Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring
Summary Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the di...
Saved in:
Published in | Structural control and health monitoring Vol. 29; no. 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1545-2255 1545-2263 |
DOI | 10.1002/stc.3113 |
Cover
Loading…
Abstract | Summary
Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time‐continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short‐, medium‐, and long‐term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature‐ and vehicle‐induced deflection components is proposed. The results show that the predicted deflection of the short‐term correlation model is basically consistent with the real‐time monitoring data, while the medium‐ and long‐term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature‐ and vehicle‐induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment. |
---|---|
AbstractList | Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time‐continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short‐, medium‐, and long‐term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature‐ and vehicle‐induced deflection components is proposed. The results show that the predicted deflection of the short‐term correlation model is basically consistent with the real‐time monitoring data, while the medium‐ and long‐term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature‐ and vehicle‐induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment. Summary Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to abnormal data identification, deflection prediction under extreme conditions, and bridge structural assessment. However, because of the discrete distribution in time domain of vehicle load and the extreme complexity of the deflection–vehicle load–temperature correlation, the correlation modeling method needs further studies. A novel deflection–vehicle load–temperature correlation modeling method is developed in this study. Based on the concept of deflection influence line (DIL), the raw vehicle load monitoring data are transformed into time‐continuous vehicle influence coefficient (VIC). By using gated recurrent unit (GRU) neural network, a correlation model with inputs of VIC and environmental temperature data and output of deflection data is established. Taking a suspension bridge in China as an example, the prediction accuracy of short‐, medium‐, and long‐term correlation models is tested. Moreover, based on the correlation model, a decomposition method of temperature‐ and vehicle‐induced deflection components is proposed. The results show that the predicted deflection of the short‐term correlation model is basically consistent with the real‐time monitoring data, while the medium‐ and long‐term correlation models have accurate prediction ability for the deflection extreme values in a certain time window. The temperature‐ and vehicle‐induced deflection components separated by using the correlation model are in good agreement with the wavelet decomposition (WD) results, with clear physical meaning and independent of empirical judgment. |
Author | Deng, Yang Ding, Youliang Zhai, Wenqiang Ju, Hanwen Li, Aiqun |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0001-5807-1440 surname: Deng fullname: Deng, Yang email: dengyang@bucea.edu.cn organization: Beijing University of Civil Engineering and Architecture – sequence: 2 givenname: Hanwen orcidid: 0000-0003-1680-4698 surname: Ju fullname: Ju, Hanwen organization: Beijing University of Civil Engineering and Architecture – sequence: 3 givenname: Wenqiang surname: Zhai fullname: Zhai, Wenqiang organization: Beijing University of Civil Engineering and Architecture – sequence: 4 givenname: Aiqun surname: Li fullname: Li, Aiqun organization: Southeast University – sequence: 5 givenname: Youliang surname: Ding fullname: Ding, Youliang organization: Southeast University |
BookMark | eNp10LtqHDEUBmBhbPAlgTyCwE0Kz0YazYx3yrDEScCQInY9nJGOvDJaaX2kcXDn3o2fMU8Sjde4CEmlC99_DvzHbD_EgIx9kGIhhag_pawXSkq1x45k27RVXXdq_-3etofsOKXbIrt62R6xp1UkQg_ZxcA30aDn0XKD1qOe_874Pa6d9sh9BHPGIRiecbNFgjwRchuJu_D78Tkh3TuNfCRnbpBPyYWbMge33CNQmF9zNmWadEmC52sEn9dlaXA5UgHv2IEFn_D963nCri--XK2-VZc_vn5ffb6sdN0rVRkAYWHsajHqceybujcCLYCGptfCKGF0U0i3bEU_StAaUQrbt1pbIbBV6oSd7uZuKd5NmPJwGycKZeVQn6vzvpPLRha12ClNMSVCO2iXX3rKBM4PUgxz4UMpfJgLL4GPfwW25DZAD_-i1Y7-ch4f_uuGn1erF_8H9U6WTw |
CitedBy_id | crossref_primary_10_1007_s42417_024_01335_x crossref_primary_10_1016_j_prostr_2024_09_308 crossref_primary_10_3390_s23218824 crossref_primary_10_1007_s13369_023_08474_5 crossref_primary_10_1016_j_engstruct_2025_119709 crossref_primary_10_1177_14759217231181882 crossref_primary_10_1007_s13349_024_00831_8 crossref_primary_10_1007_s00190_024_01913_7 crossref_primary_10_1007_s11760_025_03846_w crossref_primary_10_1016_j_jweia_2024_105679 crossref_primary_10_1016_j_engappai_2023_106774 crossref_primary_10_1061_JBENF2_BEENG_6435 crossref_primary_10_1155_2024_1299095 crossref_primary_10_1016_j_measurement_2024_114735 crossref_primary_10_1016_j_dibe_2024_100337 crossref_primary_10_1061_JPCFEV_CFENG_4680 crossref_primary_10_1080_15583058_2024_2380414 crossref_primary_10_3390_s24216863 crossref_primary_10_1177_13694332241281858 crossref_primary_10_3390_met12111831 crossref_primary_10_3390_s24072091 crossref_primary_10_1016_j_engstruct_2024_118094 crossref_primary_10_1016_j_engstruct_2024_119580 crossref_primary_10_1016_j_jcsr_2024_108542 crossref_primary_10_1016_j_engstruct_2024_119084 crossref_primary_10_1016_j_istruc_2025_108290 crossref_primary_10_1016_j_ymssp_2024_112177 |
Cites_doi | 10.1061/(ASCE)CF.1943‐5509.0001154 10.1177/14759217211021942 10.1061/(ASCE)BE.1943‐5592.0001716 10.1016/j.engstruct.2020.111012 10.1061/(ASCE)CF.1943‐5509.0001537 10.1016/j.ins.2021.02.064 10.1002/stc.2146 10.1177/14759217211009780 10.3390/app10217426 10.1177/1045389X06055826 10.1061/(ASCE)CF.1943‐5509.0001075 10.1002/stc.2772 10.1061/(ASCE)BE.1943‐5592.0001387 10.1002/stc.2254 10.1061/(ASCE)BE.1943‐5592.0001327 10.1061/(ASCE)ST.1943‐541X.0000050 10.1115/1.4048414 10.1061/(ASCE)CF.1943‐5509.0000991 10.1109/TIE.2017.2733438 10.1002/stc.1751 10.1002/stc.2281 10.1002/stc.2593 10.1016/j.aei.2019.100991 10.1007/s13369‐018‐3425‐6 10.1139/l05‐085 10.1177/14759217211035048 10.1016/j.engstruct.2021.113619 10.1145/3316414 10.1155/2021/1443996 10.1177/1475921720924601 10.1007/s13349‐020‐00402‐7 10.1002/stc.2296 10.1007/s13349‐017‐0210‐2 10.1061/(ASCE)CF.1943‐5509.0001212 10.1002/stc.2618 10.3934/mbe.2019281 10.1016/j.renene.2019.07.033 10.1002/stc.2667 10.1061/(ASCE)BE.1943‐5592.0001489 10.3390/s18114070 10.1177/1475921719897571 10.1177/1475921718773954 10.3390/app10030777 10.3390/app9142881 10.1016/j.ins.2020.05.090 10.1016/j.renene.2021.04.025 10.1016/j.apr.2020.05.015 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.3113 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_3113 STC3113 |
Genre | article |
GrantInformation_xml | – fundername: Beijing Municipal Education Commission funderid: CIT&TCD201904060 – fundername: Fundamental Research Funds for Beijing University of Civil Engineering and Architecture funderid: X20174 – fundername: National Natural Science Foundation of China funderid: 51878027 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2933-daa0fab620bcbb9429d0efaaca49c0d30dc4aa068509b1accee10f95ccf00e533 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Sat Sep 06 16:26:10 EDT 2025 Tue Jul 01 04:05:47 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Wed Jan 22 16:22:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2933-daa0fab620bcbb9429d0efaaca49c0d30dc4aa068509b1accee10f95ccf00e533 |
Notes | Funding information Fundamental Research Funds for Beijing University of Civil Engineering and Architecture, Grant/Award Number: X20174; Beijing Municipal Education Commission, Grant/Award Number: CIT&TCD201904060; National Natural Science Foundation of China, Grant/Award Number: 51878027 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1680-4698 0000-0001-5807-1440 |
PQID | 2737961841 |
PQPubID | 2034347 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2737961841 crossref_citationtrail_10_1002_stc_3113 crossref_primary_10_1002_stc_3113 wiley_primary_10_1002_stc_3113_STC3113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 2022; 252 2021; 26 2019; 9 2021; 21 2021; 20 2021; 566 2006; 33 2021; 28 2019; 12 2006; 17 2019; 16 2019; 18 2009; 135 2020; 221 2020; 540 2020; 146 2020; 11 2020; 10 2021; 143 2018; 65 2018; 25 2020; 19 2021; 35 2018; 18 2017; 31 2019; 42 2019; 44 2019; 24 2019; 26 2015; 22 2020; 27 2021; 174 2018; 32 2021; 2021 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_27_1 e_1_2_8_48_1 Ni YQ (e_1_2_8_20_1) 2019; 24 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 18 start-page: 778 issue: 3 year: 2019 end-page: 791 article-title: Insights into temperature effects on structural deformation of a cable‐stayed bridge based on structural health monitoring publication-title: Struct Health Monit – volume: 33 start-page: 49 issue: 1 year: 2006 end-page: 57 article-title: Response of a bridge to a moving vehicle load publication-title: Can J Civ Eng – volume: 2021 year: 2021 article-title: Girder longitudinal movement and its factors of suspension bridge under vehicle load publication-title: Adv Civ Eng – volume: 10 start-page: 527 issue: 3 year: 2020 end-page: 541 article-title: Thermal response separation for bridge long term monitoring systems using multi resolution wavelet‐based methodologies publication-title: J Civ Struct Health – volume: 24 issue: 5 year: 2019 article-title: Modeling and separation of thermal effects from cable‐stayed bridge response publication-title: J Bridge Eng – volume: 31 issue: 3 year: 2017 article-title: Dynamic impact of heavy traffic load on typical T‐beam bridges based on WIM data publication-title: J Perform Constr Facil – volume: 22 start-page: 1408 issue: 12 year: 2015 end-page: 1425 article-title: Deflection monitoring and assessment for a suspension bridge using a connected pipe system: a case study in China publication-title: Struct Control Health Monit – volume: 35 issue: 1 year: 2021 article-title: Real‐time dynamic warning on deflection abnormity of cable‐stayed bridges considering operational environment variations publication-title: J Perform Constr Facil – volume: 20 start-page: 1609 issue: 4 year: 2021 end-page: 1626 article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders publication-title: Struct Health Monit – volume: 26 issue: 1 year: 2019 article-title: Convolutional neural network‐based data anomaly detection method using multiple information for structural health monitoring publication-title: Struct Control Health Monit – volume: 31 issue: 5 year: 2017 article-title: Detection and localization of degraded truss members in a steel arch bridge based on correlation between strain and temperature publication-title: J Perform Constr Facil – volume: 7 start-page: 191 issue: 2 year: 2017 end-page: 205 article-title: Axle detection on prestressed concrete bridge using bridge weigh‐in‐motion system publication-title: J Civ Struct Health – volume: 135 start-page: 1290 issue: 10 year: 2009 end-page: 1300 article-title: Generalization capability of neural network models for temperature‐frequency correlation using monitoring data publication-title: J Struct Eng‐ASCE – volume: 25 issue: 11 year: 2018 article-title: Serviceability assessment for long‐span suspension bridge based on deflection measurements publication-title: Struct Control Health Monit – volume: 32 issue: 3 year: 2018 article-title: Modeling deformation induced by thermal loading using long‐term bridge monitoring data publication-title: J Perform Constr Facil – volume: 17 start-page: 701 issue: 8–9 year: 2006 end-page: 707 article-title: Online deflection monitoring system for Dafosi cable‐stayed bridge publication-title: J Intel Mat Syst Str – volume: 21 start-page: 1483 issue: 4 year: 2021 end-page: 1500 article-title: Real‐time quantitative evaluation on the cable damage of cable‐stayed bridges using the correlation between girder deflection and temperature publication-title: Struct Health Monit – volume: 12 start-page: 21 issue: 3 year: 2019 end-page: 14 article-title: Cultural heritage and the intelligent internet of things publication-title: Acm J Comput Cult Herit – volume: 27 issue: 11 year: 2020 article-title: Digital modeling on the nonlinear mapping between multi‐source monitoring data of in‐service bridges publication-title: Struct Control Health Monit – volume: 146 start-page: 760 year: 2020 end-page: 768 article-title: Condition monitoring of wind turbines based on spatio‐temporal fusion of SCADA data by convolutional neural networks and gated recurrent units publication-title: Renew Energy – volume: 19 start-page: 1821 issue: 6 year: 2020 end-page: 1838 article-title: Convolutional neural network‐based data recovery method for structural health monitoring publication-title: Struct Health Monit – volume: 540 start-page: 117 year: 2020 end-page: 130 article-title: A hierarchical deep convolutional neural network and gated recurrent unit framework for structural damage detection publication-title: Inform Sci – volume: 174 start-page: 218 year: 2021 end-page: 235 article-title: Sequence‐based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades publication-title: Renew Energy – volume: 143 issue: 5 year: 2021 article-title: Toward a digital twin: time series prediction based on a hybrid ensemble empirical mode decomposition and BO‐LSTM neural networks publication-title: J Mech Design – volume: 28 issue: 8 year: 2021 article-title: Data‐driven modeling of bridge buffeting in the time domain using long short‐term memory network based on structural health monitoring publication-title: Struct Control Health Monit – volume: 252 year: 2022 article-title: Mechanics‐guided optimization of an LSTM network for real‐time modeling of temperature‐induced deflection of a cable‐stayed bridge publication-title: Eng Struct – volume: 10 issue: 3 year: 2020 article-title: Artificial neural network for vertical displacement prediction of a bridge from strains (Part 2): optimization of strain‐measurement points by a genetic algorithm under dynamic loading publication-title: Appl Sci – volume: 566 start-page: 103 year: 2021 end-page: 117 article-title: A data‐driven structural damage detection framework based on parallel convolutional neural network and bidirectional gated recurrent unit publication-title: Inform Sci – volume: 221 year: 2020 article-title: General formulas for estimating temperature‐induced mid‐span vertical displacement of cable‐stayed bridges publication-title: Eng Struct – volume: 32 issue: 5 year: 2018 article-title: Correlation‐based estimation method for cable‐stayed bridge girder deflection variability under thermal action publication-title: J Perform Constr Facil – volume: 10 issue: 21 year: 2020 article-title: Intent detection problem solving via automatic DNN hyperparameter optimization publication-title: Appl Sci‐Basel – volume: 18 issue: 11 year: 2018 article-title: An integrated machine learning algorithm for separating the long‐term deflection data of prestressed concrete bridges publication-title: Sensors – volume: 26 issue: 6 year: 2021 article-title: Deep learning‐based minute‐scale digital prediction model of temperature‐induced deflection of a cable‐stayed bridge: case study publication-title: J Bridge Eng – volume: 24 start-page: 769 issue: 6 year: 2019 end-page: 781 article-title: A vision‐based system for long‐distance remote monitoring of dynamic displacement: experimental verification on a supertall structure publication-title: Smart Struct Syst – volume: 28 issue: 2 year: 2021 article-title: Relationship modeling between vehicle‐induced girder vertical deflection and cable tension by BiLSTM using field monitoring data of a cable‐stayed bridge publication-title: Struct Control Health Monit – volume: 42 year: 2019 article-title: Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring publication-title: Adv Eng Inform – volume: 11 start-page: 1451 issue: 8 year: 2020 end-page: 1463 article-title: An LSTM‐based aggregated model for air pollution forecasting publication-title: Atmos Pollut Res – volume: 21 start-page: 770 issue: 3 year: 2021 end-page: 787 article-title: A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques publication-title: Struct Health Monit – volume: 26 issue: 1 year: 2019 article-title: Localization and quantification of partial cable damage in the long‐span cable‐stayed bridge using the abnormal variation of temperature‐induced girder deflection publication-title: Struct Control Health Monit – volume: 25 issue: 5 year: 2018 article-title: Investigation of dynamic properties of long‐span cable‐stayed bridges based on one‐year monitoring data under normal operating condition publication-title: Struct Control Health Monit – volume: 27 issue: 9 year: 2020 article-title: Bridge health monitoring using deflection measurements under random traffic publication-title: Struct Control Health Monit – volume: 24 issue: 1 year: 2019 article-title: Behavior analysis and early warning of girder deflections of a steel‐truss arch railway bridge under the effects of temperature and trains: case study publication-title: J Bridge Eng – volume: 21 start-page: 1093 issue: 3 year: 2021 end-page: 1109 article-title: Continuous missing data imputation with incomplete dataset by generative adversarial networks‐based unsupervised learning for long‐term bridge health monitoring publication-title: Struct Health Monit – volume: 65 start-page: 1539 issue: 2 year: 2018 end-page: 1548 article-title: Machine health monitoring using local feature‐based gated recurrent unit networks publication-title: IEEE T Ind Electron – volume: 9 issue: 14 year: 2019 article-title: Artificial neural network for vertical displacement prediction of a bridge from strains (Part 1): girder bridge under moving vehicles publication-title: Appl Sci – volume: 24 issue: 11 year: 2019 article-title: Numerical prediction of long‐term deformation for prestressed concrete bridges under random heavy traffic loads publication-title: J Bridge Eng – volume: 44 start-page: 4405 issue: 5 year: 2019 end-page: 4424 article-title: Condition assessment of bridge structures based on a liquid level sensing system: theory, verification and application publication-title: Arab J Sci Eng – volume: 16 start-page: 5652 issue: 5 year: 2019 end-page: 5671 article-title: Deflection analysis of long‐span girder bridges under vehicle bridge interaction using cellular automaton‐based traffic microsimulation publication-title: Math Biosci Eng – volume: 24 start-page: 769 issue: 6 year: 2019 ident: e_1_2_8_20_1 article-title: A vision‐based system for long‐distance remote monitoring of dynamic displacement: experimental verification on a supertall structure publication-title: Smart Struct Syst – ident: e_1_2_8_26_1 doi: 10.1061/(ASCE)CF.1943‐5509.0001154 – ident: e_1_2_8_41_1 doi: 10.1177/14759217211021942 – ident: e_1_2_8_27_1 doi: 10.1061/(ASCE)BE.1943‐5592.0001716 – ident: e_1_2_8_22_1 doi: 10.1016/j.engstruct.2020.111012 – ident: e_1_2_8_15_1 doi: 10.1061/(ASCE)CF.1943‐5509.0001537 – ident: e_1_2_8_36_1 doi: 10.1016/j.ins.2021.02.064 – ident: e_1_2_8_40_1 doi: 10.1002/stc.2146 – ident: e_1_2_8_35_1 doi: 10.1177/14759217211009780 – ident: e_1_2_8_44_1 doi: 10.3390/app10217426 – ident: e_1_2_8_42_1 doi: 10.1177/1045389X06055826 – ident: e_1_2_8_21_1 doi: 10.1061/(ASCE)CF.1943‐5509.0001075 – ident: e_1_2_8_43_1 doi: 10.1002/stc.2772 – ident: e_1_2_8_19_1 doi: 10.1061/(ASCE)BE.1943‐5592.0001387 – ident: e_1_2_8_4_1 doi: 10.1002/stc.2254 – ident: e_1_2_8_16_1 doi: 10.1061/(ASCE)BE.1943‐5592.0001327 – ident: e_1_2_8_48_1 doi: 10.1061/(ASCE)ST.1943‐541X.0000050 – ident: e_1_2_8_45_1 doi: 10.1115/1.4048414 – ident: e_1_2_8_31_1 doi: 10.1061/(ASCE)CF.1943‐5509.0000991 – ident: e_1_2_8_38_1 doi: 10.1109/TIE.2017.2733438 – ident: e_1_2_8_6_1 doi: 10.1002/stc.1751 – ident: e_1_2_8_3_1 doi: 10.1002/stc.2281 – ident: e_1_2_8_2_1 doi: 10.1002/stc.2593 – ident: e_1_2_8_11_1 doi: 10.1016/j.aei.2019.100991 – ident: e_1_2_8_13_1 doi: 10.1007/s13369‐018‐3425‐6 – ident: e_1_2_8_28_1 doi: 10.1139/l05‐085 – ident: e_1_2_8_23_1 doi: 10.1177/14759217211035048 – ident: e_1_2_8_47_1 doi: 10.1016/j.engstruct.2021.113619 – ident: e_1_2_8_33_1 doi: 10.1145/3316414 – ident: e_1_2_8_8_1 doi: 10.1155/2021/1443996 – ident: e_1_2_8_10_1 doi: 10.1177/1475921720924601 – ident: e_1_2_8_17_1 doi: 10.1007/s13349‐020‐00402‐7 – ident: e_1_2_8_9_1 doi: 10.1002/stc.2296 – ident: e_1_2_8_32_1 doi: 10.1007/s13349‐017‐0210‐2 – ident: e_1_2_8_24_1 doi: 10.1061/(ASCE)CF.1943‐5509.0001212 – ident: e_1_2_8_46_1 doi: 10.1002/stc.2618 – ident: e_1_2_8_14_1 doi: 10.3934/mbe.2019281 – ident: e_1_2_8_39_1 doi: 10.1016/j.renene.2019.07.033 – ident: e_1_2_8_5_1 doi: 10.1002/stc.2667 – ident: e_1_2_8_7_1 doi: 10.1061/(ASCE)BE.1943‐5592.0001489 – ident: e_1_2_8_18_1 doi: 10.3390/s18114070 – ident: e_1_2_8_12_1 doi: 10.1177/1475921719897571 – ident: e_1_2_8_25_1 doi: 10.1177/1475921718773954 – ident: e_1_2_8_30_1 doi: 10.3390/app10030777 – ident: e_1_2_8_29_1 doi: 10.3390/app9142881 – ident: e_1_2_8_34_1 doi: 10.1016/j.ins.2020.05.090 – ident: e_1_2_8_37_1 doi: 10.1016/j.renene.2021.04.025 – ident: e_1_2_8_49_1 doi: 10.1016/j.apr.2020.05.015 |
SSID | ssj0026285 |
Score | 2.452466 |
Snippet | Summary
Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical... Deflection is an important issue in bridge structural health monitoring. An accurate deflection–vehicle load–temperature correlation model is critical to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bridge loads correlation model Decomposition Deep learning Deflection Extreme values GRU neural network Influence coefficient Influence lines Load distribution Modelling Neural networks Predictions Structural health monitoring suspension bridge Suspension bridges vehicle load Windows (intervals) |
Title | Correlation model of deflection, vehicle load, and temperature for in‐service bridge using deep learning and structural health monitoring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.3113 https://www.proquest.com/docview/2737961841 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3rwLVarrCB6MbpJN6k9SlVE1INaKHgI-5hUsaSFVg-evHvxN_pLnNlN6gMF8RQIM8lmZnfnyzLzDWObVgPIWKgghjoEct_UAmWTOKglYQKRTPAunUOeXyQnLXnajttFViXVwnh-iNGBG60Mt1_TAld6sPdBGjoYGvzhdA1rKVWL8NDliDkqospAR5Uq4wCnbFzyzopor1T8Gok-4OVnkOqizPEMuynH55NL7ncfhnrXPH2jbvzfB8yy6QJ88gM_W-bYGOTzbOoTJeECe2lSuw6fIMddmxzey7iFrOtytvId_gi3pM27PWV3uMotJ3qrgpuZIwbmd_nb8-vAb0LcV4Rxyq_v4HOgz4tGFR2n6_lrifuD-5JMfCntMjSaRdY6PrpungRFw4bAIGqoBVYpkSmdREIbrRsY6qyATCmjZMMIWxPWSBRJ9hGl6FAZDNChyBqxMZkQgMBziY3nvRyWGcewqWNAeGQzkGDqOgyNlg1r0LGQga6w7dJ5qSnYzKmpRjf1PMxRiuZNybwVtjGS7HsGjx9kqqX_02IND1IEdnXXDyessC3nyF_106vrJl1X_iq4yiYjqqNweTFVNo62hjVEN0O9ziYODs_PrtbdfH4HdKT-lw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5FcKAcSilUpNB2K1XlgmHtrJ1EPVVpUdoChxIkDkjWPsaAGjlISTlw4s6F38gvYWbXDg9RqeJkyZqx17szO59XM98AfHIGUaVSRym2MVId24q0y9KolcUZJiqju3wOubuX9Q_Uz8P0sAFf6lqYwA8xPXBjz_D7NTs4H0hv3bGGjieW_ji5Y-0sN_Rmr_z2e8odlXBtoCdLVWlERpvWzLMy2ao1H8aiO4B5H6b6OLO9AEf1CEN6yZ_NvxOzaS8ekTc-8xNewcsKf4qvwWAWoYHla5i_x0q4BFc97tgRcuSE75QjRoVwWAx92la5Ic7xhLXFcKTdhtClE8xwVdEzC4LB4rS8ubweh31IhKIwwSn2x_QcPBNVr4pjrxsobJn-Q4SqTHopbzQ8mmU42P4-6PWjqmdDZAk4tCKntSy0yRJprDFdinZOYqG11aprpWtJZxWJZB0CKibWlmJ0LItuam0hJRL2fAMz5ajEFRAUOU2KhJBcgQpt28SxNarrLK0sFmiasF6vXm4rQnPuqzHMAxVzktP05jy9Tfg4lTwLJB5PyKzVBpBXbjzOCdu1fUucuAmf_Ur-Uz_fH_T4-vZ_BT_AXH-wu5Pv_Nj7tQovEi6r8GkyazBD847vCOxMzHtv1LcuRwEr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYlhZIckr5CnKStCqW9ZGPtrnbtPRa7xklaU9oEAj0seozSErM22Omhp9576W_ML8mMtOs4pYGQ08IysytpJM0nMfMNY2-sBpCZUFEGHYhk16SRsnkWpXmcQyJzfEv3kJ9G-fBEHp5mp3VUJeXCBH6IxYUbrQy_X9MCn1rXviYNnc0NHjipYO1DmYsuHbz6XxbUUQmlBnquVJlFOGezhnhWJO1G86YrusaXyyjVu5nBBvvWNDBEl5zvX8z1vvn1D3fj_XrwmK3X6JO_D9PlCXsA1VO2tsRJ-Iz96VG9jhAhx32dHD5x3IIb-6Ctao__hO-kzccTZfe4qiwnfquanJkjCOY_qsvff2dhF-IhJYxTgP0ZfgemvK5UceZ1A4EtkX_wkJOJP6VthlrznJ0MPhz3hlFdsSEyCBvSyColnNJ5IrTRukBfZwU4pYyShRE2FdZIFMm7CFN0rAx66Fi4IjPGCQGIPDfZSjWpYItx9Js6A8RH1oEE09FxbLQsrEHDggPdYu8a45WmpjOnqhrjMhAxJyUOb0nD22KvF5LTQOHxH5ndxv5lvYhnJSK7ji-IE7fYW2_IW_XLr8c9em7fVfAVe_S5Pyg_HoyOdthqQjkVPkZml63gsMMLRDpz_dJP6StcNf_U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+model+of+deflection%2C+vehicle+load%2C+and+temperature+for+in%E2%80%90service+bridge+using+deep+learning+and+structural+health+monitoring&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Deng%2C+Yang&rft.au=Ju%2C+Hanwen&rft.au=Zhai%2C+Wenqiang&rft.au=Li%2C+Aiqun&rft.date=2022-12-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=12&rft_id=info:doi/10.1002%2Fstc.3113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_3113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |