Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring

Summary Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the di...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 12
Main Authors Deng, Yang, Ju, Hanwen, Zhai, Wenqiang, Li, Aiqun, Ding, Youliang
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.3113

Cover

Loading…
Abstract Summary Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time‐continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short‐, medium‐, and long‐term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature‐ and vehicle‐induced deflection components is proposed. The results show that the predicted deflection of the short‐term correlation model is basically consistent with the real‐time monitoring data, while the medium‐ and long‐term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature‐ and vehicle‐induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.
AbstractList Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time‐continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short‐, medium‐, and long‐term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature‐ and vehicle‐induced deflection components is proposed. The results show that the predicted deflection of the short‐term correlation model is basically consistent with the real‐time monitoring data, while the medium‐ and long‐term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature‐ and vehicle‐induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.
Summary Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time‐continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short‐, medium‐, and long‐term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature‐ and vehicle‐induced deflection components is proposed. The results show that the predicted deflection of the short‐term correlation model is basically consistent with the real‐time monitoring data, while the medium‐ and long‐term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature‐ and vehicle‐induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment.
Author Deng, Yang
Ding, Youliang
Zhai, Wenqiang
Ju, Hanwen
Li, Aiqun
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-5807-1440
  surname: Deng
  fullname: Deng, Yang
  email: dengyang@bucea.edu.cn
  organization: Beijing University of Civil Engineering and Architecture
– sequence: 2
  givenname: Hanwen
  orcidid: 0000-0003-1680-4698
  surname: Ju
  fullname: Ju, Hanwen
  organization: Beijing University of Civil Engineering and Architecture
– sequence: 3
  givenname: Wenqiang
  surname: Zhai
  fullname: Zhai, Wenqiang
  organization: Beijing University of Civil Engineering and Architecture
– sequence: 4
  givenname: Aiqun
  surname: Li
  fullname: Li, Aiqun
  organization: Southeast University
– sequence: 5
  givenname: Youliang
  surname: Ding
  fullname: Ding, Youliang
  organization: Southeast University
BookMark eNp10LtqHDEUBmBhbPAlgTyCwE0Kz0YazYx3yrDEScCQInY9nJGOvDJaaX2kcXDn3o2fMU8Sjde4CEmlC99_DvzHbD_EgIx9kGIhhag_pawXSkq1x45k27RVXXdq_-3etofsOKXbIrt62R6xp1UkQg_ZxcA30aDn0XKD1qOe_874Pa6d9sh9BHPGIRiecbNFgjwRchuJu_D78Tkh3TuNfCRnbpBPyYWbMge33CNQmF9zNmWadEmC52sEn9dlaXA5UgHv2IEFn_D963nCri--XK2-VZc_vn5ffb6sdN0rVRkAYWHsajHqceybujcCLYCGptfCKGF0U0i3bEU_StAaUQrbt1pbIbBV6oSd7uZuKd5NmPJwGycKZeVQn6vzvpPLRha12ClNMSVCO2iXX3rKBM4PUgxz4UMpfJgLL4GPfwW25DZAD_-i1Y7-ch4f_uuGn1erF_8H9U6WTw
CitedBy_id crossref_primary_10_1007_s42417_024_01335_x
crossref_primary_10_1016_j_prostr_2024_09_308
crossref_primary_10_3390_s23218824
crossref_primary_10_1007_s13369_023_08474_5
crossref_primary_10_1016_j_engstruct_2025_119709
crossref_primary_10_1177_14759217231181882
crossref_primary_10_1007_s13349_024_00831_8
crossref_primary_10_1007_s00190_024_01913_7
crossref_primary_10_1007_s11760_025_03846_w
crossref_primary_10_1016_j_jweia_2024_105679
crossref_primary_10_1016_j_engappai_2023_106774
crossref_primary_10_1061_JBENF2_BEENG_6435
crossref_primary_10_1155_2024_1299095
crossref_primary_10_1016_j_measurement_2024_114735
crossref_primary_10_1016_j_dibe_2024_100337
crossref_primary_10_1061_JPCFEV_CFENG_4680
crossref_primary_10_1080_15583058_2024_2380414
crossref_primary_10_3390_s24216863
crossref_primary_10_1177_13694332241281858
crossref_primary_10_3390_met12111831
crossref_primary_10_3390_s24072091
crossref_primary_10_1016_j_engstruct_2024_118094
crossref_primary_10_1016_j_engstruct_2024_119580
crossref_primary_10_1016_j_jcsr_2024_108542
crossref_primary_10_1016_j_engstruct_2024_119084
crossref_primary_10_1016_j_istruc_2025_108290
crossref_primary_10_1016_j_ymssp_2024_112177
Cites_doi 10.1061/(ASCE)CF.1943‐5509.0001154
10.1177/14759217211021942
10.1061/(ASCE)BE.1943‐5592.0001716
10.1016/j.engstruct.2020.111012
10.1061/(ASCE)CF.1943‐5509.0001537
10.1016/j.ins.2021.02.064
10.1002/stc.2146
10.1177/14759217211009780
10.3390/app10217426
10.1177/1045389X06055826
10.1061/(ASCE)CF.1943‐5509.0001075
10.1002/stc.2772
10.1061/(ASCE)BE.1943‐5592.0001387
10.1002/stc.2254
10.1061/(ASCE)BE.1943‐5592.0001327
10.1061/(ASCE)ST.1943‐541X.0000050
10.1115/1.4048414
10.1061/(ASCE)CF.1943‐5509.0000991
10.1109/TIE.2017.2733438
10.1002/stc.1751
10.1002/stc.2281
10.1002/stc.2593
10.1016/j.aei.2019.100991
10.1007/s13369‐018‐3425‐6
10.1139/l05‐085
10.1177/14759217211035048
10.1016/j.engstruct.2021.113619
10.1145/3316414
10.1155/2021/1443996
10.1177/1475921720924601
10.1007/s13349‐020‐00402‐7
10.1002/stc.2296
10.1007/s13349‐017‐0210‐2
10.1061/(ASCE)CF.1943‐5509.0001212
10.1002/stc.2618
10.3934/mbe.2019281
10.1016/j.renene.2019.07.033
10.1002/stc.2667
10.1061/(ASCE)BE.1943‐5592.0001489
10.3390/s18114070
10.1177/1475921719897571
10.1177/1475921718773954
10.3390/app10030777
10.3390/app9142881
10.1016/j.ins.2020.05.090
10.1016/j.renene.2021.04.025
10.1016/j.apr.2020.05.015
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.3113
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_3113
STC3113
Genre article
GrantInformation_xml – fundername: Beijing Municipal Education Commission
  funderid: CIT&TCD201904060
– fundername: Fundamental Research Funds for Beijing University of Civil Engineering and Architecture
  funderid: X20174
– fundername: National Natural Science Foundation of China
  funderid: 51878027
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
ABJCF
ADMLS
AEUYN
AFKRA
AGQPQ
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2933-daa0fab620bcbb9429d0efaaca49c0d30dc4aa068509b1accee10f95ccf00e533
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Sat Sep 06 16:26:10 EDT 2025
Tue Jul 01 04:05:47 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Wed Jan 22 16:22:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-daa0fab620bcbb9429d0efaaca49c0d30dc4aa068509b1accee10f95ccf00e533
Notes Funding information
Fundamental Research Funds for Beijing University of Civil Engineering and Architecture, Grant/Award Number: X20174; Beijing Municipal Education Commission, Grant/Award Number: CIT&TCD201904060; National Natural Science Foundation of China, Grant/Award Number: 51878027
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1680-4698
0000-0001-5807-1440
PQID 2737961841
PQPubID 2034347
PageCount 20
ParticipantIDs proquest_journals_2737961841
crossref_citationtrail_10_1002_stc_3113
crossref_primary_10_1002_stc_3113
wiley_primary_10_1002_stc_3113_STC3113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2022; 252
2021; 26
2019; 9
2021; 21
2021; 20
2021; 566
2006; 33
2021; 28
2019; 12
2006; 17
2019; 16
2019; 18
2009; 135
2020; 221
2020; 540
2020; 146
2020; 11
2020; 10
2021; 143
2018; 65
2018; 25
2020; 19
2021; 35
2018; 18
2017; 31
2019; 42
2019; 44
2019; 24
2019; 26
2015; 22
2020; 27
2021; 174
2018; 32
2021; 2021
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
Ni YQ (e_1_2_8_20_1) 2019; 24
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 18
  start-page: 778
  issue: 3
  year: 2019
  end-page: 791
  article-title: Insights into temperature effects on structural deformation of a cable‐stayed bridge based on structural health monitoring
  publication-title: Struct Health Monit
– volume: 33
  start-page: 49
  issue: 1
  year: 2006
  end-page: 57
  article-title: Response of a bridge to a moving vehicle load
  publication-title: Can J Civ Eng
– volume: 2021
  year: 2021
  article-title: Girder longitudinal movement and its factors of suspension bridge under vehicle load
  publication-title: Adv Civ Eng
– volume: 10
  start-page: 527
  issue: 3
  year: 2020
  end-page: 541
  article-title: Thermal response separation for bridge long term monitoring systems using multi resolution wavelet‐based methodologies
  publication-title: J Civ Struct Health
– volume: 24
  issue: 5
  year: 2019
  article-title: Modeling and separation of thermal effects from cable‐stayed bridge response
  publication-title: J Bridge Eng
– volume: 31
  issue: 3
  year: 2017
  article-title: Dynamic impact of heavy traffic load on typical T‐beam bridges based on WIM data
  publication-title: J Perform Constr Facil
– volume: 22
  start-page: 1408
  issue: 12
  year: 2015
  end-page: 1425
  article-title: Deflection monitoring and assessment for a suspension bridge using a connected pipe system: a case study in China
  publication-title: Struct Control Health Monit
– volume: 35
  issue: 1
  year: 2021
  article-title: Real‐time dynamic warning on deflection abnormity of cable‐stayed bridges considering operational environment variations
  publication-title: J Perform Constr Facil
– volume: 20
  start-page: 1609
  issue: 4
  year: 2021
  end-page: 1626
  article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders
  publication-title: Struct Health Monit
– volume: 26
  issue: 1
  year: 2019
  article-title: Convolutional neural network‐based data anomaly detection method using multiple information for structural health monitoring
  publication-title: Struct Control Health Monit
– volume: 31
  issue: 5
  year: 2017
  article-title: Detection and localization of degraded truss members in a steel arch bridge based on correlation between strain and temperature
  publication-title: J Perform Constr Facil
– volume: 7
  start-page: 191
  issue: 2
  year: 2017
  end-page: 205
  article-title: Axle detection on prestressed concrete bridge using bridge weigh‐in‐motion system
  publication-title: J Civ Struct Health
– volume: 135
  start-page: 1290
  issue: 10
  year: 2009
  end-page: 1300
  article-title: Generalization capability of neural network models for temperature‐frequency correlation using monitoring data
  publication-title: J Struct Eng‐ASCE
– volume: 25
  issue: 11
  year: 2018
  article-title: Serviceability assessment for long‐span suspension bridge based on deflection measurements
  publication-title: Struct Control Health Monit
– volume: 32
  issue: 3
  year: 2018
  article-title: Modeling deformation induced by thermal loading using long‐term bridge monitoring data
  publication-title: J Perform Constr Facil
– volume: 17
  start-page: 701
  issue: 8–9
  year: 2006
  end-page: 707
  article-title: Online deflection monitoring system for Dafosi cable‐stayed bridge
  publication-title: J Intel Mat Syst Str
– volume: 21
  start-page: 1483
  issue: 4
  year: 2021
  end-page: 1500
  article-title: Real‐time quantitative evaluation on the cable damage of cable‐stayed bridges using the correlation between girder deflection and temperature
  publication-title: Struct Health Monit
– volume: 12
  start-page: 21
  issue: 3
  year: 2019
  end-page: 14
  article-title: Cultural heritage and the intelligent internet of things
  publication-title: Acm J Comput Cult Herit
– volume: 27
  issue: 11
  year: 2020
  article-title: Digital modeling on the nonlinear mapping between multi‐source monitoring data of in‐service bridges
  publication-title: Struct Control Health Monit
– volume: 146
  start-page: 760
  year: 2020
  end-page: 768
  article-title: Condition monitoring of wind turbines based on spatio‐temporal fusion of SCADA data by convolutional neural networks and gated recurrent units
  publication-title: Renew Energy
– volume: 19
  start-page: 1821
  issue: 6
  year: 2020
  end-page: 1838
  article-title: Convolutional neural network‐based data recovery method for structural health monitoring
  publication-title: Struct Health Monit
– volume: 540
  start-page: 117
  year: 2020
  end-page: 130
  article-title: A hierarchical deep convolutional neural network and gated recurrent unit framework for structural damage detection
  publication-title: Inform Sci
– volume: 174
  start-page: 218
  year: 2021
  end-page: 235
  article-title: Sequence‐based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades
  publication-title: Renew Energy
– volume: 143
  issue: 5
  year: 2021
  article-title: Toward a digital twin: time series prediction based on a hybrid ensemble empirical mode decomposition and BO‐LSTM neural networks
  publication-title: J Mech Design
– volume: 28
  issue: 8
  year: 2021
  article-title: Data‐driven modeling of bridge buffeting in the time domain using long short‐term memory network based on structural health monitoring
  publication-title: Struct Control Health Monit
– volume: 252
  year: 2022
  article-title: Mechanics‐guided optimization of an LSTM network for real‐time modeling of temperature‐induced deflection of a cable‐stayed bridge
  publication-title: Eng Struct
– volume: 10
  issue: 3
  year: 2020
  article-title: Artificial neural network for vertical displacement prediction of a bridge from strains (Part 2): optimization of strain‐measurement points by a genetic algorithm under dynamic loading
  publication-title: Appl Sci
– volume: 566
  start-page: 103
  year: 2021
  end-page: 117
  article-title: A data‐driven structural damage detection framework based on parallel convolutional neural network and bidirectional gated recurrent unit
  publication-title: Inform Sci
– volume: 221
  year: 2020
  article-title: General formulas for estimating temperature‐induced mid‐span vertical displacement of cable‐stayed bridges
  publication-title: Eng Struct
– volume: 32
  issue: 5
  year: 2018
  article-title: Correlation‐based estimation method for cable‐stayed bridge girder deflection variability under thermal action
  publication-title: J Perform Constr Facil
– volume: 10
  issue: 21
  year: 2020
  article-title: Intent detection problem solving via automatic DNN hyperparameter optimization
  publication-title: Appl Sci‐Basel
– volume: 18
  issue: 11
  year: 2018
  article-title: An integrated machine learning algorithm for separating the long‐term deflection data of prestressed concrete bridges
  publication-title: Sensors
– volume: 26
  issue: 6
  year: 2021
  article-title: Deep learning‐based minute‐scale digital prediction model of temperature‐induced deflection of a cable‐stayed bridge: case study
  publication-title: J Bridge Eng
– volume: 24
  start-page: 769
  issue: 6
  year: 2019
  end-page: 781
  article-title: A vision‐based system for long‐distance remote monitoring of dynamic displacement: experimental verification on a supertall structure
  publication-title: Smart Struct Syst
– volume: 28
  issue: 2
  year: 2021
  article-title: Relationship modeling between vehicle‐induced girder vertical deflection and cable tension by BiLSTM using field monitoring data of a cable‐stayed bridge
  publication-title: Struct Control Health Monit
– volume: 42
  year: 2019
  article-title: Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring
  publication-title: Adv Eng Inform
– volume: 11
  start-page: 1451
  issue: 8
  year: 2020
  end-page: 1463
  article-title: An LSTM‐based aggregated model for air pollution forecasting
  publication-title: Atmos Pollut Res
– volume: 21
  start-page: 770
  issue: 3
  year: 2021
  end-page: 787
  article-title: A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques
  publication-title: Struct Health Monit
– volume: 26
  issue: 1
  year: 2019
  article-title: Localization and quantification of partial cable damage in the long‐span cable‐stayed bridge using the abnormal variation of temperature‐induced girder deflection
  publication-title: Struct Control Health Monit
– volume: 25
  issue: 5
  year: 2018
  article-title: Investigation of dynamic properties of long‐span cable‐stayed bridges based on one‐year monitoring data under normal operating condition
  publication-title: Struct Control Health Monit
– volume: 27
  issue: 9
  year: 2020
  article-title: Bridge health monitoring using deflection measurements under random traffic
  publication-title: Struct Control Health Monit
– volume: 24
  issue: 1
  year: 2019
  article-title: Behavior analysis and early warning of girder deflections of a steel‐truss arch railway bridge under the effects of temperature and trains: case study
  publication-title: J Bridge Eng
– volume: 21
  start-page: 1093
  issue: 3
  year: 2021
  end-page: 1109
  article-title: Continuous missing data imputation with incomplete dataset by generative adversarial networks‐based unsupervised learning for long‐term bridge health monitoring
  publication-title: Struct Health Monit
– volume: 65
  start-page: 1539
  issue: 2
  year: 2018
  end-page: 1548
  article-title: Machine health monitoring using local feature‐based gated recurrent unit networks
  publication-title: IEEE T Ind Electron
– volume: 9
  issue: 14
  year: 2019
  article-title: Artificial neural network for vertical displacement prediction of a bridge from strains (Part 1): girder bridge under moving vehicles
  publication-title: Appl Sci
– volume: 24
  issue: 11
  year: 2019
  article-title: Numerical prediction of long‐term deformation for prestressed concrete bridges under random heavy traffic loads
  publication-title: J Bridge Eng
– volume: 44
  start-page: 4405
  issue: 5
  year: 2019
  end-page: 4424
  article-title: Condition assessment of bridge structures based on a liquid level sensing system: theory, verification and application
  publication-title: Arab J Sci Eng
– volume: 16
  start-page: 5652
  issue: 5
  year: 2019
  end-page: 5671
  article-title: Deflection analysis of long‐span girder bridges under vehicle bridge interaction using cellular automaton‐based traffic microsimulation
  publication-title: Math Biosci Eng
– volume: 24
  start-page: 769
  issue: 6
  year: 2019
  ident: e_1_2_8_20_1
  article-title: A vision‐based system for long‐distance remote monitoring of dynamic displacement: experimental verification on a supertall structure
  publication-title: Smart Struct Syst
– ident: e_1_2_8_26_1
  doi: 10.1061/(ASCE)CF.1943‐5509.0001154
– ident: e_1_2_8_41_1
  doi: 10.1177/14759217211021942
– ident: e_1_2_8_27_1
  doi: 10.1061/(ASCE)BE.1943‐5592.0001716
– ident: e_1_2_8_22_1
  doi: 10.1016/j.engstruct.2020.111012
– ident: e_1_2_8_15_1
  doi: 10.1061/(ASCE)CF.1943‐5509.0001537
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ins.2021.02.064
– ident: e_1_2_8_40_1
  doi: 10.1002/stc.2146
– ident: e_1_2_8_35_1
  doi: 10.1177/14759217211009780
– ident: e_1_2_8_44_1
  doi: 10.3390/app10217426
– ident: e_1_2_8_42_1
  doi: 10.1177/1045389X06055826
– ident: e_1_2_8_21_1
  doi: 10.1061/(ASCE)CF.1943‐5509.0001075
– ident: e_1_2_8_43_1
  doi: 10.1002/stc.2772
– ident: e_1_2_8_19_1
  doi: 10.1061/(ASCE)BE.1943‐5592.0001387
– ident: e_1_2_8_4_1
  doi: 10.1002/stc.2254
– ident: e_1_2_8_16_1
  doi: 10.1061/(ASCE)BE.1943‐5592.0001327
– ident: e_1_2_8_48_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0000050
– ident: e_1_2_8_45_1
  doi: 10.1115/1.4048414
– ident: e_1_2_8_31_1
  doi: 10.1061/(ASCE)CF.1943‐5509.0000991
– ident: e_1_2_8_38_1
  doi: 10.1109/TIE.2017.2733438
– ident: e_1_2_8_6_1
  doi: 10.1002/stc.1751
– ident: e_1_2_8_3_1
  doi: 10.1002/stc.2281
– ident: e_1_2_8_2_1
  doi: 10.1002/stc.2593
– ident: e_1_2_8_11_1
  doi: 10.1016/j.aei.2019.100991
– ident: e_1_2_8_13_1
  doi: 10.1007/s13369‐018‐3425‐6
– ident: e_1_2_8_28_1
  doi: 10.1139/l05‐085
– ident: e_1_2_8_23_1
  doi: 10.1177/14759217211035048
– ident: e_1_2_8_47_1
  doi: 10.1016/j.engstruct.2021.113619
– ident: e_1_2_8_33_1
  doi: 10.1145/3316414
– ident: e_1_2_8_8_1
  doi: 10.1155/2021/1443996
– ident: e_1_2_8_10_1
  doi: 10.1177/1475921720924601
– ident: e_1_2_8_17_1
  doi: 10.1007/s13349‐020‐00402‐7
– ident: e_1_2_8_9_1
  doi: 10.1002/stc.2296
– ident: e_1_2_8_32_1
  doi: 10.1007/s13349‐017‐0210‐2
– ident: e_1_2_8_24_1
  doi: 10.1061/(ASCE)CF.1943‐5509.0001212
– ident: e_1_2_8_46_1
  doi: 10.1002/stc.2618
– ident: e_1_2_8_14_1
  doi: 10.3934/mbe.2019281
– ident: e_1_2_8_39_1
  doi: 10.1016/j.renene.2019.07.033
– ident: e_1_2_8_5_1
  doi: 10.1002/stc.2667
– ident: e_1_2_8_7_1
  doi: 10.1061/(ASCE)BE.1943‐5592.0001489
– ident: e_1_2_8_18_1
  doi: 10.3390/s18114070
– ident: e_1_2_8_12_1
  doi: 10.1177/1475921719897571
– ident: e_1_2_8_25_1
  doi: 10.1177/1475921718773954
– ident: e_1_2_8_30_1
  doi: 10.3390/app10030777
– ident: e_1_2_8_29_1
  doi: 10.3390/app9142881
– ident: e_1_2_8_34_1
  doi: 10.1016/j.ins.2020.05.090
– ident: e_1_2_8_37_1
  doi: 10.1016/j.renene.2021.04.025
– ident: e_1_2_8_49_1
  doi: 10.1016/j.apr.2020.05.015
SSID ssj0026285
Score 2.452466
Snippet Summary Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical...
Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bridge loads
correlation model
Decomposition
Deep learning
Deflection
Extreme values
GRU neural network
Influence coefficient
Influence lines
Load distribution
Modelling
Neural networks
Predictions
Structural health monitoring
suspension bridge
Suspension bridges
vehicle load
Windows (intervals)
Title Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.3113
https://www.proquest.com/docview/2737961841
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLVarrCB6MbpJN6k9SlVE1INaKHgI-5hUsaSFVg-evHvxN_pLnNlN6gMF8RQIM8lmZnfnyzLzDWObVgPIWKgghjoEct_UAmWTOKglYQKRTPAunUOeXyQnLXnajttFViXVwnh-iNGBG60Mt1_TAld6sPdBGjoYGvzhdA1rKVWL8NDliDkqospAR5Uq4wCnbFzyzopor1T8Gok-4OVnkOqizPEMuynH55NL7ncfhnrXPH2jbvzfB8yy6QJ88gM_W-bYGOTzbOoTJeECe2lSuw6fIMddmxzey7iFrOtytvId_gi3pM27PWV3uMotJ3qrgpuZIwbmd_nb8-vAb0LcV4Rxyq_v4HOgz4tGFR2n6_lrifuD-5JMfCntMjSaRdY6PrpungRFw4bAIGqoBVYpkSmdREIbrRsY6qyATCmjZMMIWxPWSBRJ9hGl6FAZDNChyBqxMZkQgMBziY3nvRyWGcewqWNAeGQzkGDqOgyNlg1r0LGQga6w7dJ5qSnYzKmpRjf1PMxRiuZNybwVtjGS7HsGjx9kqqX_02IND1IEdnXXDyessC3nyF_106vrJl1X_iq4yiYjqqNweTFVNo62hjVEN0O9ziYODs_PrtbdfH4HdKT-lw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5FcKAcSilUpNB2K1XlgmHtrJ1EPVVpUdoChxIkDkjWPsaAGjlISTlw4s6F38gvYWbXDg9RqeJkyZqx17szO59XM98AfHIGUaVSRym2MVId24q0y9KolcUZJiqju3wOubuX9Q_Uz8P0sAFf6lqYwA8xPXBjz_D7NTs4H0hv3bGGjieW_ji5Y-0sN_Rmr_z2e8odlXBtoCdLVWlERpvWzLMy2ao1H8aiO4B5H6b6OLO9AEf1CEN6yZ_NvxOzaS8ekTc-8xNewcsKf4qvwWAWoYHla5i_x0q4BFc97tgRcuSE75QjRoVwWAx92la5Ic7xhLXFcKTdhtClE8xwVdEzC4LB4rS8ubweh31IhKIwwSn2x_QcPBNVr4pjrxsobJn-Q4SqTHopbzQ8mmU42P4-6PWjqmdDZAk4tCKntSy0yRJprDFdinZOYqG11aprpWtJZxWJZB0CKibWlmJ0LItuam0hJRL2fAMz5ajEFRAUOU2KhJBcgQpt28SxNarrLK0sFmiasF6vXm4rQnPuqzHMAxVzktP05jy9Tfg4lTwLJB5PyKzVBpBXbjzOCdu1fUucuAmf_Ur-Uz_fH_T4-vZ_BT_AXH-wu5Pv_Nj7tQovEi6r8GkyazBD847vCOxMzHtv1LcuRwEr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYlhZIckr5CnKStCqW9ZGPtrnbtPRa7xklaU9oEAj0seozSErM22Omhp9576W_ML8mMtOs4pYGQ08IysytpJM0nMfMNY2-sBpCZUFEGHYhk16SRsnkWpXmcQyJzfEv3kJ9G-fBEHp5mp3VUJeXCBH6IxYUbrQy_X9MCn1rXviYNnc0NHjipYO1DmYsuHbz6XxbUUQmlBnquVJlFOGezhnhWJO1G86YrusaXyyjVu5nBBvvWNDBEl5zvX8z1vvn1D3fj_XrwmK3X6JO_D9PlCXsA1VO2tsRJ-Iz96VG9jhAhx32dHD5x3IIb-6Ctao__hO-kzccTZfe4qiwnfquanJkjCOY_qsvff2dhF-IhJYxTgP0ZfgemvK5UceZ1A4EtkX_wkJOJP6VthlrznJ0MPhz3hlFdsSEyCBvSyColnNJ5IrTRukBfZwU4pYyShRE2FdZIFMm7CFN0rAx66Fi4IjPGCQGIPDfZSjWpYItx9Js6A8RH1oEE09FxbLQsrEHDggPdYu8a45WmpjOnqhrjMhAxJyUOb0nD22KvF5LTQOHxH5ndxv5lvYhnJSK7ji-IE7fYW2_IW_XLr8c9em7fVfAVe_S5Pyg_HoyOdthqQjkVPkZml63gsMMLRDpz_dJP6StcNf_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+model+of+deflection%2C+vehicle+load%2C+and+temperature+for+in%E2%80%90service+bridge+using+deep+learning+and+structural+health+monitoring&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Deng%2C+Yang&rft.au=Ju%2C+Hanwen&rft.au=Zhai%2C+Wenqiang&rft.au=Li%2C+Aiqun&rft.date=2022-12-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=12&rft_id=info:doi/10.1002%2Fstc.3113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_3113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon