Adaptive output‐feedback stabilization in prescribed time for nonlinear systems with unknown parameters coupled with unmeasured states

Summary The prescribed‐time output‐feedback stabilization (ie, regulation of the state and control input to zero within a “prescribed” time picked by the control designer irrespective of the initial state) of a general class of uncertain nonlinear strict‐feedback‐like systems is considered. Unlike p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of adaptive control and signal processing Vol. 35; no. 2; pp. 184 - 202
Main Authors Krishnamurthy, Prashanth, Khorrami, Farshad, Krstic, Miroslav
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The prescribed‐time output‐feedback stabilization (ie, regulation of the state and control input to zero within a “prescribed” time picked by the control designer irrespective of the initial state) of a general class of uncertain nonlinear strict‐feedback‐like systems is considered. Unlike prior results, the class of systems considered in this article allows crossproducts of unknown parameters (without any required magnitude bounds on unknown parameters) and unmeasured state variables in uncertain state‐dependent nonlinear functions throughout the system dynamics. We show that prescribed‐time output‐feedback stabilization (ie, both prescribed‐time state estimation and prescribed‐time regulation) is achieved through a novel output‐feedback control design involving specially designed dynamics of an adaptation state variable and a high‐gain scaling parameter in combination with a temporal transformation and a dual high‐gain scaling based observer and controller design. While standard dynamic adaptation techniques cannot be applied due to crossproducts of unknown parameters and unmeasured states, we show that instead, the dynamics of the high‐gain scaling parameter and adaptation parameter can be designed with temporal forcing terms to ensure that unknown parameters in system dynamics are dominated by a particular fractional power of the high‐gain scaling parameter and the adaptation parameter after a subinterval (of unknown length) of the prescribed time interval. We show that the control law can be designed such that the system state and input are regulated to zero in the remaining subinterval of the prescribed time interval.
AbstractList Summary The prescribed‐time output‐feedback stabilization (ie, regulation of the state and control input to zero within a “prescribed” time picked by the control designer irrespective of the initial state) of a general class of uncertain nonlinear strict‐feedback‐like systems is considered. Unlike prior results, the class of systems considered in this article allows crossproducts of unknown parameters (without any required magnitude bounds on unknown parameters) and unmeasured state variables in uncertain state‐dependent nonlinear functions throughout the system dynamics. We show that prescribed‐time output‐feedback stabilization (ie, both prescribed‐time state estimation and prescribed‐time regulation) is achieved through a novel output‐feedback control design involving specially designed dynamics of an adaptation state variable and a high‐gain scaling parameter in combination with a temporal transformation and a dual high‐gain scaling based observer and controller design. While standard dynamic adaptation techniques cannot be applied due to crossproducts of unknown parameters and unmeasured states, we show that instead, the dynamics of the high‐gain scaling parameter and adaptation parameter can be designed with temporal forcing terms to ensure that unknown parameters in system dynamics are dominated by a particular fractional power of the high‐gain scaling parameter and the adaptation parameter after a subinterval (of unknown length) of the prescribed time interval. We show that the control law can be designed such that the system state and input are regulated to zero in the remaining subinterval of the prescribed time interval.
The prescribed‐time output‐feedback stabilization (ie, regulation of the state and control input to zero within a “prescribed” time picked by the control designer irrespective of the initial state) of a general class of uncertain nonlinear strict‐feedback‐like systems is considered. Unlike prior results, the class of systems considered in this article allows crossproducts of unknown parameters (without any required magnitude bounds on unknown parameters) and unmeasured state variables in uncertain state‐dependent nonlinear functions throughout the system dynamics. We show that prescribed‐time output‐feedback stabilization (ie, both prescribed‐time state estimation and prescribed‐time regulation) is achieved through a novel output‐feedback control design involving specially designed dynamics of an adaptation state variable and a high‐gain scaling parameter in combination with a temporal transformation and a dual high‐gain scaling based observer and controller design. While standard dynamic adaptation techniques cannot be applied due to crossproducts of unknown parameters and unmeasured states, we show that instead, the dynamics of the high‐gain scaling parameter and adaptation parameter can be designed with temporal forcing terms to ensure that unknown parameters in system dynamics are dominated by a particular fractional power of the high‐gain scaling parameter and the adaptation parameter after a subinterval (of unknown length) of the prescribed time interval. We show that the control law can be designed such that the system state and input are regulated to zero in the remaining subinterval of the prescribed time interval.
Author Khorrami, Farshad
Krishnamurthy, Prashanth
Krstic, Miroslav
Author_xml – sequence: 1
  givenname: Prashanth
  surname: Krishnamurthy
  fullname: Krishnamurthy, Prashanth
  organization: NYU Tandon School of Engineering
– sequence: 2
  givenname: Farshad
  orcidid: 0000-0002-8418-004X
  surname: Khorrami
  fullname: Khorrami, Farshad
  email: khorrami@nyu.edu
  organization: NYU Tandon School of Engineering
– sequence: 3
  givenname: Miroslav
  surname: Krstic
  fullname: Krstic, Miroslav
  organization: University of California, San Diego
BookMark eNp1kLtOwzAUhi0EEm1B4hEssbCk2HEu9lhV3KRKDMAcOcmxcJvEwXaoysTIyDPyJLgtE4Lp6Oh8__mlb4wOO9MBQmeUTCkh8aWs3JRRwQ7QiBIhIkppeohGhAsSZSzOj9HYuSUh4UbZCH3Matl7_QrYDL4f_Nf7pwKoS1mtsPOy1I1-k16bDusO9xZcZXUJNfa6BayMxaG-0R1Ii93GeWgdXmv_jIdu1Zl1iEgrW_BgHa7M0Dch-nNvQbrBhj3UeHAn6EjJxsHpz5ygp-urx_lttLi_uZvPFlEVC8aiNM-BK5EkwFNRc0UyxTKRqViUkDDFc0E5q2qe5pAKWuZ1rZJUlqykOUtiRdgEne__9ta8DOB8sTSD7UJlESecsixJBA_UdE9V1jhnQRWV9jsP3krdFJQUW9tFsF1sbYfAxa9Ab3Ur7eYvNNqja93A5l-umM0fdvw3i-WUiA
CitedBy_id crossref_primary_10_1016_j_automatica_2022_110573
crossref_primary_10_1002_acs_3744
crossref_primary_10_1016_j_ifacol_2023_10_976
crossref_primary_10_1016_j_automatica_2023_111244
crossref_primary_10_1109_TAC_2023_3279200
crossref_primary_10_1016_j_automatica_2024_111983
crossref_primary_10_1016_j_sysconle_2022_105269
crossref_primary_10_1109_TAC_2022_3151587
crossref_primary_10_1109_TAES_2024_3384946
crossref_primary_10_1016_j_automatica_2024_111949
crossref_primary_10_1016_j_automatica_2023_111009
crossref_primary_10_1109_TSMC_2023_3240751
crossref_primary_10_1016_j_ejcon_2022_100667
crossref_primary_10_1177_10775463221138327
crossref_primary_10_1016_j_neucom_2023_126782
crossref_primary_10_1109_TNNLS_2023_3296194
crossref_primary_10_1007_s12555_021_0899_x
crossref_primary_10_1007_s12555_022_0096_6
crossref_primary_10_1016_j_cja_2024_10_022
crossref_primary_10_1016_j_jfranklin_2024_01_039
crossref_primary_10_1109_TAC_2023_3254371
crossref_primary_10_1016_j_automatica_2024_111680
crossref_primary_10_1002_rnc_5541
crossref_primary_10_1002_rnc_7665
crossref_primary_10_1016_j_sysconle_2023_105625
crossref_primary_10_1002_rnc_7661
crossref_primary_10_1137_23M1556496
crossref_primary_10_1109_TAC_2022_3194100
crossref_primary_10_1109_TAC_2022_3173988
crossref_primary_10_1002_acs_3419
crossref_primary_10_1155_2023_6622657
crossref_primary_10_1109_TAC_2023_3314369
crossref_primary_10_1002_acs_3892
crossref_primary_10_1109_TAC_2024_3451213
crossref_primary_10_1109_LCSYS_2023_3238657
crossref_primary_10_1016_j_asr_2022_12_053
crossref_primary_10_1109_TSMC_2024_3378845
crossref_primary_10_1016_j_jfranklin_2022_03_017
crossref_primary_10_1016_j_sysconle_2024_105857
crossref_primary_10_1115_1_4055023
crossref_primary_10_1109_TCST_2023_3243403
crossref_primary_10_1002_rnc_6441
crossref_primary_10_1109_TNSE_2023_3322514
crossref_primary_10_1002_rnc_7013
crossref_primary_10_1007_s11432_023_3948_y
crossref_primary_10_1137_22M1471171
crossref_primary_10_1016_j_jfranklin_2024_01_043
Cites_doi 10.1016/S0925-2312(97)00013-1
10.1080/00207170701650303
10.1109/TAC.2013.2257968
10.1016/j.ins.2019.11.006
10.1016/j.automatica.2017.06.008
10.23919/ACC.2017.7963865
10.23919/ECC.2019.8795759
10.1016/j.ins.2019.01.077
10.1109/TAC.2007.914231
10.1137/S0363012997321358
10.1109/CDC40024.2019.9028872
10.1080/00207721003770569
10.1016/j.automatica.2017.04.024
10.1093/imamci/dnx004
10.23919/ACC.2019.8815272
10.1016/j.automatica.2004.11.036
10.1109/CDC.2018.8619259
10.1109/ACC.1995.529773
10.1080/00207179.2018.1506889
10.1109/TAC.2011.2179869
10.1109/TAC.1964.1105700
10.1016/j.sysconle.2006.07.004
10.23919/ECC.2018.8550137
10.1016/j.automatica.2015.05.005
10.1137/060675861
10.1109/CDC.2016.7798848
10.1016/j.automatica.2015.02.016
10.1109/TAC.2004.839235
10.1002/acs.957
10.1137/040619417
10.23919/ACC.2004.1383919
10.1137/0324047
10.1002/rnc.4084
10.1016/j.automatica.2019.05.018
10.1016/j.jfranklin.2019.02.015
10.1109/TAC.2006.886534
10.1109/TAC.2006.886515
10.1002/rnc.4600
10.1109/TCST.2017.2734050
10.1016/j.automatica.2014.10.082
10.1007/978-1-4471-0549-7
10.1002/rnc.3297
10.1002/rnc.3757
10.1109/TAC.2004.838476
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd.
2021 John Wiley & Sons Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.3193
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1115
EndPage 202
ExternalDocumentID 10_1002_acs_3193
ACS3193
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2933-577e8f944e859d8f06f3696f29be43f879183cd857e591b7ddf45ab3b17342f03
IEDL.DBID DR2
ISSN 0890-6327
IngestDate Fri Jul 25 12:19:57 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Wed Jan 22 16:58:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-577e8f944e859d8f06f3696f29be43f879183cd857e591b7ddf45ab3b17342f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8418-004X
PQID 2481364498
PQPubID 996374
PageCount 19
ParticipantIDs proquest_journals_2481364498
crossref_citationtrail_10_1002_acs_3193
crossref_primary_10_1002_acs_3193
wiley_primary_10_1002_acs_3193_ACS3193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 83
2015; 58
2006; 51
2017; 81
1964; 9
2015; 51
2004; 49
2017; 27
2015; 54
2005; 41
2008
1995
2004
2019; 106
2008; 53
2007; 52
2012; 57
2007; 56
2018; 26
2019; 484
2013; 58
2000; 38
2001
2006; 45
2020; 93
1997; 15
1986; 24
2008; 47
2019
1999; II
2020; 514
2018
2019; 29
2017
2019; 356
2016
2008; 22
2008; 81
2016; 26
2012; 43
2018; 35
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Krstić M (e_1_2_8_3_1) 1995
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
Khalil H (e_1_2_8_6_1) 2001
e_1_2_8_12_1
e_1_2_8_33_1
Sánchez‐Torres JD (e_1_2_8_35_1) 2019
e_1_2_8_30_1
References_xml – volume: 29
  start-page: 618
  issue: 3
  year: 2019
  end-page: 633
  article-title: Time‐varying feedback for stabilization in prescribed finite time
  publication-title: Int J Robust Nonlinear Control
– volume: 22
  start-page: 23
  issue: 1
  year: 2008
  end-page: 42
  article-title: Dual high‐gain‐based adaptive output‐feedback control for a class of nonlinear systems
  publication-title: Int J Adapt Control Signal Process
– volume: 24
  start-page: 760
  issue: 4
  year: 1986
  end-page: 770
  article-title: Finite time controllers
  publication-title: SIAM J Control Optim
– volume: 57
  start-page: 2106
  issue: 8
  year: 2012
  end-page: 2110
  article-title: Nonlinear feedback design for fixed‐time stabilization of linear control systems
  publication-title: IEEE Trans Automat Control
– volume: 26
  start-page: 1866
  issue: 5
  year: 2018
  end-page: 1873
  article-title: Predefined‐time convergence control for high‐order integrator systems using time base generators
  publication-title: IEEE Trans Control Syst Technol
– year: 2001
– volume: 514
  start-page: 571
  year: 2020
  end-page: 586
  article-title: Fast finite‐time adaptive stabilization of high‐order uncertain nonlinear systems with output constraint and zero dynamics
  publication-title: Inf Sci
– volume: 43
  start-page: 73
  issue: 1
  year: 2012
  end-page: 78
  article-title: Global finite‐time stabilisation for a class of nonlinear systems
  publication-title: Int J Syst Sci
– volume: 81
  start-page: 455
  year: 2017
  end-page: 463
  article-title: A new approach to fast global finite‐time stabilization of high‐order nonlinear system
  publication-title: Automatica
– volume: 26
  start-page: 69
  issue: 1
  year: 2016
  end-page: 90
  article-title: Robust stabilization of MIMO systems in finite/fixed time
  publication-title: Int J Robust Nonlinear Control
– volume: 49
  start-page: 2219
  issue: 12
  year: 2004
  end-page: 2239
  article-title: Dynamic high‐gain scaling: state and output feedback with application to systems with ISS appended dynamics driven by all states
  publication-title: IEEE Trans Automat Control
– volume: 54
  start-page: 284
  year: 2015
  end-page: 291
  article-title: Finite‐time stabilization of high‐order stochastic nonlinear systems in strict‐feedback form
  publication-title: Automatica
– volume: 49
  start-page: 2286
  issue: 12
  year: 2004
  end-page: 2292
  article-title: A high‐gain scaling technique for adaptive output feedback control of feedforward systems
  publication-title: IEEE Trans Automat Control
– year: 2016
– volume: 81
  start-page: 797
  year: 2008
  end-page: 803
  article-title: Finite time stability conditions for non‐autonomous continuous systems
  publication-title: Int J Control
– year: 2018
– volume: 83
  start-page: 243
  year: 2017
  end-page: 251
  article-title: Time‐varying feedback for regulation of normal‐form nonlinear systems in prescribed finite time
  publication-title: Automatica
– volume: 15
  start-page: 411
  issue: 3‐4
  year: 1997
  end-page: 434
  article-title: A computational theory of targeting movements based on force fields and topology representing networks
  publication-title: Neurocomputing
– volume: 93
  start-page: 1353
  issue: 6
  year: 2020
  end-page: 1361
  article-title: On simple scheme of finite/fixed‐time control design
  publication-title: Int J Control
– volume: 9
  start-page: 290
  issue: 3
  year: 1964
  end-page: 292
  article-title: An alternate approach to the fixed terminal point regulator problem
  publication-title: IEEE Trans Automat Control
– volume: 29
  start-page: 4135
  issue: 12
  year: 2019
  end-page: 4148
  article-title: Enhancing the settling time estimation of a class of fixed‐time stable systems
  publication-title: Int J Robust Nonlinear Control
– volume: 47
  start-page: 1814
  issue: 4
  year: 2008
  end-page: 1850
  article-title: Homogeneous approximation, recursive observer design, and output feedback
  publication-title: SIAM J Control Optim
– volume: 27
  start-page: 3620
  issue: 17
  year: 2017
  end-page: 3642
  article-title: On optimal predefined‐time stabilization
  publication-title: Int J Robust Nonlinear Control
– volume: 484
  start-page: 219
  year: 2019
  end-page: 236
  article-title: Global fast finite‐time partial state feedback stabilization of high‐order nonlinear systems with dynamic uncertainties
  publication-title: Inf Sci
– volume: 35
  start-page: i1
  issue: Suppl 1
  year: 2018
  end-page: i29
  article-title: A class of predefined‐time stable dynamical systems
  publication-title: IMA J Math Control nf
– year: 2008
– year: 2004
– year: 2019
  article-title: Predefined‐time stabilisation of a class of nonholonomic systems
  publication-title: Int J Control
– volume: 53
  start-page: 405
  issue: 1
  year: 2008
  end-page: 412
  article-title: Feedforward systems with ISS appended dynamics: adaptive output‐feedback stabilization and disturbance attenuation
  publication-title: IEEE Trans Automat Control
– year: 1995
– volume: 58
  start-page: 60
  year: 2015
  end-page: 66
  article-title: A new approach to finite‐time adaptive stabilization of high‐order uncertain nonlinear system
  publication-title: Automatica
– volume: 52
  start-page: 102
  issue: 1
  year: 2007
  end-page: 108
  article-title: Generalized state scaling and applications to feedback, feedforward, and non‐triangular nonlinear systems
  publication-title: IEEE Trans Automat Control
– volume: 45
  start-page: 1147
  issue: 4
  year: 2006
  end-page: 1164
  article-title: On uniform solvability of parameter‐dependent Lyapunov inequalities and applications to various problems
  publication-title: SIAM J Control Optim
– volume: 356
  start-page: 2759
  issue: 5
  year: 2019
  end-page: 2779
  article-title: Regular error feedback based adaptive practical prescribed time tracking control of normal‐form nonaffine systems
  publication-title: J Frankl Inst
– volume: 58
  start-page: 2686
  issue: 10
  year: 2013
  end-page: 2692
  article-title: A singular perturbation based global dynamic high gain scaling control design for systems with nonlinear input uncertainties
  publication-title: IEEE Trans Automat Control
– volume: II
  year: 1999
– volume: 38
  start-page: 751
  issue: 3
  year: 2000
  end-page: 766
  article-title: Finite‐time stability of continuous autonomous systems
  publication-title: SIAM J Control Optim
– volume: 106
  start-page: 339
  year: 2019
  end-page: 348
  article-title: Fast finite‐time stability and its application in adaptive control of high‐order nonlinear system
  publication-title: Automatica
– year: 2017
– volume: 41
  start-page: 881
  issue: 5
  year: 2005
  end-page: 888
  article-title: Global finite‐time stabilization of a class of uncertain nonlinear systems
  publication-title: Automatica
– volume: 51
  start-page: 332
  issue: 1
  year: 2015
  end-page: 340
  article-title: Finite‐time and fixed‐time stabilization: Implicit Lyapunov function approach
  publication-title: Automatica
– year: 2019
– volume: 51
  start-page: 1950
  issue: 12
  year: 2006
  end-page: 1956
  article-title: Finite‐time stabilization of nonlinear systems with parametric and dynamic uncertainties
  publication-title: IEEE Trans Automat Control
– volume: 56
  start-page: 7
  issue: 1
  year: 2007
  end-page: 15
  article-title: High‐gain output‐feedback control for nonlinear systems based on multiple time scaling
  publication-title: Syst Control Lett
– ident: e_1_2_8_38_1
  doi: 10.1016/S0925-2312(97)00013-1
– ident: e_1_2_8_12_1
  doi: 10.1080/00207170701650303
– ident: e_1_2_8_45_1
  doi: 10.1109/TAC.2013.2257968
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ins.2019.11.006
– ident: e_1_2_8_28_1
  doi: 10.1016/j.automatica.2017.06.008
– ident: e_1_2_8_29_1
  doi: 10.23919/ACC.2017.7963865
– ident: e_1_2_8_46_1
  doi: 10.23919/ECC.2019.8795759
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ins.2019.01.077
– ident: e_1_2_8_42_1
  doi: 10.1109/TAC.2007.914231
– ident: e_1_2_8_8_1
  doi: 10.1137/S0363012997321358
– ident: e_1_2_8_2_1
  doi: 10.1109/CDC40024.2019.9028872
– ident: e_1_2_8_11_1
– ident: e_1_2_8_13_1
  doi: 10.1080/00207721003770569
– ident: e_1_2_8_16_1
  doi: 10.1016/j.automatica.2017.04.024
– ident: e_1_2_8_33_1
  doi: 10.1093/imamci/dnx004
– ident: e_1_2_8_39_1
  doi: 10.23919/ACC.2019.8815272
– ident: e_1_2_8_9_1
  doi: 10.1016/j.automatica.2004.11.036
– ident: e_1_2_8_31_1
  doi: 10.1109/CDC.2018.8619259
– ident: e_1_2_8_4_1
  doi: 10.1109/ACC.1995.529773
– ident: e_1_2_8_25_1
  doi: 10.1080/00207179.2018.1506889
– ident: e_1_2_8_22_1
  doi: 10.1109/TAC.2011.2179869
– ident: e_1_2_8_37_1
  doi: 10.1109/TAC.1964.1105700
– ident: e_1_2_8_43_1
  doi: 10.1016/j.sysconle.2006.07.004
– volume-title: Nonlinear Systems
  year: 2001
  ident: e_1_2_8_6_1
– ident: e_1_2_8_24_1
  doi: 10.23919/ECC.2018.8550137
– ident: e_1_2_8_15_1
  doi: 10.1016/j.automatica.2015.05.005
– ident: e_1_2_8_17_1
  doi: 10.1137/060675861
– ident: e_1_2_8_27_1
  doi: 10.1109/CDC.2016.7798848
– ident: e_1_2_8_18_1
  doi: 10.1016/j.automatica.2015.02.016
– ident: e_1_2_8_40_1
  doi: 10.1109/TAC.2004.839235
– ident: e_1_2_8_47_1
  doi: 10.1002/acs.957
– ident: e_1_2_8_49_1
  doi: 10.1137/040619417
– ident: e_1_2_8_48_1
  doi: 10.23919/ACC.2004.1383919
– ident: e_1_2_8_7_1
  doi: 10.1137/0324047
– ident: e_1_2_8_34_1
  doi: 10.1002/rnc.4084
– ident: e_1_2_8_19_1
  doi: 10.1016/j.automatica.2019.05.018
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jfranklin.2019.02.015
– ident: e_1_2_8_44_1
  doi: 10.1109/TAC.2006.886534
– ident: e_1_2_8_10_1
  doi: 10.1109/TAC.2006.886515
– ident: e_1_2_8_26_1
  doi: 10.1002/rnc.4600
– volume-title: Nonlinear and Adaptive Control Design
  year: 1995
  ident: e_1_2_8_3_1
– ident: e_1_2_8_32_1
  doi: 10.1109/TCST.2017.2734050
– year: 2019
  ident: e_1_2_8_35_1
  article-title: Predefined‐time stabilisation of a class of nonholonomic systems
  publication-title: Int J Control
– ident: e_1_2_8_14_1
  doi: 10.1016/j.automatica.2014.10.082
– ident: e_1_2_8_5_1
  doi: 10.1007/978-1-4471-0549-7
– ident: e_1_2_8_23_1
  doi: 10.1002/rnc.3297
– ident: e_1_2_8_30_1
  doi: 10.1002/rnc.3757
– ident: e_1_2_8_41_1
  doi: 10.1109/TAC.2004.838476
SSID ssj0009913
Score 2.4897807
Snippet Summary The prescribed‐time output‐feedback stabilization (ie, regulation of the state and control input to zero within a “prescribed” time picked by the...
The prescribed‐time output‐feedback stabilization (ie, regulation of the state and control input to zero within a “prescribed” time picked by the control...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 184
SubjectTerms Adaptation
adaptive control
Adaptive systems
Control systems design
Control theory
Dependent variables
Design
Design standards
Feedback control
Mathematical analysis
Nonlinear systems
nonlinear uncertain systems
output‐feedback
Parameter uncertainty
prescribed time
Scaling
Stabilization
State estimation
State variable
System dynamics
Title Adaptive output‐feedback stabilization in prescribed time for nonlinear systems with unknown parameters coupled with unmeasured states
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3193
https://www.proquest.com/docview/2481364498
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlp_TQJmlKt3mgQGlPTtayZEnHZckSAskhDwjkYPSEkHSzxPalpx577G_sL8mMZWfT0kDpxT5YA7I0kj6NPn1DyCcRhS5DcBnTeYpWZdpLBw9XAiDOTRkwNHByWh5d8uMrcdWzKvEuTNKHeAq44cjo5msc4MbWB0vRUONq2HBqFPpEqhbiobOlchTAnu5wWWnYHRVMDrqzY3YwGP6-Ei3h5XOQ2q0ys7fkeqhfIpfc7reN3Xff_pBu_L8fWCNvevBJJ8lb1smrMN8gr59JEr4jPybeLHAKpPdts2ibX99_RljgrHG3FIAkUmnTxU16M6dIooVZxwZPMUc9BQBM56lq5oEmkeiaYqiXtnOM3oGJQTYYSnpSd98u7sC0__41RSs97e441ZvkcnZ4MT3K-mwNmQPIUGRCyqCi5jwoob2K4zJirsDItA28iEqCMxTOKyGD0LmV3kcujC1sLgvO4rh4T1agiuEDoSraIJzPlVSCu-gVwAxrSh0LbUTQbES-DD1XuV7KHDNq3FVJhJlV0LYVtu2I7D2VXCT5jr-U2R46v-oHcF0xrsCrONdqRD53vfiifTWZnuP7478W3CKrDJkxHfd7m6w0D23YAWjT2N3OiR8BPFv6Dg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOlFfFQgtGQnBKu7Hj2FZPq4pqgbYHaKUekKL4JaGW7aqbXDhx5Mhv5Jd0Jk66BYGEuCSHzEiOn58_j78BeCmjNGUILuMmT2xVZrxy-HAlAuK8LgNRAweH5fS4eHciT1ZgZ7gLk_Qhrgg3GhndfE0DnAjp7aVqaO0WuOM04gbcpITe3X7qw1I7CoFPd7ysDe6PBFeD8uyYbw-ev65FS4B5HaZ268zeGnwaSpjCS0632sZuua-_iTf-5y_cg7s9_mST1GHuw0qYPYA711QJH8L3ia_nNAuy87aZt83Pbz8irnG2dqcMsSRF06a7m-zzjFEcLU48NnhGaeoZYmA2S2WrL1jSiV4wYntZOyMCD11qCggjVU_mztv5Gbr2378kwtKz7prT4hEc77052p1mfcKGzCFqEJlUKuhoiiJoabyO4zJSusDIjQ2FiFphfxDOa6mCNLlV3sdC1lbYXImCx7FYh1UsYngMTEcbpPO5VloWLnqNSMPWpYnC1DIYPoLXQ9NVrlczp6QaZ1XSYeYV1m1FdTuCF1eW86Tg8QebjaH1q34MLype6FwgXDR6BK-6ZvyrfzXZ_UjvJ_9q-BxuTY8O9qv9t4fvn8JtToEyXSj4Bqw2F23YRKTT2Gddj74Eww_-KQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgO5VmxpYCREJzSbvyI7eOqZVVeFQIqVeIQ-Smhlm3UTS6cOHLkN_JLmImTbkEgIS7JIR7Jscf25_Hnbwh5IpM0VYy-YKbM0arCBOXh4SsAxKWtIoYG3hxU-4fi5ZE8GliVeBcm60OcB9xwZPTzNQ7wJqSdlWio9UvYcBp-mVwR1VSjR--9W0lHAe7pT5e1ge0RZ2oUnp2yndHy16VohS8votR-mZnfIB_HCmZ2yfF217pt_-U37cb_-4ObZH1An3SW3eUWuRQXt8n1C5qEd8i3WbANzoH0tGubrv3x9XuCFc5Zf0wBSSKXNt_cpJ8WFFm0MO24GCgmqaeAgOkiV82e0awSvaQY66XdAsN3YGKRDoaantSfds0JmA7fP-dwZaD9JaflXXI4f_5hd78Y0jUUHjADL6RSUScjRNTSBJ2mVcJkgYkZFwVPWoE3cB-0VFGa0qkQkpDWcVcqLlia8g2yBlWM9wjVyUXpQ6mVlsKnoAFnOFuZxI2V0bAJeTb2XO0HLXNMqXFSZxVmVkPb1ti2E_L4vGST9Tv-UGZr7Px6GMHLmgldcgCLRk_I074X_2pfz3bf43vzXws-Ilff7s3r1y8OXt0n1xiyZHoe-BZZa8-6-ABgTuse9v78E_e9_OE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+output%E2%80%90feedback+stabilization+in+prescribed+time+for+nonlinear+systems+with+unknown+parameters+coupled+with+unmeasured+states&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Krishnamurthy%2C+Prashanth&rft.au=Khorrami%2C+Farshad&rft.au=Krstic%2C+Miroslav&rft.date=2021-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=35&rft.issue=2&rft.spage=184&rft.epage=202&rft_id=info:doi/10.1002%2Facs.3193&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon