ident: e_1_2_9_27_1 doi: 10.1016/j.sigpro.2019.04.012 – ident: e_1_2_9_38_1 doi: 10.1109/TSMC.2021.3090024 – ident: e_1_2_9_31_1 doi: 10.1016/j.sysconle.2018.12.007 – volume-title: Averaging Methods in Nonlinear Dynamical Systems year: 2007 ident: e_1_2_9_19_1 – ident: e_1_2_9_35_1 doi: 10.1109/TCYB.2019.2894294 – ident: e_1_2_9_20_1 doi: 10.1137/050625229 – ident: e_1_2_9_21_1 doi: 10.1080/00207179.2016.1177776 – ident: e_1_2_9_34_1 doi: 10.1109/9.618250 – ident: e_1_2_9_37_1 doi: 10.1080/00207170500324175 – ident: e_1_2_9_17_1 doi: 10.1109/TCYB.2020.2977720 – ident: e_1_2_9_12_1 doi: 10.1109/TAC.2021.3056364 – ident: e_1_2_9_24_1 doi: 10.1016/j.automatica.2021.110126 – ident: e_1_2_9_18_1 doi: 10.1016/j.automatica.2012.09.025 – ident: e_1_2_9_14_1 doi: 10.1016/j.automatica.2013.07.024 – ident: e_1_2_9_32_1 doi: 10.1016/j.ifacol.2021.11.112 – ident: e_1_2_9_11_1 doi: 10.1002/rnc.1631 – ident: e_1_2_9_13_1 doi: 10.1109/TAC.2007.904603 – ident: e_1_2_9_28_1 doi: 10.1080/00207721.2019.1575486 – ident: e_1_2_9_7_1 doi: 10.1109/TAC.2004.834113 – ident: e_1_2_9_15_1 doi: 10.1109/TNNLS.2019.2917137 – ident: e_1_2_9_25_1 doi: 10.1007/978-3-319-09393-2 – ident: e_1_2_9_9_1 doi: 10.1109/TAC.2009.2017963 – ident: e_1_2_9_6_1 doi: 10.1007/978-1-4613-0163-9 – ident: e_1_2_9_23_1 doi: 10.1016/j.automatica.2020.109287 – ident: e_1_2_9_2_1 doi: 10.1109/TAC.2004.834433 – ident: e_1_2_9_3_1 doi: 10.1002/rnc.2779 – ident: e_1_2_9_29_1 doi: 10.1016/j.automatica.2013.08.025 – ident: e_1_2_9_30_1 doi: 10.1016/j.automatica.2016.07.034 – ident: e_1_2_9_10_1 doi: 10.1109/TCYB.2017.2779120 – ident: e_1_2_9_8_1 doi: 10.1002/rnc.4370 – ident: e_1_2_9_26_1 doi: 10.1016/j.ins.2018.04.055 |
SSID | ssj0009924 |
Score | 2.3747408 |
Snippet | This article studies consensus problem of multi‐agent systems under fast switching networks depending on a small parameter ε>0$$ \varepsilon >0 $$. In contrast... This article studies consensus problem of multi‐agent systems under fast switching networks depending on a small parameter . In contrast to the existing... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 659 |
SubjectTerms | consensus Controllers Delay fast switching networks Linear matrix inequalities LMIs Networks periodic averaging Reagents Stability Switching time‐delay approach Upper bounds |
Title | Constructive conditions for consensus of multi‐agents under fast switching networks: A time‐delay approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.6413 https://www.proquest.com/docview/2754279720 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xdVVIoieuttHmrbellURwT2IguCh5AmiVLGroid_gr_RX-JM0-6uoiCeSmECbSaTfDNMvo-QHc20VdZyL4xl5DEtpAd7oPJkKqJEKAOgAEsDpwN-fMFOLuPLuqsS78I4fohRwQ0jo9qvMcCFLLtj0tAHiB_OKsHaIOJIm39wNmaOyjKnZwsA2EsBxDS8s37YbQZ-PYnG8HISpFanzNE8uWq-zzWX3HQeh7KjXr9RN_7vBxbIXA0-ac-tlkUyZYolMjtBSbhMClTwdJyyT4ZCsqxdTxcFcIuvJUpjlPTO0qoV8ePtXeDlrJLiZbQHakU5pOXz9bBq0aSFazIv92mPooo9mCMr5QttqMxXyMXR4Xn_2Ks1GTwFwCDyrBG-DjOmmFIyCAygN2FMyFOZ8kwYQENCSMiieBYn0vBEB9w3LNZZbCNlRRqtkunirjBrhMpUaw0JkQ0yw6QJUgsHtmRpLPzQJL5skb3GP7mqCctRN-M2d1TLYQ4zmOMMtsj2yPLekXT8YNNuXJzXYVrmIer_JlkS-i2yW_nq1_H52aCPz_W_Gm6QGZSmx3JN4LfJNLjObAKAGcqtaql-Akhg8yE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC5ED9FDND5w45q0IHoanUfPS09ilPWxexAFD8LQTwgJs2FnVfSUn5DfmF-SqumdXZUI4mkYqB5murqmvyqqvw9gU3NtlbWJF8Yy8rgW0sN_oPJkJqJUKIOggEoD3V7SueKn1_H1FOw3Z2EcP8S44EaRUf-vKcCpIL07YQ0dYAAlnBRrZzg-kjKvbxcT7qg8d4q2CIG9DGFMwzzrh7vNyOd70QRgPoWp9T5zPA83zRu69pIfO7dDuaMeX5A3vvMTFuDjCH-yA7dgPsGUKRdh7gkr4RKUJOLpaGXvDMN8Wbu2Lob4lm4rUseoWN-yuhvx7-8_gs5nVYzOow2YFdWQVfffh3WXJitdn3m1xw4YCdmjORFTPrCGzXwZro6PLg873kiWwVOIDSLPGuHrMOeKKyWDwCCAE8aESSazJBcGAZEQEhOpJI9TaZJUB4lveKzz2EbKiixagemyX5pVYDLTWmNOZIPccGmCzOKeLXkWCz80qS9bsN04qFAjznKSzvhZOLblsMAZLGgGW7AxtvzleDr-Y9NufFyMIrUqQpIATvM09FuwVTvr1fHFRe-Qrp_favgVPnQuu-fF-UnvbA1mSameqjeB34ZpdKNZRzwzlF_qdfsPax_3QA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bSuRAEG1kBFkfdHWVHR3XFpb1KU4unU7i2-Du4GV3WAYHBB9CX2FRophR0Sc_wW_0S6xKJ44uCuJTCFRD0tXVfaqoPoeQ75ppq6zlXhjLyGNaSA_2QOXJVESJUAZAAZYG_gz47ojtH8VHdVcl3oVx_BBPBTeMjGq_xgA_17Y7IQ29gPjhDAVrpxkHIIGAaDihjsoyJ2gLCNhLAcU0xLN-2G1GvjyKJvjyOUqtjpn-PDluPtB1l5xsXY7llrr9j7vxY3_wmczV6JP23HJZIFOmWCSzzzgJv5ACJTwdqeyVoZAta9fURQHd4muJ2hglPbO06kV8uLsXeDurpHgb7YJaUY5pef1vXPVo0sJ1mZfbtEdRxh7MkZbyhjZc5ktk1P91uLPr1aIMngJkEHnWCF-HGVNMKRkEBuCbMCbkqUx5JgzAISEkpFE8ixNpeKID7hsW6yy2kbIijZZJqzgrzFdCZaq1hozIBplh0gSphRNbsjQWfmgSX7bJZuOfXNWM5SiccZo7ruUwhxnMcQbbZOPJ8tyxdLxi02lcnNdxWuYhCgAnWRL6bfKj8tWb4_PhYAefK-81XCczf3_28997g4NV8gll6rF0E_gd0gIvmjUAM2P5rVq1j6Pl9e8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructive+conditions+for+consensus+of+multi%E2%80%90agents+under+fast+switching+networks%3A+A+time%E2%80%90delay+approach&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Zhang%2C+Jin&rft.au=Shi%2C+Jing&rft.au=Ding%2C+Lei&rft.au=Peng%2C+Chen&rft.date=2023-01-10&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=33&rft.issue=1&rft.spage=659&rft.epage=679&rft_id=info:doi/10.1002%2Frnc.6413&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_6413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |