Crowd evacuation simulation based on hierarchical agent model and physics‐based character control

Crowd evacuation has gained increasing attention in recent years. The agent‐based method has shown a superior capability to simulate complex behaviors during crowd evacuation simulation. For agent modeling, most existing methods only consider the decision process but ignore the detailed physical mot...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 3
Main Authors Ye, Jianming, Liu, Zhen, Liu, Tingting, Wu, Yanhui, Wang, Yuanyi
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crowd evacuation has gained increasing attention in recent years. The agent‐based method has shown a superior capability to simulate complex behaviors during crowd evacuation simulation. For agent modeling, most existing methods only consider the decision process but ignore the detailed physical motion. In this article, we propose a hierarchical framework for crowd evacuation simulation, which combines the agent decision model with the agent motion model. In the decision model, we integrate emotional contagion and scene information to determine global path planning and local collision avoidance. In the motion model, we introduce a physics‐based character control method and control agent motion using deep reinforcement learning. Based on the decision strategy, the decision model can use a signal to control the agent motion in the motion model. Compared with existing methods, our framework can simulate physical interactions between agents and the environment. The results of the crowd evacuation simulation demonstrate that our framework can simulate crowd evacuation with physical fidelity.
AbstractList Crowd evacuation has gained increasing attention in recent years. The agent‐based method has shown a superior capability to simulate complex behaviors during crowd evacuation simulation. For agent modeling, most existing methods only consider the decision process but ignore the detailed physical motion. In this article, we propose a hierarchical framework for crowd evacuation simulation, which combines the agent decision model with the agent motion model. In the decision model, we integrate emotional contagion and scene information to determine global path planning and local collision avoidance. In the motion model, we introduce a physics‐based character control method and control agent motion using deep reinforcement learning. Based on the decision strategy, the decision model can use a signal to control the agent motion in the motion model. Compared with existing methods, our framework can simulate physical interactions between agents and the environment. The results of the crowd evacuation simulation demonstrate that our framework can simulate crowd evacuation with physical fidelity.
Author Wu, Yanhui
Liu, Zhen
Liu, Tingting
Ye, Jianming
Wang, Yuanyi
Author_xml – sequence: 1
  givenname: Jianming
  orcidid: 0000-0001-8211-9221
  surname: Ye
  fullname: Ye, Jianming
  organization: Ningbo University
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0002-1806-5027
  surname: Liu
  fullname: Liu, Zhen
  email: liuzhen@nbu.edu.cn
  organization: Ningbo University
– sequence: 3
  givenname: Tingting
  orcidid: 0000-0002-3469-275X
  surname: Liu
  fullname: Liu, Tingting
  organization: Ningbo University
– sequence: 4
  givenname: Yanhui
  surname: Wu
  fullname: Wu, Yanhui
  organization: Eastern Institute of Technology
– sequence: 5
  givenname: Yuanyi
  surname: Wang
  fullname: Wang, Yuanyi
  organization: Ningbo University
BookMark eNp1kMtKw0AUhgepYFsFHyHgxk3qXDK5LEvwBgU3Ku7C5MyMmZJm6kzS0p2P4DP6JKaNuBBdnW_x_f-Bf4JGjW0UQucEzwjG9ArEZkZpzI7QmPAoDiOavIx-OCYnaOL9sjdjSvAYQe7sVgZqI6ATrbFN4M2qqwcshVcy6KEyygkHlQFRB-JVNW2wslL13MhgXe28Af_5_jH4UAknoFUuANu0ztan6FiL2quz7ztFTzfXj_lduHi4vc_nixBoxlhYyiTTnEdEq5KLiEMaZzpLMEggTGaR0iLFOpaYSmCp5BForJTWkmdlRBhlU3Qx9K6dfeuUb4ul7VzTvywYTkiMUxzx3rocLHDWe6d0sXZmJdyuILjYT1j0Exb7CXt19ksF0x6maZ0w9V-BcAhsTa12_xYX-fz54H8BAWiGsw
CitedBy_id crossref_primary_10_1016_j_physleta_2024_130190
Cites_doi 10.1016/j.neucom.2019.08.021
10.1145/3588432.3591525
10.1145/3355089.3356536
10.1103/PhysRevE.82.046111
10.1109/TVCG.2015.2501801
10.1145/3424636.3426894
10.1103/PhysRevE.51.4282
10.1007/s00161-009-0100-x
10.1145/1778765.1778865
10.1145/1141911.1142008
10.1109/TITS.2022.3140823
10.1145/3574131.3574445
10.1080/17538947.2023.2182376
10.1111/cgf.12806
10.1111/cgf.12571
10.1145/3190834.3190839
10.1145/2786784.2786802
10.1145/3197517.3201311
10.1145/3450626.3459670
10.1145/3528233.3530712
10.1016/j.knosys.2020.106451
10.1145/1778765.1781156
10.1109/TVCG.2021.3139031
10.1145/2508363.2508399
10.1109/ITSC55140.2022.9922479
10.1109/IROS.2012.6386025
10.1016/j.physa.2017.11.041
10.1109/ICRA.2016.7487294
10.1145/1833349.1778811
10.1002/cav.1988
10.1016/j.neucom.2020.04.141
10.1145/218380.218414
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2263
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2263
CAV2263
Genre article
GrantInformation_xml – fundername: Ningbo Science Technology Plan projects
  funderid: 2022Z077; 2023Z214; 2023Z230
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LZ23F020005
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2933-bd79f5541feb5a45c869f970cdc13d94efa80f6d02dc38d54cf0eeffd59b41323
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 03:40:57 EDT 2025
Thu Apr 24 22:54:51 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Aug 20 07:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-bd79f5541feb5a45c869f970cdc13d94efa80f6d02dc38d54cf0eeffd59b41323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1806-5027
0000-0001-8211-9221
0000-0002-3469-275X
PQID 3071608045
PQPubID 2034909
PageCount 16
ParticipantIDs proquest_journals_3071608045
crossref_primary_10_1002_cav_2263
crossref_citationtrail_10_1002_cav_2263
wiley_primary_10_1002_cav_2263_CAV2263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 34
1995; 51
2012
2011
2010
2023; 16
2021; 29
2017; 23
2022; 23
2019; 38
2008
2019; 366
2020; 404
1996
1995
2020; 208
2016; 35
2010; 82
2018; 492
2023
2022
2013; 32
2010; 29
2020
2006; 25
2018
2017
2008; 21
2016
2015
2018; 51
2011; 22 (5):421–433
2021; 40
2021; 32(5):e1988
2018; 37
2016; 22
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
Liu L (e_1_2_10_36_1) 2010; 29
e_1_2_10_40_1
Kapadia M (e_1_2_10_5_1) 2015
e_1_2_10_2_1
Stuvel SA (e_1_2_10_23_1) 2017; 23
Liu Q (e_1_2_10_4_1) 2022
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
Olivier A‐H (e_1_2_10_9_1) 2011; 22
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Zhuo L (e_1_2_10_25_1) 2021; 32
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_26_1
Xu M (e_1_2_10_41_1) 2018; 51
References_xml – year: 2011
– volume: 32(5):e1988
  year: 2021
  article-title: Modeling crowd emotion from emergent event video
  publication-title: Comput Anim Virtual Worlds
– volume: 16
  start-page: 691
  year: 2023
  end-page: 714
  article-title: Deep reinforcement learning and 3D physical environments applied to crowd evacuation in congested scenarios
  publication-title: Int J Digital Earth
– volume: 34
  start-page: 415
  year: 2015
  end-page: 423
  article-title: Improving sampling‐based motion control
  publication-title: Comput Graph Forum
– volume: 82
  issue: 4 Pt 2
  year: 2010
  article-title: Generalized centrifugal‐force model for pedestrian dynamics
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
– volume: 366
  start-page: 314
  year: 2019
  end-page: 327
  article-title: Data‐driven crowd evacuation: a reinforcement learning method
  publication-title: Neurocomputing
– year: 1996
– volume: 22 (5):421–433
  year: 2011
  article-title: A step‐by‐step modeling, analysis and annotation of locomotion
  publication-title: Comput Anim Virtual Worlds
– year: 2016
– volume: 38
  start-page: 206:1
  year: 2019
  end-page: 206:11
  article-title: DReCon: data‐driven responsive control of physics‐based characters
  publication-title: ACM Trans Graph
– year: 2018
– volume: 32
  start-page: 1
  year: 2013
  end-page: 11
  article-title: Flexible muscle‐based locomotion for bipedal creatures
  publication-title: ACM Trans Graph
– volume: 37
  year: 2018
  article-title: DeepMimic: example‐guided deep reinforcement learning of physics‐based character skills
  publication-title: ACM Trans Graph
– year: 2010
– volume: 25
  start-page: 1160
  issue: 3
  year: 2006
  end-page: 1168
  article-title: Continuum crowds
  publication-title: ACM Trans Graph
– year: 2012
– volume: 29
  start-page: 1
  year: 2010
  end-page: 9
  article-title: Generalized biped walking control
  publication-title: ACM SIGGRAPH
– volume: 29
  start-page: 1
  year: 2010
  end-page: 10
  article-title: Sampling‐based contact‐rich motion control
  publication-title: ACM SIGGRAPH Papers
– volume: 35
  start-page: 1
  year: 2016
  end-page: 14
  article-title: Guided learning of control graphs for physics‐based characters
  publication-title: ACM Trans Graph
– volume: 40
  start-page: 1
  year: 2021
  end-page: 20
  article-title: AMP: adversarial motion priors for stylized physics‐based character control
  publication-title: ACM Trans Graph
– volume: 51
  start-page: 4282
  issue: 5
  year: 1995
  end-page: 4286
  article-title: Social force model for pedestrian dynamics
  publication-title: Physical Review E, Statistical Physics, Plasmas, Fluids, Related Interdisciplinary Topics
– volume: 404
  start-page: 173
  year: 2020
  end-page: 185
  article-title: Learning crowd behavior from real data: a residual network method for crowd simulation
  publication-title: Neurocomputing
– volume: 492
  start-page: 1107
  year: 2018
  end-page: 1119
  article-title: Modified two‐layer social force model for emergency earthquake evacuation
  publication-title: Phys A: Stat Mech Appl
– volume: 29
  start-page: 2036
  year: 2021
  end-page: 2052
  article-title: Heterogeneous crowd simulation using parametric reinforcement learning
  publication-title: IEEE Trans Visual Comput Graph
– year: 2008
– year: 2022
– volume: 21
  start-page: 85
  year: 2008
  end-page: 107
  article-title: Pedestrian flows in bounded domains with obstacles
  publication-title: Cont Mech Thermodyn
– volume: 208
  year: 2020
  article-title: Knowledge and emotion dual‐driven method for crowd evacuation
  publication-title: Knowl Based Syst
– year: 2020
– year: 2023
– volume: 23
  start-page: 1823
  year: 2017
  end-page: 1837
  article-title: "torso crowds," IEEE transactions on visualization
  publication-title: Comput Graph
– year: 1995
– volume: 51
  start-page: 1567
  year: 2018
  end-page: 1581
  article-title: Crowd behavior simulation with emotional contagion in unexpected multihazard situations
  publication-title: IEEE Trans Syst Man Cybern Syst
– year: 2017
– volume: 23
  start-page: 15476
  year: 2022
  end-page: 15486
  article-title: Modeling crowd evacuation via behavioral heterogeneity‐based social force model
  publication-title: IEEE Trans Intell Transp Syst
– year: 2022
  article-title: Modeling the dynamics of pedestrian evacuation in a complex environment
  publication-title: Phys A: Stat Mech Appl
– year: 2015
– volume: 22
  start-page: 2145
  year: 2016
  end-page: 2159
  article-title: Psychological parameters for crowd simulation: from audiences to mobs
  publication-title: IEEE Trans Visual Comput Graph
– ident: e_1_2_10_2_1
  doi: 10.1016/j.neucom.2019.08.021
– ident: e_1_2_10_44_1
– ident: e_1_2_10_14_1
  doi: 10.1145/3588432.3591525
– ident: e_1_2_10_38_1
  doi: 10.1145/3355089.3356536
– ident: e_1_2_10_10_1
  doi: 10.1103/PhysRevE.82.046111
– ident: e_1_2_10_24_1
  doi: 10.1109/TVCG.2015.2501801
– volume-title: Virtual crowds: steps toward behavioral realism
  year: 2015
  ident: e_1_2_10_5_1
– ident: e_1_2_10_6_1
  doi: 10.1145/3424636.3426894
– ident: e_1_2_10_39_1
– ident: e_1_2_10_18_1
  doi: 10.1103/PhysRevE.51.4282
– ident: e_1_2_10_16_1
  doi: 10.1007/s00161-009-0100-x
– volume: 29
  start-page: 1
  year: 2010
  ident: e_1_2_10_36_1
  article-title: Sampling‐based contact‐rich motion control
  publication-title: ACM SIGGRAPH Papers
  doi: 10.1145/1778765.1778865
– ident: e_1_2_10_15_1
  doi: 10.1145/1141911.1142008
– ident: e_1_2_10_3_1
  doi: 10.1109/TITS.2022.3140823
– ident: e_1_2_10_21_1
  doi: 10.1145/3574131.3574445
– ident: e_1_2_10_28_1
  doi: 10.1080/17538947.2023.2182376
– ident: e_1_2_10_40_1
– ident: e_1_2_10_12_1
  doi: 10.1111/cgf.12806
– ident: e_1_2_10_43_1
– ident: e_1_2_10_11_1
  doi: 10.1111/cgf.12571
– ident: e_1_2_10_22_1
  doi: 10.1145/3190834.3190839
– ident: e_1_2_10_35_1
  doi: 10.1145/2786784.2786802
– volume: 23
  start-page: 1823
  year: 2017
  ident: e_1_2_10_23_1
  article-title: "torso crowds," IEEE transactions on visualization
  publication-title: Comput Graph
– ident: e_1_2_10_37_1
  doi: 10.1145/3197517.3201311
– ident: e_1_2_10_13_1
  doi: 10.1145/3450626.3459670
– ident: e_1_2_10_7_1
  doi: 10.1145/3528233.3530712
– ident: e_1_2_10_26_1
  doi: 10.1016/j.knosys.2020.106451
– ident: e_1_2_10_30_1
  doi: 10.1145/1778765.1781156
– ident: e_1_2_10_27_1
  doi: 10.1109/TVCG.2021.3139031
– ident: e_1_2_10_32_1
  doi: 10.1145/2508363.2508399
– ident: e_1_2_10_20_1
  doi: 10.1109/ITSC55140.2022.9922479
– volume: 22
  year: 2011
  ident: e_1_2_10_9_1
  article-title: A step‐by‐step modeling, analysis and annotation of locomotion
  publication-title: Comput Anim Virtual Worlds
– ident: e_1_2_10_42_1
– ident: e_1_2_10_34_1
  doi: 10.1109/IROS.2012.6386025
– ident: e_1_2_10_17_1
– ident: e_1_2_10_19_1
  doi: 10.1016/j.physa.2017.11.041
– ident: e_1_2_10_31_1
  doi: 10.1109/ICRA.2016.7487294
– ident: e_1_2_10_33_1
  doi: 10.1145/1833349.1778811
– volume: 51
  start-page: 1567
  year: 2018
  ident: e_1_2_10_41_1
  article-title: Crowd behavior simulation with emotional contagion in unexpected multihazard situations
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: e_1_2_10_45_1
– volume: 32
  year: 2021
  ident: e_1_2_10_25_1
  article-title: Modeling crowd emotion from emergent event video
  publication-title: Comput Anim Virtual Worlds
  doi: 10.1002/cav.1988
– ident: e_1_2_10_8_1
  doi: 10.1016/j.neucom.2020.04.141
– year: 2022
  ident: e_1_2_10_4_1
  article-title: Modeling the dynamics of pedestrian evacuation in a complex environment
  publication-title: Phys A: Stat Mech Appl
– ident: e_1_2_10_29_1
  doi: 10.1145/218380.218414
SSID ssj0026210
Score 2.3450983
Snippet Crowd evacuation has gained increasing attention in recent years. The agent‐based method has shown a superior capability to simulate complex behaviors during...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms agent model
Collision avoidance
Control methods
crowd simulation
deep reinforcement learning
Evacuation
physics‐based character control
Simulation
Title Crowd evacuation simulation based on hierarchical agent model and physics‐based character control
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2263
https://www.proquest.com/docview/3071608045
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FqdTIoiesrVpkrXHMRxD0IO4MfBQ0nzAUKfYbQdP_gn-jf4lvjTt_EBBPKW0L9Dm5b33S_ryewgdUy0DoaUgNlGaMCMYyWhkSSikStqwIIlCdxr54lL0B-x8xEdlVqU7C-P5IRYbbs4yCn_tDFxmeeuDNFTJeROwgyP6dKlaDg9dLZijqKCeiIAzQdwqoeKdDWir6vg1En3Ay88gtYgyvTV0U72fTy65bc6mWVM9f6Nu_N8HrKPVEnzijp8tG2jJTDbRynCcz_zdfAupLqzLNTZzqTwJOM7H92WJL-xCnsZw4QpoF78gQMNYutNZuCipg-VEY79Zkr-9vHp5VXFC4zIvfhsNemfX3T4pCzEQBWggIpluJxZwR2hNxiXjKhaJTdqB0iqMdMKMlXFghQ6oVlGsOVM2MMZazZMMgiSNdlBt8jAxuwhrDQhMgluBp9DSmFNhI6MAebgutI5OK6WkqmQpd8Uy7lLPr0xTGLbUDVsdHS0kHz0zxw8yjUqvaWmbeQpeLRQAlBmvo5NCQb_2T7udoWv3_iq4j5YpoB6fEdlAtenTzBwAaplmh8X8fAeay-w0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsQwEB0hKICCG7GcRuKosiRO4t0UFGgBLWeBANEFx4eEgAWRPQQVn8B_8Ct8BV_COE6WQyDRUFA5SsZSYs_xxrHfACxRyV0mOXN0JKQTKBY4CfW14zEuogomJL5nTiMfHLL6SbB7Fp71wHNxFsbyQ3QX3IxlZP7aGLhZkF57Zw0VvF1G8FBUrt5T9x3M19L1nU2c3GVKt7eOa3UnLyngCIxrvpPISqQxgnpaJSEPQlFlkY4qrpDC82UUKM2rrmbSpVL4VRkGQrtKaS3DKEF3b1gO0N_3mQLihqh_86jLVUUZtdQHYcAck5cUTLcuXSve9HPsewe0H2FxFte2h-GlGBG7neWy3GomZfHwhSzynwzZCAzl-JpsWIMYhR7VGIPB04u0Ze-m4yBqdzcdSVSbC8tzTtKL67yKGTFRXRK8MDXCs78sqMSEmwNoJKsaRHhDErselL4-Pll5UdBek3zr_wSc_MlXTkJv46ahpoBIiSCTo-fEp9jSakiZ9pVAcGW60BKsFloQi5yI3dQDuYothTSNcZpiM00lWOxK3lrykW9kZgtFinP3k8bouD2GuUAQlmAl04gf-8e1jVPTTv9WcAH668cH-_H-zuHeDAxQBHl2A-gs9DbvWmoOQVozmc-Mg8D5X6vWGzgdTIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5FRaroAVqgIiXQRYJycmqv15v4wCFKiBIKEUJt1Zu73h-pgiZRnB_RUx-B5-BV-hY8CbNeOymolbj00NNa9qxk787PN-vdbwDeUCV8rgT3TCyVxzRnXkpD4wVcyLiBCUkY2NPInwe8d8Q-nkQnFfhVnoVx_BDLBTdrGbm_tgY-VmZ_RRoqxbyO2KEsXH2gfywwXcve9zs4t28p7X44bPe8oqKAJzGshV6qGrHBABoYnUaCRbLJYxM3fKlkEKqYaSOavuHKp0qGTRUxaXytjVFRnKK3tyQH6O4fMO7HtkxE5-uSqopy6pgPIsY9m5aURLc-3S_f9O_Qt8Kz11FxHta6j-GqHBC3m-VbfTZN6_LiH67I-zFim_CoQNek5cxhCyp6-AQ2js-ymbubPQXZnowWiui5kI7lnGRn50UNM2JjuiJ4YSuE5_9YUIWJsMfPSF4ziIihIm41KPt9-dPJy5L0mhQb_5_B0Z185TasDUdD_RyIUggxBfpNfIotbUaUm1BLhFa2C63Cu1IJElnQsNtqIN8TRyBNE5ymxE5TFV4vJceOeuQGmVqpR0nhfLIE3XbAMRNgURX2coW4tX_Sbh3bdud_BXdh_Uunm3zqDw5ewEOKCM_t_qzB2nQy0y8RoU3TV7lpEDi9a836A_1fSzs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowd+evacuation+simulation+based+on+hierarchical+agent+model+and+physics%E2%80%90based+character+control&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Ye%2C+Jianming&rft.au=Liu%2C+Zhen&rft.au=Liu%2C+Tingting&rft.au=Wu%2C+Yanhui&rft.date=2024-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.2263&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon