3D facial attractiveness prediction based on deep feature fusion
Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of interdisciplinary research in psychology and sociology, but also provides fundamental technical support for applications like aesthetic medicine and social...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1546-4261 1546-427X |
DOI | 10.1002/cav.2203 |
Cover
Loading…
Abstract | Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of interdisciplinary research in psychology and sociology, but also provides fundamental technical support for applications like aesthetic medicine and social media. With the advances in 3D data acquisition and feature representation, this paper aims to investigate the facial attractiveness from deep learning and three‐dimensional perspectives. The 3D faces are first processed to unwrap the texture images and refine the raw meshes. The feature extraction networks for texture, point cloud, and mesh are then delicately designed, considering the characteristics of different types of data. A more discriminative face representation is derived by feature fusion for the final attractiveness prediction. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments are conducted on a 3D FAP benchmark, where the results demonstrate the significance of deep feature fusion and enhanced learning rate in cooperatively facilitating the performance. Specifically, the fusion of texture image and point cloud achieves the best overall prediction, with PC, MAE, and RMSE of 0.7908, 0.4153, and 0.5231, respectively.
In this paper, we propose a facial attractiveness prediction method from deep learning and three‐dimensional perspectives. The feature extraction networks for texture, point cloud, and mesh are delicately designed. A more discriminative face representation is derived by feature fusion. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments indicate that the improved learning rate and feature fusion cooperatively promote the prediction results. |
---|---|
AbstractList | Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of interdisciplinary research in psychology and sociology, but also provides fundamental technical support for applications like aesthetic medicine and social media. With the advances in 3D data acquisition and feature representation, this paper aims to investigate the facial attractiveness from deep learning and three‐dimensional perspectives. The 3D faces are first processed to unwrap the texture images and refine the raw meshes. The feature extraction networks for texture, point cloud, and mesh are then delicately designed, considering the characteristics of different types of data. A more discriminative face representation is derived by feature fusion for the final attractiveness prediction. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments are conducted on a 3D FAP benchmark, where the results demonstrate the significance of deep feature fusion and enhanced learning rate in cooperatively facilitating the performance. Specifically, the fusion of texture image and point cloud achieves the best overall prediction, with PC, MAE, and RMSE of 0.7908, 0.4153, and 0.5231, respectively. Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of interdisciplinary research in psychology and sociology, but also provides fundamental technical support for applications like aesthetic medicine and social media. With the advances in 3D data acquisition and feature representation, this paper aims to investigate the facial attractiveness from deep learning and three‐dimensional perspectives. The 3D faces are first processed to unwrap the texture images and refine the raw meshes. The feature extraction networks for texture, point cloud, and mesh are then delicately designed, considering the characteristics of different types of data. A more discriminative face representation is derived by feature fusion for the final attractiveness prediction. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments are conducted on a 3D FAP benchmark, where the results demonstrate the significance of deep feature fusion and enhanced learning rate in cooperatively facilitating the performance. Specifically, the fusion of texture image and point cloud achieves the best overall prediction, with PC, MAE, and RMSE of 0.7908, 0.4153, and 0.5231, respectively. In this paper, we propose a facial attractiveness prediction method from deep learning and three‐dimensional perspectives. The feature extraction networks for texture, point cloud, and mesh are delicately designed. A more discriminative face representation is derived by feature fusion. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments indicate that the improved learning rate and feature fusion cooperatively promote the prediction results. |
Author | Liu, Yu Huang, Enquan Zhou, Ziyu Liu, Shu Wang, Kexuan |
Author_xml | – sequence: 1 givenname: Yu surname: Liu fullname: Liu, Yu organization: National University of Defense Technology – sequence: 2 givenname: Enquan surname: Huang fullname: Huang, Enquan organization: Hunan Engineering Research Center of Machine Vision and Intelligent Medicine – sequence: 3 givenname: Ziyu surname: Zhou fullname: Zhou, Ziyu organization: Hunan Engineering Research Center of Machine Vision and Intelligent Medicine – sequence: 4 givenname: Kexuan surname: Wang fullname: Wang, Kexuan organization: Hunan Engineering Research Center of Machine Vision and Intelligent Medicine – sequence: 5 givenname: Shu orcidid: 0000-0003-0797-5807 surname: Liu fullname: Liu, Shu email: sliu35@csu.edu.cn organization: Hunan Engineering Research Center of Machine Vision and Intelligent Medicine |
BookMark | eNp1kE1Lw0AQhhepYFsFf0LAi5fU_chukpul1g8oeFHxtkw3s7AlJnE3qfTfu7XiQfQyH8wz8zLvhIyatkFCzhmdMUr5lYHtjHMqjsiYyUylGc9fRz-1YidkEsImkoozOibX4iaxYBzUCfS9B9O7LTYYQtJ5rFxs2yZZQ8AqiUWF2CUWoR88JnYIcXhKji3UAc--85Q83y6fFvfp6vHuYTFfpYaXQqSSlUpKWuYFU9wKURjFFQUseJWXOS8LlFDlhoFa80qJTBbKIoOiEDFmQMWUXBzudr59HzD0etMOvomSOgrQTKqc8kjNDpTxbQgerTauh_0T8TdXa0b13iUdXdJ7l-LC5a-Fzrs38Lu_0PSAfrgad_9yejF_-eI_AeSVddU |
CitedBy_id | crossref_primary_10_1038_s41598_025_86831_0 crossref_primary_10_1109_ACCESS_2024_3487414 |
Cites_doi | 10.1109/CVPR.2009.5206848 10.1109/TBME.2012.2217496 10.1007/s11042-016-3830-3 10.1145/3436369.3436476 10.1145/258734.258849 10.1016/j.patcog.2013.09.007 10.1016/j.knosys.2022.108246 10.1109/ICCV.2017.99 10.1016/j.neucom.2017.01.050 10.1093/scan/nsx002 10.1037/aca0000454 10.1016/j.cag.2021.04.023 10.1145/2733373.2807966 10.1007/s00500-022-07324-0 10.1109/CVPR.2018.00474 10.1007/978-3-319-32598-9 10.1016/j.neucom.2015.11.010 10.1109/WACV.2017.58 10.1007/978-3-642-15567-3_32 10.1109/TCSVT.2016.2602812 10.1109/TAFFC.2019.2933523 10.1109/ICIT.2006.372409 10.1109/TVCG.2012.26 10.2224/sbp.2015.43.5.855 10.1609/aaai.v33i01.33018279 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2203 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2203 CAV2203 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of Central South University – fundername: Hunan Provincial Natural Science Foundation of China funderid: 2023JJ30700 – fundername: National Natural Science Foundation of China funderid: 62171451 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 1OB 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2933-5196550978162f338c6260ae82d797298e5ad7c1a6b2d634586fe1a883e1a4a03 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Tue Aug 12 12:50:59 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Jan 22 16:14:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2933-5196550978162f338c6260ae82d797298e5ad7c1a6b2d634586fe1a883e1a4a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0797-5807 |
PQID | 2930456702 |
PQPubID | 2034909 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2930456702 crossref_citationtrail_10_1002_cav_2203 crossref_primary_10_1002_cav_2203 wiley_primary_10_1002_cav_2203_CAV2203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January/February 2024 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January/February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010 2019; 33 2017; 27 2019; 32 2009 2016; 75 2008 1997 2014; 47 2006 2022; 26 2012; 18 2005 2012; 59 2017; 238 2022; 242 2021; 98 2022 2021 2001; 4 2020 2017; 12 2015; 43 2019 2022; 13 2016; 177 2018 2017 2016 2015 Xu J (e_1_2_9_17_1) 2017 e_1_2_9_31_1 Xu J (e_1_2_9_21_1) 2021 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Kagian A (e_1_2_9_13_1) 2006 Paszke A (e_1_2_9_42_1) 2019; 32 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 Lin L (e_1_2_9_18_1) 2019 e_1_2_9_19_1 Aarabi P (e_1_2_9_11_1) 2001 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 Singh VV (e_1_2_9_30_1) 2021 Li J (e_1_2_9_34_1) 2018 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 Qi CR (e_1_2_9_28_1) 2017 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Rothe R (e_1_2_9_10_1) 2016 Qi CR (e_1_2_9_27_1) 2017 Xie D (e_1_2_9_15_1) 2015 Cignoni P (e_1_2_9_39_1) 2008 e_1_2_9_9_1 e_1_2_9_26_1 Yin B (e_1_2_9_35_1) 2005 e_1_2_9_25_1 Weng N (e_1_2_9_43_1) 2021 e_1_2_9_29_1 Kingma DP (e_1_2_9_41_1) 2015 |
References_xml | – volume: 59 start-page: 3439 issue: 12 year: 2012 end-page: 3449 article-title: A new 3‐D tool for planning plastic surgery publication-title: IEEE Trans Biomed Eng – start-page: 4883 year: 2021 end-page: 4891 – start-page: 1821 year: 2015 end-page: 1826 – volume: 98 start-page: 11 year: 2021 end-page: 18 article-title: Beauty3DFaceNet: deep geometry and texture fusion for 3D facial attractiveness prediction publication-title: Comput Graph – year: 2005 – start-page: 434 year: 2010 end-page: 447 – start-page: 209 year: 1997 end-page: 216 – volume: 75 start-page: 16633 issue: 23 year: 2016 end-page: 16663 article-title: Advances in computational facial attractiveness methods publication-title: Multimed Tools Appl – volume: 238 start-page: 168 year: 2017 end-page: 178 article-title: A landmark‐based data‐driven approach on 2.5D facial attractiveness computation publication-title: Neurocomputing – start-page: 1154 year: 2006 end-page: 1159 – start-page: 248 year: 2009 end-page: 255 – start-page: 10026 year: 2021 end-page: 10033 – year: 2016 – volume: 13 start-page: 122 issue: 1 year: 2022 end-page: 134 article-title: Regression guided by relative ranking using convolutional neural network (R CNN) for facial beauty prediction publication-title: IEEE Trans Affect Comput – year: 2018 – volume: 43 start-page: 855 issue: 5 year: 2015 end-page: 866 article-title: Face attractiveness in building trust: Evidence from measurement of implicit and explicit responses publication-title: Soc Behav Pers – start-page: 30 year: 2017 article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space publication-title: Adv Neural Inf Proces Syst – volume: 32 year: 2019 article-title: PyTorch: an imperative style, high‐performance deep learning library publication-title: Adv Neural Inf Proces Syst – start-page: 44 year: 2021 end-page: 48 – volume: 27 start-page: 125 issue: 1 year: 2017 end-page: 138 article-title: Edge‐aware label propagation for mobile facial enhancement on the cloud publication-title: IEEE Trans Circuits Syst Video Technol – start-page: 847 year: 2019 end-page: 853 – start-page: 652 year: 2017 end-page: 660 – volume: 242 year: 2022 article-title: Deep learning based face beauty prediction via dynamic robust losses and ensemble regression publication-title: Knowl‐Based Syst – start-page: 9397 year: 2018 end-page: 9406 – year: 2022 – volume: 47 start-page: 1249 issue: 3 year: 2014 end-page: 1260 article-title: The cluster assessment of facial attractiveness using fuzzy neural network classifier based on 3D Moiré features publication-title: Pattern Recogn – volume: 177 start-page: 98 year: 2016 end-page: 109 article-title: Combining a causal effect criterion for evaluation of facial attractiveness models publication-title: Neurocomputing – start-page: 464 year: 2017 end-page: 472 – start-page: 793 year: 2015 end-page: 794 – start-page: 5553 year: 2016 end-page: 5561 – volume: 4 start-page: 2644 year: 2001 end-page: 2647 – volume: 26 start-page: 10401 issue: 19 year: 2022 end-page: 10407 article-title: Computation of facial attractiveness from 3D geometry publication-title: Soft Comput – start-page: 129 year: 2008 end-page: 136 – volume: 18 start-page: 1704 issue: 10 year: 2012 end-page: 1716 article-title: Enhancing the symmetry and proportion of 3D face geometry publication-title: IEEE Trans Vis Comput Graph – start-page: 4510 year: 2018 end-page: 4520 – start-page: 1657 year: 2017 end-page: 1661 – start-page: 213 year: 2020 end-page: 217 – volume: 12 start-page: 707 issue: 5 year: 2017 end-page: 717 article-title: The dorsomedial prefrontal cortex mediates the interaction between moral and aesthetic valuation: a TMS study on the beauty‐is‐good stereotype publication-title: Soc Cogn Affect Neurosci – volume: 33 start-page: 8279 year: 2019 end-page: 8286 – year: 2015 – start-page: 649 year: 2006 end-page: 656 – start-page: 863 year: 2017 end-page: 872 – ident: e_1_2_9_38_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_9_7_1 doi: 10.1109/TBME.2012.2217496 – volume: 32 year: 2019 ident: e_1_2_9_42_1 article-title: PyTorch: an imperative style, high‐performance deep learning library publication-title: Adv Neural Inf Proces Syst – ident: e_1_2_9_2_1 doi: 10.1007/s11042-016-3830-3 – ident: e_1_2_9_25_1 doi: 10.1145/3436369.3436476 – ident: e_1_2_9_40_1 doi: 10.1145/258734.258849 – start-page: 1821 volume-title: IEEE International Conference on Systems, Man, and Cybernetics. IEEE, New Jersey year: 2015 ident: e_1_2_9_15_1 – start-page: 44 volume-title: IEEE 2nd International Conference on Computing and Data Science. IEEE, New Jersey year: 2021 ident: e_1_2_9_21_1 – start-page: 9397 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, New Jersey year: 2018 ident: e_1_2_9_34_1 – ident: e_1_2_9_23_1 doi: 10.1016/j.patcog.2013.09.007 – ident: e_1_2_9_20_1 doi: 10.1016/j.knosys.2022.108246 – start-page: 652 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, New Jersey year: 2017 ident: e_1_2_9_27_1 – ident: e_1_2_9_33_1 doi: 10.1109/ICCV.2017.99 – ident: e_1_2_9_16_1 – ident: e_1_2_9_24_1 doi: 10.1016/j.neucom.2017.01.050 – start-page: 10026 volume-title: 25th International Conference on Pattern Recognition. IEEE, New Jersey year: 2021 ident: e_1_2_9_43_1 – ident: e_1_2_9_4_1 doi: 10.1093/scan/nsx002 – ident: e_1_2_9_5_1 doi: 10.1037/aca0000454 – start-page: 2644 volume-title: IEEE International Conference on Systems, Man, and Cybernetics year: 2001 ident: e_1_2_9_11_1 – ident: e_1_2_9_31_1 doi: 10.1016/j.cag.2021.04.023 – start-page: 649 volume-title: International Conference on Neural Information Processing Systems. MIT press, Cambridge year: 2006 ident: e_1_2_9_13_1 – ident: e_1_2_9_8_1 doi: 10.1145/2733373.2807966 – ident: e_1_2_9_26_1 doi: 10.1007/s00500-022-07324-0 – ident: e_1_2_9_37_1 doi: 10.1109/CVPR.2018.00474 – ident: e_1_2_9_3_1 doi: 10.1007/978-3-319-32598-9 – ident: e_1_2_9_12_1 doi: 10.1016/j.neucom.2015.11.010 – start-page: 30 year: 2017 ident: e_1_2_9_28_1 article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space publication-title: Adv Neural Inf Proces Syst – ident: e_1_2_9_32_1 doi: 10.1109/WACV.2017.58 – ident: e_1_2_9_14_1 doi: 10.1007/978-3-642-15567-3_32 – ident: e_1_2_9_9_1 doi: 10.1109/TCSVT.2016.2602812 – ident: e_1_2_9_19_1 doi: 10.1109/TAFFC.2019.2933523 – start-page: 129 volume-title: Eurographics Italian Chapter Conference. The Eurographics Association, Italy year: 2008 ident: e_1_2_9_39_1 – volume-title: The BJUT‐3D large‐scale Chinese face database year: 2005 ident: e_1_2_9_35_1 – volume-title: International Conference on Learning Representations. ArXiv, New York year: 2015 ident: e_1_2_9_41_1 – start-page: 1657 volume-title: IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, New Jersey year: 2017 ident: e_1_2_9_17_1 – start-page: 5553 volume-title: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, New Jersey year: 2016 ident: e_1_2_9_10_1 – ident: e_1_2_9_36_1 doi: 10.1109/ICIT.2006.372409 – start-page: 847 volume-title: International Joint Conference on Artificial Intelligence. AAAI, Menlo Park year: 2019 ident: e_1_2_9_18_1 – ident: e_1_2_9_22_1 doi: 10.1109/TVCG.2012.26 – start-page: 4883 volume-title: MeshNet++: a network with a face year: 2021 ident: e_1_2_9_30_1 – ident: e_1_2_9_6_1 doi: 10.2224/sbp.2015.43.5.855 – ident: e_1_2_9_29_1 doi: 10.1609/aaai.v33i01.33018279 |
SSID | ssj0026210 |
Score | 2.3469472 |
Snippet | Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3D face Cloud computing Computer vision cyclical learning rate Data acquisition deep feature learning Deep learning facial attractiveness prediction Feature extraction feature fusion Interdisciplinary studies Representations Sociology Technical services Texture |
Title | 3D facial attractiveness prediction based on deep feature fusion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2203 https://www.proquest.com/docview/2930456702 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_iSQ9-i9MpEURP3dp8tb05pmMIehA3Bh5KkqYgyhxr68G_3rym3VQUxEtbSlKal4_3ey_v_YLQmU458VWsPcoM9VishRcpZa3WWKREKSajAJKTb-_EcMRuJnxSR1VCLozjh1g43GBmVOs1THCp8u6SNFTLtw4hFdEnhGoBHrpfMEcRQRwRAWfCAyuh4Z31Sbep-FUTLeHlZ5BaaZnBJnps_s8Flzx3ykJ19Ps36sb_NWALbdTgE_fcaNlGK2a6g9bHT3np3ua76JJe4UyCHx3LoqhSqNxyiGdz2NOBfsSg-lJsH1JjZjgzFTkozkrwvO2h0eD6oT_06lMWPG1VPfU4cApySOcIBMmsxarBxpEmImkYW-gdGS7TUAdSKJIKyngkMhPIKKL2yqRP99Hq9HVqDhBWsFcf8jQiKmD2U7GtITWhOtOSK5610EUj8UTXFORwEsZL4siTSWJlkoBMWuh0UXLmaDd-KNNuOi2pJ16e2CYBSA190kLnlfR_rZ_0e2O4H_614BFaIxbSOAdMG60W89IcW0hSqJNq8H0AEhvbWg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MeVAPfovzM4LoqduaNlmLF2VTpm47yDZ2EEqSpiDKHFvnwb_evGadHyiIl7aUpCQvH-_3Xvp-D-BExYxWZagcz9ee44eKO4GUxmoNeUyl9EXgYnByu8ObPf92wAYFOM9jYSw_xNzhhisj269xgaNDuvLBGqrEa5lSZPpcwITemL6gcT_njqKcWioC5nMH7YScebZKK3nNr7roA2B-hqmZnrlehYe8hfb3kqfyNJVl9faNvPGfXViDlRn-JJd2wqxDQQ83YLn_OJnat5NNuPAaJBHoSiciTbMoKrsjktEYj3VwKAlqv5iYh1jrEUl0xg9Kkik637agd33VrTedWaIFRxlt7zkMaQUZRnS4nCbGaFVo5ggd0LgWGvQdaCbimnIFlzTmns8CnmhXBIFnrr6oettQHL4M9Q4Qicf1NRYHVLq--VRoaghFPZUowSRLSnCWizxSMxZyTIbxHFn-ZBoZmUQokxIcz0uOLPPGD2X281GLZmtvEpkuIU6tVWkJTjPx_1o_ql_28b7714JHsNjstltR66ZztwdL1CAc64_Zh2I6nuoDg1BSeZjNxHfQ9990 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iIPrgtzidGkH0qbNNk6x9c2yO-TVEnAg-lHwVRJlj63zwrzfXtJuKgvjSlpKU5pLL_e6S-wWhQ6UZ8WWsvJCa0KOx4l4kpfVaY66JlFREASQnX3d5p0cvHthDsasScmEcP8Qk4Aaakc_XoOADnZ5MSUOVeKsRAkSfc5RbXQFAdDuhjiKcOCYCRrkHbkJJPOuTk7LmV1M0xZefUWpuZtrL6LH8Qbe75Lk2zmRNvX_jbvxfC1bQUoE-ccMNl1U0Y_praPH-aTR2b0fr6DRs4VRAIB2LLMtzqNx8iAdDWNSBjsRg-zS2D9qYAU5Nzg6K0zGE3jZQr3121-x4xTELnrK2PvQYkAoyyOcIOEmty6rAyREmIroeW-wdGSZ0XQWCS6J5SFnEUxOIKArtlQo_3ESz_de-2UJYwmJ9nemIyIDaT8W2hlAkVKkSTLK0go5LiSeq4CCHozBeEseeTBIrkwRkUkEHk5IDx7vxQ5lq2WlJoXmjxDYJUGrdJxV0lEv_1_pJs3EP9-2_FtxH8zetdnJ13r3cQQvEwhsXjKmi2Ww4NrsWnmRyLx-HH2YN3iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+facial+attractiveness+prediction+based+on+deep+feature+fusion&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Liu%2C+Yu&rft.au=Huang%2C+Enquan&rft.au=Zhou%2C+Ziyu&rft.au=Wang%2C+Kexuan&rft.date=2024-01-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Fcav.2203&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |