Existence results for a coupled system of $ (k, \varphi) $-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions

In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain th...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 2; pp. 4079 - 4097
Main Authors Kamsrisuk, Nattapong, Ntouyas, Sotiris K., Ahmad, Bashir, Samadi, Ayub, Tariboon, Jessada
Format Journal Article
LanguageEnglish
Published AIMS Press 2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023203

Cover

Loading…
Abstract In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain the uniqueness result, while the existence results are proved with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $'s fixed point theorem and Leray-Schauder alternative for the given problem. Examples demonstrating the application of the abstract results are also presented. Our results are of quite general nature and specialize in several new results for appropriate values of the parameters $ \beta_1, $ $ \beta_2, $ and the function $ \varphi $ involved in the problem at hand.
AbstractList In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain the uniqueness result, while the existence results are proved with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $'s fixed point theorem and Leray-Schauder alternative for the given problem. Examples demonstrating the application of the abstract results are also presented. Our results are of quite general nature and specialize in several new results for appropriate values of the parameters $ \beta_1, $ $ \beta_2, $ and the function $ \varphi $ involved in the problem at hand.
Author Tariboon, Jessada
Kamsrisuk, Nattapong
Ahmad, Bashir
Ntouyas, Sotiris K.
Samadi, Ayub
Author_xml – sequence: 1
  givenname: Nattapong
  surname: Kamsrisuk
  fullname: Kamsrisuk, Nattapong
  organization: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
– sequence: 2
  givenname: Sotiris K.
  surname: Ntouyas
  fullname: Ntouyas, Sotiris K.
  organization: Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
– sequence: 3
  givenname: Bashir
  surname: Ahmad
  fullname: Ahmad, Bashir
  organization: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia
– sequence: 4
  givenname: Ayub
  surname: Samadi
  fullname: Samadi, Ayub
  organization: Department of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
– sequence: 5
  givenname: Jessada
  surname: Tariboon
  fullname: Tariboon, Jessada
  organization: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
BookMark eNptUclKQzEUDaJgHXZ-QBZdKPRppjdkKVIHENzoTgh5GdrU15eapA6f4t-aDoKIq9x7knPuyT0HYLf3vQHgBKNzyim7mMs0PSeIUILoDhgQVtOi4k2z-6veB8cxzhBCBBNGajYAX-MPF5PplYHBxGWXIrQ-QAmVXy46o2H8zNdz6C0cwtOXEXx-k2ExdWdwWNy6zpoAbZAqOd_LDmpnM2L65HJjXpdyhUf47tIUZrudVxl3fTKT4It5nuaKhc89bP2y1zJ85rG9dmvWEdizsovmeHsegqfr8ePVbXH_cHN3dXlfKMJp_pbVSEmka0pwWZUSKWp4oyxvrWalbhhTZdk2UlmEK2MVrjSrrLINa3HV1i09BHcbXe3lTCyCm2cfwksn1oAPEyFDcqozgjFWWqaxwa1mvNG8QnWFW1sTrDjlKy2y0VLBxxiMFcql9RJSkK4TGIlVVmKVldhmlUmjP6QfE_8-_wZDFpuT
CitedBy_id crossref_primary_10_3934_math_20241574
crossref_primary_10_3390_sym15051041
crossref_primary_10_3390_axioms13070484
crossref_primary_10_3390_fractalfract8040211
crossref_primary_10_1007_s12346_023_00861_5
crossref_primary_10_3390_sym17030472
crossref_primary_10_3934_math_2023914
crossref_primary_10_1007_s12190_024_02278_y
crossref_primary_10_3390_math12091361
crossref_primary_10_1002_mma_10572
Cites_doi 10.3390/fractalfract6050234
10.1098/rsta.2012.0155
10.1007/s11071-012-0714-6
10.1155/2009/494720
10.2298/fil1705331z
10.1002/mma.3298
10.1016/s0370-1573(00)00070-3
10.1007/s40435-016-0224-3
10.1109/access.2018.2878266
10.1007/s13398-021-01095-3
10.1109/tcst.2011.2153203
10.1186/s13662-020-02775-x
10.3390/math9202543
10.1016/j.cnsns.2019.105088
10.1186/s13662-020-03063-4
10.3390/math10132357
10.1016/0377-0427(89)90320-8
10.1142/12102
10.1142/9069
10.1016/j.chaos.2021.111335
10.1016/j.ecolmodel.2015.06.016
10.3390/axioms11030110
10.1007/s10473-019-0402-4
10.1016/j.chaos.2017.08.035
10.3390/fractalfract6020123
10.1016/j.physa.2019.123903
10.1515/fca-2015-0024
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023203
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 4097
ExternalDocumentID oai_doaj_org_article_4445f4d1e1bd498d960761bf721c939b
10_3934_math_2023203
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c2933-6fd0ca0d7321565a0c3e98cf9bfd45d844c55b8acf016efc16d46fcf84b16b7b3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:25:32 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-6fd0ca0d7321565a0c3e98cf9bfd45d844c55b8acf016efc16d46fcf84b16b7b3
OpenAccessLink https://doaj.org/article/4445f4d1e1bd498d960761bf721c939b
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_4445f4d1e1bd498d960761bf721c939b
crossref_citationtrail_10_3934_math_2023203
crossref_primary_10_3934_math_2023203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023203-1
key-10.3934/math.2023203-26
key-10.3934/math.2023203-27
key-10.3934/math.2023203-24
key-10.3934/math.2023203-25
key-10.3934/math.2023203-5
key-10.3934/math.2023203-4
key-10.3934/math.2023203-3
key-10.3934/math.2023203-28
key-10.3934/math.2023203-2
key-10.3934/math.2023203-29
key-10.3934/math.2023203-40
key-10.3934/math.2023203-22
key-10.3934/math.2023203-23
key-10.3934/math.2023203-20
key-10.3934/math.2023203-21
key-10.3934/math.2023203-15
key-10.3934/math.2023203-37
key-10.3934/math.2023203-16
key-10.3934/math.2023203-38
key-10.3934/math.2023203-13
key-10.3934/math.2023203-35
key-10.3934/math.2023203-14
key-10.3934/math.2023203-36
key-10.3934/math.2023203-19
key-10.3934/math.2023203-17
key-10.3934/math.2023203-39
key-10.3934/math.2023203-18
key-10.3934/math.2023203-30
key-10.3934/math.2023203-11
key-10.3934/math.2023203-33
key-10.3934/math.2023203-12
key-10.3934/math.2023203-34
key-10.3934/math.2023203-31
key-10.3934/math.2023203-10
key-10.3934/math.2023203-32
key-10.3934/math.2023203-9
key-10.3934/math.2023203-8
key-10.3934/math.2023203-7
key-10.3934/math.2023203-6
References_xml – ident: key-10.3934/math.2023203-30
  doi: 10.3390/fractalfract6050234
– ident: key-10.3934/math.2023203-24
– ident: key-10.3934/math.2023203-22
– ident: key-10.3934/math.2023203-2
  doi: 10.1098/rsta.2012.0155
– ident: key-10.3934/math.2023203-1
  doi: 10.1007/s11071-012-0714-6
– ident: key-10.3934/math.2023203-32
  doi: 10.1155/2009/494720
– ident: key-10.3934/math.2023203-39
– ident: key-10.3934/math.2023203-40
– ident: key-10.3934/math.2023203-11
  doi: 10.2298/fil1705331z
– ident: key-10.3934/math.2023203-12
– ident: key-10.3934/math.2023203-18
– ident: key-10.3934/math.2023203-16
– ident: key-10.3934/math.2023203-21
– ident: key-10.3934/math.2023203-10
  doi: 10.1002/mma.3298
– ident: key-10.3934/math.2023203-6
  doi: 10.1016/s0370-1573(00)00070-3
– ident: key-10.3934/math.2023203-8
  doi: 10.1007/s40435-016-0224-3
– ident: key-10.3934/math.2023203-25
– ident: key-10.3934/math.2023203-23
– ident: key-10.3934/math.2023203-37
  doi: 10.1109/access.2018.2878266
– ident: key-10.3934/math.2023203-34
  doi: 10.1007/s13398-021-01095-3
– ident: key-10.3934/math.2023203-5
  doi: 10.1109/tcst.2011.2153203
– ident: key-10.3934/math.2023203-13
  doi: 10.1186/s13662-020-02775-x
– ident: key-10.3934/math.2023203-14
  doi: 10.3390/math9202543
– ident: key-10.3934/math.2023203-4
  doi: 10.1016/j.cnsns.2019.105088
– ident: key-10.3934/math.2023203-17
  doi: 10.1186/s13662-020-03063-4
– ident: key-10.3934/math.2023203-29
  doi: 10.3390/math10132357
– ident: key-10.3934/math.2023203-38
– ident: key-10.3934/math.2023203-31
  doi: 10.1016/0377-0427(89)90320-8
– ident: key-10.3934/math.2023203-26
  doi: 10.1142/12102
– ident: key-10.3934/math.2023203-20
– ident: key-10.3934/math.2023203-27
  doi: 10.1142/9069
– ident: key-10.3934/math.2023203-28
  doi: 10.1016/j.chaos.2021.111335
– ident: key-10.3934/math.2023203-7
  doi: 10.1016/j.ecolmodel.2015.06.016
– ident: key-10.3934/math.2023203-36
  doi: 10.3390/axioms11030110
– ident: key-10.3934/math.2023203-19
– ident: key-10.3934/math.2023203-33
  doi: 10.1007/s10473-019-0402-4
– ident: key-10.3934/math.2023203-15
  doi: 10.1016/j.chaos.2017.08.035
– ident: key-10.3934/math.2023203-35
  doi: 10.3390/fractalfract6020123
– ident: key-10.3934/math.2023203-3
  doi: 10.1016/j.physa.2019.123903
– ident: key-10.3934/math.2023203-9
  doi: 10.1515/fca-2015-0024
SSID ssj0002124274
Score 2.228007
Snippet In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 4079
SubjectTerms (k,φ)-hilfer fractional derivative
caputo fractional derivative
existence
fixed point theorems
riemann-liouville fractional derivative
uniqueness
Title Existence results for a coupled system of $ (k, \varphi) $-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions
URI https://doaj.org/article/4445f4d1e1bd498d960761bf721c939b
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOSgoGtptZh85qrQUQU8Wels2LxAXW_sA_QNe_Wn-JWc229KLePG4SzYbMrOZ70tmv2HsTEOsdNGWoshSQIKSWaETnQoPqYuMq6IKZVs8Jv0B3A_j4UqpL8oJC_LAYeJaABB7sJGLtAWVWUTcyLy1R-ZilFSaVl-MeStkitZgXJAB-VbIdJdKQgvxH509IIBY1MeqY9CKVH8VU3pbbLMGg_wmDGKbrbnXHbbxsFRSne6yr-47GQJNw5EYz8vZlCPM5AU3o_m4dJYHKWY-8vzi5fr781L0n0vvJtxPwi8L2P-iCAp-zCV3b0Hce8ppC5Yj-6_CGQ-6ESNRZRiK8Qivua5qLk0-8GV0sk1P7bFBr_t01xd1EQVhMJJLkXjbNkXbphKDexIXbSOdyoxX2luIbQZg4lhnhfEI_pw3UWIh8cZnoCM0mpb7rIFDcQeMIxTyJJfXMVKBSzNlEohdpxNZS6IuRZNdLaY1N7XCOBW6KHNkGmSEnIyQ10ZosvNl63FQ1vil3S1ZaNmG9LCrG-glee0l-V9ecvgfnRyxdRpT2IA5Zo3ZZO5OEJLM9GnlfT8c3eJT
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+results+for+a+coupled+system+of+%24+%28k%2C+%5Cvarphi%29+%24-Hilfer+fractional+differential+equations+with+nonlocal+integro-multi-point+boundary+conditions&rft.jtitle=AIMS+mathematics&rft.au=Kamsrisuk%2C+Nattapong&rft.au=Ntouyas%2C+Sotiris+K.&rft.au=Ahmad%2C+Bashir&rft.au=Samadi%2C+Ayub&rft.date=2023&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=4079&rft.epage=4097&rft_id=info:doi/10.3934%2Fmath.2023203&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon