3D facial attractiveness prediction based on deep feature fusion

Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of interdisciplinary research in psychology and sociology, but also provides fundamental technical support for applications like aesthetic medicine and social...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 1
Main Authors Liu, Yu, Huang, Enquan, Zhou, Ziyu, Wang, Kexuan, Liu, Shu
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text
ISSN1546-4261
1546-427X
DOI10.1002/cav.2203

Cover

Loading…
Abstract Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of interdisciplinary research in psychology and sociology, but also provides fundamental technical support for applications like aesthetic medicine and social media. With the advances in 3D data acquisition and feature representation, this paper aims to investigate the facial attractiveness from deep learning and three‐dimensional perspectives. The 3D faces are first processed to unwrap the texture images and refine the raw meshes. The feature extraction networks for texture, point cloud, and mesh are then delicately designed, considering the characteristics of different types of data. A more discriminative face representation is derived by feature fusion for the final attractiveness prediction. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments are conducted on a 3D FAP benchmark, where the results demonstrate the significance of deep feature fusion and enhanced learning rate in cooperatively facilitating the performance. Specifically, the fusion of texture image and point cloud achieves the best overall prediction, with PC, MAE, and RMSE of 0.7908, 0.4153, and 0.5231, respectively. In this paper, we propose a facial attractiveness prediction method from deep learning and three‐dimensional perspectives. The feature extraction networks for texture, point cloud, and mesh are delicately designed. A more discriminative face representation is derived by feature fusion. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments indicate that the improved learning rate and feature fusion cooperatively promote the prediction results.
AbstractList Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of interdisciplinary research in psychology and sociology, but also provides fundamental technical support for applications like aesthetic medicine and social media. With the advances in 3D data acquisition and feature representation, this paper aims to investigate the facial attractiveness from deep learning and three‐dimensional perspectives. The 3D faces are first processed to unwrap the texture images and refine the raw meshes. The feature extraction networks for texture, point cloud, and mesh are then delicately designed, considering the characteristics of different types of data. A more discriminative face representation is derived by feature fusion for the final attractiveness prediction. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments are conducted on a 3D FAP benchmark, where the results demonstrate the significance of deep feature fusion and enhanced learning rate in cooperatively facilitating the performance. Specifically, the fusion of texture image and point cloud achieves the best overall prediction, with PC, MAE, and RMSE of 0.7908, 0.4153, and 0.5231, respectively.
Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of interdisciplinary research in psychology and sociology, but also provides fundamental technical support for applications like aesthetic medicine and social media. With the advances in 3D data acquisition and feature representation, this paper aims to investigate the facial attractiveness from deep learning and three‐dimensional perspectives. The 3D faces are first processed to unwrap the texture images and refine the raw meshes. The feature extraction networks for texture, point cloud, and mesh are then delicately designed, considering the characteristics of different types of data. A more discriminative face representation is derived by feature fusion for the final attractiveness prediction. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments are conducted on a 3D FAP benchmark, where the results demonstrate the significance of deep feature fusion and enhanced learning rate in cooperatively facilitating the performance. Specifically, the fusion of texture image and point cloud achieves the best overall prediction, with PC, MAE, and RMSE of 0.7908, 0.4153, and 0.5231, respectively. In this paper, we propose a facial attractiveness prediction method from deep learning and three‐dimensional perspectives. The feature extraction networks for texture, point cloud, and mesh are delicately designed. A more discriminative face representation is derived by feature fusion. During network training, the cyclical learning rate with an improved range test is introduced, so as to alleviate the difficulty in hyperparameter setting. Extensive experiments indicate that the improved learning rate and feature fusion cooperatively promote the prediction results.
Author Liu, Yu
Huang, Enquan
Zhou, Ziyu
Liu, Shu
Wang, Kexuan
Author_xml – sequence: 1
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: National University of Defense Technology
– sequence: 2
  givenname: Enquan
  surname: Huang
  fullname: Huang, Enquan
  organization: Hunan Engineering Research Center of Machine Vision and Intelligent Medicine
– sequence: 3
  givenname: Ziyu
  surname: Zhou
  fullname: Zhou, Ziyu
  organization: Hunan Engineering Research Center of Machine Vision and Intelligent Medicine
– sequence: 4
  givenname: Kexuan
  surname: Wang
  fullname: Wang, Kexuan
  organization: Hunan Engineering Research Center of Machine Vision and Intelligent Medicine
– sequence: 5
  givenname: Shu
  orcidid: 0000-0003-0797-5807
  surname: Liu
  fullname: Liu, Shu
  email: sliu35@csu.edu.cn
  organization: Hunan Engineering Research Center of Machine Vision and Intelligent Medicine
BookMark eNp1kE1Lw0AQhhepYFsFf0LAi5fU_chukpul1g8oeFHxtkw3s7AlJnE3qfTfu7XiQfQyH8wz8zLvhIyatkFCzhmdMUr5lYHtjHMqjsiYyUylGc9fRz-1YidkEsImkoozOibX4iaxYBzUCfS9B9O7LTYYQtJ5rFxs2yZZQ8AqiUWF2CUWoR88JnYIcXhKji3UAc--85Q83y6fFvfp6vHuYTFfpYaXQqSSlUpKWuYFU9wKURjFFQUseJWXOS8LlFDlhoFa80qJTBbKIoOiEDFmQMWUXBzudr59HzD0etMOvomSOgrQTKqc8kjNDpTxbQgerTauh_0T8TdXa0b13iUdXdJ7l-LC5a-Fzrs38Lu_0PSAfrgad_9yejF_-eI_AeSVddU
CitedBy_id crossref_primary_10_1038_s41598_025_86831_0
crossref_primary_10_1109_ACCESS_2024_3487414
Cites_doi 10.1109/CVPR.2009.5206848
10.1109/TBME.2012.2217496
10.1007/s11042-016-3830-3
10.1145/3436369.3436476
10.1145/258734.258849
10.1016/j.patcog.2013.09.007
10.1016/j.knosys.2022.108246
10.1109/ICCV.2017.99
10.1016/j.neucom.2017.01.050
10.1093/scan/nsx002
10.1037/aca0000454
10.1016/j.cag.2021.04.023
10.1145/2733373.2807966
10.1007/s00500-022-07324-0
10.1109/CVPR.2018.00474
10.1007/978-3-319-32598-9
10.1016/j.neucom.2015.11.010
10.1109/WACV.2017.58
10.1007/978-3-642-15567-3_32
10.1109/TCSVT.2016.2602812
10.1109/TAFFC.2019.2933523
10.1109/ICIT.2006.372409
10.1109/TVCG.2012.26
10.2224/sbp.2015.43.5.855
10.1609/aaai.v33i01.33018279
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2203
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2203
CAV2203
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of Central South University
– fundername: Hunan Provincial Natural Science Foundation of China
  funderid: 2023JJ30700
– fundername: National Natural Science Foundation of China
  funderid: 62171451
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2933-5196550978162f338c6260ae82d797298e5ad7c1a6b2d634586fe1a883e1a4a03
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Tue Aug 12 12:50:59 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Jan 22 16:14:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-5196550978162f338c6260ae82d797298e5ad7c1a6b2d634586fe1a883e1a4a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0797-5807
PQID 2930456702
PQPubID 2034909
PageCount 16
ParticipantIDs proquest_journals_2930456702
crossref_citationtrail_10_1002_cav_2203
crossref_primary_10_1002_cav_2203
wiley_primary_10_1002_cav_2203_CAV2203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January/February 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010
2019; 33
2017; 27
2019; 32
2009
2016; 75
2008
1997
2014; 47
2006
2022; 26
2012; 18
2005
2012; 59
2017; 238
2022; 242
2021; 98
2022
2021
2001; 4
2020
2017; 12
2015; 43
2019
2022; 13
2016; 177
2018
2017
2016
2015
Xu J (e_1_2_9_17_1) 2017
e_1_2_9_31_1
Xu J (e_1_2_9_21_1) 2021
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Kagian A (e_1_2_9_13_1) 2006
Paszke A (e_1_2_9_42_1) 2019; 32
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
Lin L (e_1_2_9_18_1) 2019
e_1_2_9_19_1
Aarabi P (e_1_2_9_11_1) 2001
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
Singh VV (e_1_2_9_30_1) 2021
Li J (e_1_2_9_34_1) 2018
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Qi CR (e_1_2_9_28_1) 2017
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Rothe R (e_1_2_9_10_1) 2016
Qi CR (e_1_2_9_27_1) 2017
Xie D (e_1_2_9_15_1) 2015
Cignoni P (e_1_2_9_39_1) 2008
e_1_2_9_9_1
e_1_2_9_26_1
Yin B (e_1_2_9_35_1) 2005
e_1_2_9_25_1
Weng N (e_1_2_9_43_1) 2021
e_1_2_9_29_1
Kingma DP (e_1_2_9_41_1) 2015
References_xml – volume: 59
  start-page: 3439
  issue: 12
  year: 2012
  end-page: 3449
  article-title: A new 3‐D tool for planning plastic surgery
  publication-title: IEEE Trans Biomed Eng
– start-page: 4883
  year: 2021
  end-page: 4891
– start-page: 1821
  year: 2015
  end-page: 1826
– volume: 98
  start-page: 11
  year: 2021
  end-page: 18
  article-title: Beauty3DFaceNet: deep geometry and texture fusion for 3D facial attractiveness prediction
  publication-title: Comput Graph
– year: 2005
– start-page: 434
  year: 2010
  end-page: 447
– start-page: 209
  year: 1997
  end-page: 216
– volume: 75
  start-page: 16633
  issue: 23
  year: 2016
  end-page: 16663
  article-title: Advances in computational facial attractiveness methods
  publication-title: Multimed Tools Appl
– volume: 238
  start-page: 168
  year: 2017
  end-page: 178
  article-title: A landmark‐based data‐driven approach on 2.5D facial attractiveness computation
  publication-title: Neurocomputing
– start-page: 1154
  year: 2006
  end-page: 1159
– start-page: 248
  year: 2009
  end-page: 255
– start-page: 10026
  year: 2021
  end-page: 10033
– year: 2016
– volume: 13
  start-page: 122
  issue: 1
  year: 2022
  end-page: 134
  article-title: Regression guided by relative ranking using convolutional neural network (R CNN) for facial beauty prediction
  publication-title: IEEE Trans Affect Comput
– year: 2018
– volume: 43
  start-page: 855
  issue: 5
  year: 2015
  end-page: 866
  article-title: Face attractiveness in building trust: Evidence from measurement of implicit and explicit responses
  publication-title: Soc Behav Pers
– start-page: 30
  year: 2017
  article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space
  publication-title: Adv Neural Inf Proces Syst
– volume: 32
  year: 2019
  article-title: PyTorch: an imperative style, high‐performance deep learning library
  publication-title: Adv Neural Inf Proces Syst
– start-page: 44
  year: 2021
  end-page: 48
– volume: 27
  start-page: 125
  issue: 1
  year: 2017
  end-page: 138
  article-title: Edge‐aware label propagation for mobile facial enhancement on the cloud
  publication-title: IEEE Trans Circuits Syst Video Technol
– start-page: 847
  year: 2019
  end-page: 853
– start-page: 652
  year: 2017
  end-page: 660
– volume: 242
  year: 2022
  article-title: Deep learning based face beauty prediction via dynamic robust losses and ensemble regression
  publication-title: Knowl‐Based Syst
– start-page: 9397
  year: 2018
  end-page: 9406
– year: 2022
– volume: 47
  start-page: 1249
  issue: 3
  year: 2014
  end-page: 1260
  article-title: The cluster assessment of facial attractiveness using fuzzy neural network classifier based on 3D Moiré features
  publication-title: Pattern Recogn
– volume: 177
  start-page: 98
  year: 2016
  end-page: 109
  article-title: Combining a causal effect criterion for evaluation of facial attractiveness models
  publication-title: Neurocomputing
– start-page: 464
  year: 2017
  end-page: 472
– start-page: 793
  year: 2015
  end-page: 794
– start-page: 5553
  year: 2016
  end-page: 5561
– volume: 4
  start-page: 2644
  year: 2001
  end-page: 2647
– volume: 26
  start-page: 10401
  issue: 19
  year: 2022
  end-page: 10407
  article-title: Computation of facial attractiveness from 3D geometry
  publication-title: Soft Comput
– start-page: 129
  year: 2008
  end-page: 136
– volume: 18
  start-page: 1704
  issue: 10
  year: 2012
  end-page: 1716
  article-title: Enhancing the symmetry and proportion of 3D face geometry
  publication-title: IEEE Trans Vis Comput Graph
– start-page: 4510
  year: 2018
  end-page: 4520
– start-page: 1657
  year: 2017
  end-page: 1661
– start-page: 213
  year: 2020
  end-page: 217
– volume: 12
  start-page: 707
  issue: 5
  year: 2017
  end-page: 717
  article-title: The dorsomedial prefrontal cortex mediates the interaction between moral and aesthetic valuation: a TMS study on the beauty‐is‐good stereotype
  publication-title: Soc Cogn Affect Neurosci
– volume: 33
  start-page: 8279
  year: 2019
  end-page: 8286
– year: 2015
– start-page: 649
  year: 2006
  end-page: 656
– start-page: 863
  year: 2017
  end-page: 872
– ident: e_1_2_9_38_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_9_7_1
  doi: 10.1109/TBME.2012.2217496
– volume: 32
  year: 2019
  ident: e_1_2_9_42_1
  article-title: PyTorch: an imperative style, high‐performance deep learning library
  publication-title: Adv Neural Inf Proces Syst
– ident: e_1_2_9_2_1
  doi: 10.1007/s11042-016-3830-3
– ident: e_1_2_9_25_1
  doi: 10.1145/3436369.3436476
– ident: e_1_2_9_40_1
  doi: 10.1145/258734.258849
– start-page: 1821
  volume-title: IEEE International Conference on Systems, Man, and Cybernetics. IEEE, New Jersey
  year: 2015
  ident: e_1_2_9_15_1
– start-page: 44
  volume-title: IEEE 2nd International Conference on Computing and Data Science. IEEE, New Jersey
  year: 2021
  ident: e_1_2_9_21_1
– start-page: 9397
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, New Jersey
  year: 2018
  ident: e_1_2_9_34_1
– ident: e_1_2_9_23_1
  doi: 10.1016/j.patcog.2013.09.007
– ident: e_1_2_9_20_1
  doi: 10.1016/j.knosys.2022.108246
– start-page: 652
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, New Jersey
  year: 2017
  ident: e_1_2_9_27_1
– ident: e_1_2_9_33_1
  doi: 10.1109/ICCV.2017.99
– ident: e_1_2_9_16_1
– ident: e_1_2_9_24_1
  doi: 10.1016/j.neucom.2017.01.050
– start-page: 10026
  volume-title: 25th International Conference on Pattern Recognition. IEEE, New Jersey
  year: 2021
  ident: e_1_2_9_43_1
– ident: e_1_2_9_4_1
  doi: 10.1093/scan/nsx002
– ident: e_1_2_9_5_1
  doi: 10.1037/aca0000454
– start-page: 2644
  volume-title: IEEE International Conference on Systems, Man, and Cybernetics
  year: 2001
  ident: e_1_2_9_11_1
– ident: e_1_2_9_31_1
  doi: 10.1016/j.cag.2021.04.023
– start-page: 649
  volume-title: International Conference on Neural Information Processing Systems. MIT press, Cambridge
  year: 2006
  ident: e_1_2_9_13_1
– ident: e_1_2_9_8_1
  doi: 10.1145/2733373.2807966
– ident: e_1_2_9_26_1
  doi: 10.1007/s00500-022-07324-0
– ident: e_1_2_9_37_1
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_2_9_3_1
  doi: 10.1007/978-3-319-32598-9
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neucom.2015.11.010
– start-page: 30
  year: 2017
  ident: e_1_2_9_28_1
  article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space
  publication-title: Adv Neural Inf Proces Syst
– ident: e_1_2_9_32_1
  doi: 10.1109/WACV.2017.58
– ident: e_1_2_9_14_1
  doi: 10.1007/978-3-642-15567-3_32
– ident: e_1_2_9_9_1
  doi: 10.1109/TCSVT.2016.2602812
– ident: e_1_2_9_19_1
  doi: 10.1109/TAFFC.2019.2933523
– start-page: 129
  volume-title: Eurographics Italian Chapter Conference. The Eurographics Association, Italy
  year: 2008
  ident: e_1_2_9_39_1
– volume-title: The BJUT‐3D large‐scale Chinese face database
  year: 2005
  ident: e_1_2_9_35_1
– volume-title: International Conference on Learning Representations. ArXiv, New York
  year: 2015
  ident: e_1_2_9_41_1
– start-page: 1657
  volume-title: IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, New Jersey
  year: 2017
  ident: e_1_2_9_17_1
– start-page: 5553
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, New Jersey
  year: 2016
  ident: e_1_2_9_10_1
– ident: e_1_2_9_36_1
  doi: 10.1109/ICIT.2006.372409
– start-page: 847
  volume-title: International Joint Conference on Artificial Intelligence. AAAI, Menlo Park
  year: 2019
  ident: e_1_2_9_18_1
– ident: e_1_2_9_22_1
  doi: 10.1109/TVCG.2012.26
– start-page: 4883
  volume-title: MeshNet++: a network with a face
  year: 2021
  ident: e_1_2_9_30_1
– ident: e_1_2_9_6_1
  doi: 10.2224/sbp.2015.43.5.855
– ident: e_1_2_9_29_1
  doi: 10.1609/aaai.v33i01.33018279
SSID ssj0026210
Score 2.3469472
Snippet Facial attractiveness prediction is an important research topic in the computer vision community. It not only contributes to the development of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D face
Cloud computing
Computer vision
cyclical learning rate
Data acquisition
deep feature learning
Deep learning
facial attractiveness prediction
Feature extraction
feature fusion
Interdisciplinary studies
Representations
Sociology
Technical services
Texture
Title 3D facial attractiveness prediction based on deep feature fusion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2203
https://www.proquest.com/docview/2930456702
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_iSQ9-i9MpEURP3dp8tb05pmMIehA3Bh5KkqYgyhxr68G_3rym3VQUxEtbSlKal4_3ey_v_YLQmU458VWsPcoM9VishRcpZa3WWKREKSajAJKTb-_EcMRuJnxSR1VCLozjh1g43GBmVOs1THCp8u6SNFTLtw4hFdEnhGoBHrpfMEcRQRwRAWfCAyuh4Z31Sbep-FUTLeHlZ5BaaZnBJnps_s8Flzx3ykJ19Ps36sb_NWALbdTgE_fcaNlGK2a6g9bHT3np3ua76JJe4UyCHx3LoqhSqNxyiGdz2NOBfsSg-lJsH1JjZjgzFTkozkrwvO2h0eD6oT_06lMWPG1VPfU4cApySOcIBMmsxarBxpEmImkYW-gdGS7TUAdSKJIKyngkMhPIKKL2yqRP99Hq9HVqDhBWsFcf8jQiKmD2U7GtITWhOtOSK5610EUj8UTXFORwEsZL4siTSWJlkoBMWuh0UXLmaDd-KNNuOi2pJ16e2CYBSA190kLnlfR_rZ_0e2O4H_614BFaIxbSOAdMG60W89IcW0hSqJNq8H0AEhvbWg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MeVAPfovzM4LoqduaNlmLF2VTpm47yDZ2EEqSpiDKHFvnwb_evGadHyiIl7aUpCQvH-_3Xvp-D-BExYxWZagcz9ee44eKO4GUxmoNeUyl9EXgYnByu8ObPf92wAYFOM9jYSw_xNzhhisj269xgaNDuvLBGqrEa5lSZPpcwITemL6gcT_njqKcWioC5nMH7YScebZKK3nNr7roA2B-hqmZnrlehYe8hfb3kqfyNJVl9faNvPGfXViDlRn-JJd2wqxDQQ83YLn_OJnat5NNuPAaJBHoSiciTbMoKrsjktEYj3VwKAlqv5iYh1jrEUl0xg9Kkik637agd33VrTedWaIFRxlt7zkMaQUZRnS4nCbGaFVo5ggd0LgWGvQdaCbimnIFlzTmns8CnmhXBIFnrr6oettQHL4M9Q4Qicf1NRYHVLq--VRoaghFPZUowSRLSnCWizxSMxZyTIbxHFn-ZBoZmUQokxIcz0uOLPPGD2X281GLZmtvEpkuIU6tVWkJTjPx_1o_ql_28b7714JHsNjstltR66ZztwdL1CAc64_Zh2I6nuoDg1BSeZjNxHfQ9990
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iIPrgtzidGkH0qbNNk6x9c2yO-TVEnAg-lHwVRJlj63zwrzfXtJuKgvjSlpKU5pLL_e6S-wWhQ6UZ8WWsvJCa0KOx4l4kpfVaY66JlFREASQnX3d5p0cvHthDsasScmEcP8Qk4Aaakc_XoOADnZ5MSUOVeKsRAkSfc5RbXQFAdDuhjiKcOCYCRrkHbkJJPOuTk7LmV1M0xZefUWpuZtrL6LH8Qbe75Lk2zmRNvX_jbvxfC1bQUoE-ccMNl1U0Y_praPH-aTR2b0fr6DRs4VRAIB2LLMtzqNx8iAdDWNSBjsRg-zS2D9qYAU5Nzg6K0zGE3jZQr3121-x4xTELnrK2PvQYkAoyyOcIOEmty6rAyREmIroeW-wdGSZ0XQWCS6J5SFnEUxOIKArtlQo_3ESz_de-2UJYwmJ9nemIyIDaT8W2hlAkVKkSTLK0go5LiSeq4CCHozBeEseeTBIrkwRkUkEHk5IDx7vxQ5lq2WlJoXmjxDYJUGrdJxV0lEv_1_pJs3EP9-2_FtxH8zetdnJ13r3cQQvEwhsXjKmi2Ww4NrsWnmRyLx-HH2YN3iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+facial+attractiveness+prediction+based+on+deep+feature+fusion&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Liu%2C+Yu&rft.au=Huang%2C+Enquan&rft.au=Zhou%2C+Ziyu&rft.au=Wang%2C+Kexuan&rft.date=2024-01-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Fcav.2203&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon