Existence results for a coupled system of $ (k, \varphi) $-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions
In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain th...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 2; pp. 4079 - 4097 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023203 |
Cover
Loading…
Abstract | In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain the uniqueness result, while the existence results are proved with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $'s fixed point theorem and Leray-Schauder alternative for the given problem. Examples demonstrating the application of the abstract results are also presented. Our results are of quite general nature and specialize in several new results for appropriate values of the parameters $ \beta_1, $ $ \beta_2, $ and the function $ \varphi $ involved in the problem at hand. |
---|---|
AbstractList | In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain the uniqueness result, while the existence results are proved with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $'s fixed point theorem and Leray-Schauder alternative for the given problem. Examples demonstrating the application of the abstract results are also presented. Our results are of quite general nature and specialize in several new results for appropriate values of the parameters $ \beta_1, $ $ \beta_2, $ and the function $ \varphi $ involved in the problem at hand. |
Author | Tariboon, Jessada Kamsrisuk, Nattapong Ahmad, Bashir Ntouyas, Sotiris K. Samadi, Ayub |
Author_xml | – sequence: 1 givenname: Nattapong surname: Kamsrisuk fullname: Kamsrisuk, Nattapong organization: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand – sequence: 2 givenname: Sotiris K. surname: Ntouyas fullname: Ntouyas, Sotiris K. organization: Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece – sequence: 3 givenname: Bashir surname: Ahmad fullname: Ahmad, Bashir organization: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia – sequence: 4 givenname: Ayub surname: Samadi fullname: Samadi, Ayub organization: Department of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran – sequence: 5 givenname: Jessada surname: Tariboon fullname: Tariboon, Jessada organization: Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand |
BookMark | eNptUclKQzEUDaJgHXZ-QBZdKPRppjdkKVIHENzoTgh5GdrU15eapA6f4t-aDoKIq9x7knPuyT0HYLf3vQHgBKNzyim7mMs0PSeIUILoDhgQVtOi4k2z-6veB8cxzhBCBBNGajYAX-MPF5PplYHBxGWXIrQ-QAmVXy46o2H8zNdz6C0cwtOXEXx-k2ExdWdwWNy6zpoAbZAqOd_LDmpnM2L65HJjXpdyhUf47tIUZrudVxl3fTKT4It5nuaKhc89bP2y1zJ85rG9dmvWEdizsovmeHsegqfr8ePVbXH_cHN3dXlfKMJp_pbVSEmka0pwWZUSKWp4oyxvrWalbhhTZdk2UlmEK2MVrjSrrLINa3HV1i09BHcbXe3lTCyCm2cfwksn1oAPEyFDcqozgjFWWqaxwa1mvNG8QnWFW1sTrDjlKy2y0VLBxxiMFcql9RJSkK4TGIlVVmKVldhmlUmjP6QfE_8-_wZDFpuT |
CitedBy_id | crossref_primary_10_3934_math_20241574 crossref_primary_10_3390_sym15051041 crossref_primary_10_3390_axioms13070484 crossref_primary_10_3390_fractalfract8040211 crossref_primary_10_1007_s12346_023_00861_5 crossref_primary_10_3390_sym17030472 crossref_primary_10_3934_math_2023914 crossref_primary_10_1007_s12190_024_02278_y crossref_primary_10_3390_math12091361 crossref_primary_10_1002_mma_10572 |
Cites_doi | 10.3390/fractalfract6050234 10.1098/rsta.2012.0155 10.1007/s11071-012-0714-6 10.1155/2009/494720 10.2298/fil1705331z 10.1002/mma.3298 10.1016/s0370-1573(00)00070-3 10.1007/s40435-016-0224-3 10.1109/access.2018.2878266 10.1007/s13398-021-01095-3 10.1109/tcst.2011.2153203 10.1186/s13662-020-02775-x 10.3390/math9202543 10.1016/j.cnsns.2019.105088 10.1186/s13662-020-03063-4 10.3390/math10132357 10.1016/0377-0427(89)90320-8 10.1142/12102 10.1142/9069 10.1016/j.chaos.2021.111335 10.1016/j.ecolmodel.2015.06.016 10.3390/axioms11030110 10.1007/s10473-019-0402-4 10.1016/j.chaos.2017.08.035 10.3390/fractalfract6020123 10.1016/j.physa.2019.123903 10.1515/fca-2015-0024 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023203 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 4097 |
ExternalDocumentID | oai_doaj_org_article_4445f4d1e1bd498d960761bf721c939b 10_3934_math_2023203 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c2933-6fd0ca0d7321565a0c3e98cf9bfd45d844c55b8acf016efc16d46fcf84b16b7b3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:25:32 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2933-6fd0ca0d7321565a0c3e98cf9bfd45d844c55b8acf016efc16d46fcf84b16b7b3 |
OpenAccessLink | https://doaj.org/article/4445f4d1e1bd498d960761bf721c939b |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4445f4d1e1bd498d960761bf721c939b crossref_citationtrail_10_3934_math_2023203 crossref_primary_10_3934_math_2023203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023203-1 key-10.3934/math.2023203-26 key-10.3934/math.2023203-27 key-10.3934/math.2023203-24 key-10.3934/math.2023203-25 key-10.3934/math.2023203-5 key-10.3934/math.2023203-4 key-10.3934/math.2023203-3 key-10.3934/math.2023203-28 key-10.3934/math.2023203-2 key-10.3934/math.2023203-29 key-10.3934/math.2023203-40 key-10.3934/math.2023203-22 key-10.3934/math.2023203-23 key-10.3934/math.2023203-20 key-10.3934/math.2023203-21 key-10.3934/math.2023203-15 key-10.3934/math.2023203-37 key-10.3934/math.2023203-16 key-10.3934/math.2023203-38 key-10.3934/math.2023203-13 key-10.3934/math.2023203-35 key-10.3934/math.2023203-14 key-10.3934/math.2023203-36 key-10.3934/math.2023203-19 key-10.3934/math.2023203-17 key-10.3934/math.2023203-39 key-10.3934/math.2023203-18 key-10.3934/math.2023203-30 key-10.3934/math.2023203-11 key-10.3934/math.2023203-33 key-10.3934/math.2023203-12 key-10.3934/math.2023203-34 key-10.3934/math.2023203-31 key-10.3934/math.2023203-10 key-10.3934/math.2023203-32 key-10.3934/math.2023203-9 key-10.3934/math.2023203-8 key-10.3934/math.2023203-7 key-10.3934/math.2023203-6 |
References_xml | – ident: key-10.3934/math.2023203-30 doi: 10.3390/fractalfract6050234 – ident: key-10.3934/math.2023203-24 – ident: key-10.3934/math.2023203-22 – ident: key-10.3934/math.2023203-2 doi: 10.1098/rsta.2012.0155 – ident: key-10.3934/math.2023203-1 doi: 10.1007/s11071-012-0714-6 – ident: key-10.3934/math.2023203-32 doi: 10.1155/2009/494720 – ident: key-10.3934/math.2023203-39 – ident: key-10.3934/math.2023203-40 – ident: key-10.3934/math.2023203-11 doi: 10.2298/fil1705331z – ident: key-10.3934/math.2023203-12 – ident: key-10.3934/math.2023203-18 – ident: key-10.3934/math.2023203-16 – ident: key-10.3934/math.2023203-21 – ident: key-10.3934/math.2023203-10 doi: 10.1002/mma.3298 – ident: key-10.3934/math.2023203-6 doi: 10.1016/s0370-1573(00)00070-3 – ident: key-10.3934/math.2023203-8 doi: 10.1007/s40435-016-0224-3 – ident: key-10.3934/math.2023203-25 – ident: key-10.3934/math.2023203-23 – ident: key-10.3934/math.2023203-37 doi: 10.1109/access.2018.2878266 – ident: key-10.3934/math.2023203-34 doi: 10.1007/s13398-021-01095-3 – ident: key-10.3934/math.2023203-5 doi: 10.1109/tcst.2011.2153203 – ident: key-10.3934/math.2023203-13 doi: 10.1186/s13662-020-02775-x – ident: key-10.3934/math.2023203-14 doi: 10.3390/math9202543 – ident: key-10.3934/math.2023203-4 doi: 10.1016/j.cnsns.2019.105088 – ident: key-10.3934/math.2023203-17 doi: 10.1186/s13662-020-03063-4 – ident: key-10.3934/math.2023203-29 doi: 10.3390/math10132357 – ident: key-10.3934/math.2023203-38 – ident: key-10.3934/math.2023203-31 doi: 10.1016/0377-0427(89)90320-8 – ident: key-10.3934/math.2023203-26 doi: 10.1142/12102 – ident: key-10.3934/math.2023203-20 – ident: key-10.3934/math.2023203-27 doi: 10.1142/9069 – ident: key-10.3934/math.2023203-28 doi: 10.1016/j.chaos.2021.111335 – ident: key-10.3934/math.2023203-7 doi: 10.1016/j.ecolmodel.2015.06.016 – ident: key-10.3934/math.2023203-36 doi: 10.3390/axioms11030110 – ident: key-10.3934/math.2023203-19 – ident: key-10.3934/math.2023203-33 doi: 10.1007/s10473-019-0402-4 – ident: key-10.3934/math.2023203-15 doi: 10.1016/j.chaos.2017.08.035 – ident: key-10.3934/math.2023203-35 doi: 10.3390/fractalfract6020123 – ident: key-10.3934/math.2023203-3 doi: 10.1016/j.physa.2019.123903 – ident: key-10.3934/math.2023203-9 doi: 10.1515/fca-2015-0024 |
SSID | ssj0002124274 |
Score | 2.228007 |
Snippet | In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 4079 |
SubjectTerms | (k,φ)-hilfer fractional derivative caputo fractional derivative existence fixed point theorems riemann-liouville fractional derivative uniqueness |
Title | Existence results for a coupled system of $ (k, \varphi) $-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions |
URI | https://doaj.org/article/4445f4d1e1bd498d960761bf721c939b |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOSgoGtptZh85qrQUQU8Wels2LxAXW_sA_QNe_Wn-JWc229KLePG4SzYbMrOZ70tmv2HsTEOsdNGWoshSQIKSWaETnQoPqYuMq6IKZVs8Jv0B3A_j4UqpL8oJC_LAYeJaABB7sJGLtAWVWUTcyLy1R-ZilFSaVl-MeStkitZgXJAB-VbIdJdKQgvxH509IIBY1MeqY9CKVH8VU3pbbLMGg_wmDGKbrbnXHbbxsFRSne6yr-47GQJNw5EYz8vZlCPM5AU3o_m4dJYHKWY-8vzi5fr781L0n0vvJtxPwi8L2P-iCAp-zCV3b0Hce8ppC5Yj-6_CGQ-6ESNRZRiK8Qivua5qLk0-8GV0sk1P7bFBr_t01xd1EQVhMJJLkXjbNkXbphKDexIXbSOdyoxX2luIbQZg4lhnhfEI_pw3UWIh8cZnoCM0mpb7rIFDcQeMIxTyJJfXMVKBSzNlEohdpxNZS6IuRZNdLaY1N7XCOBW6KHNkGmSEnIyQ10ZosvNl63FQ1vil3S1ZaNmG9LCrG-glee0l-V9ecvgfnRyxdRpT2IA5Zo3ZZO5OEJLM9GnlfT8c3eJT |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+results+for+a+coupled+system+of+%24+%28k%2C+%5Cvarphi%29+%24-Hilfer+fractional+differential+equations+with+nonlocal+integro-multi-point+boundary+conditions&rft.jtitle=AIMS+mathematics&rft.au=Kamsrisuk%2C+Nattapong&rft.au=Ntouyas%2C+Sotiris+K.&rft.au=Ahmad%2C+Bashir&rft.au=Samadi%2C+Ayub&rft.date=2023&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=4079&rft.epage=4097&rft_id=info:doi/10.3934%2Fmath.2023203&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |