Bridge displacement estimation by fusing accelerometer and strain gauge measurements

Summary For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When displacement is calculated by the double integration of acceleration, a low‐frequency drift appears in the estimated displacement. Displac...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 28; no. 6
Main Authors Ma, Zhanxiong, Chung, Junyeon, Liu, Peipei, Sohn, Hoon
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.06.2021
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.2733

Cover

Abstract Summary For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When displacement is calculated by the double integration of acceleration, a low‐frequency drift appears in the estimated displacement. Displacement can also be estimated from strains based on the Euler–Bernoulli beam theory. However, prior knowledge of the mode shapes and the neutral axis location of the target bridge are required for strain–displacement transformation. In this study, we propose a finite impulse response filter‐based displacement estimation technique by fusing strain and acceleration measurements. First, the relationship between displacement and strain is established, and the parameter associated with this strain–displacement transformation is estimated from strain and acceleration measurements using a recursive least squares algorithm. Next, the low‐frequency displacement estimated from the strain measurements and the high‐frequency displacement obtained from an acceleration measurement are combined for high‐fidelity displacement estimation. The feasibility of the proposed technique was examined via a series of numerical simulations, a lab‐scale experiment, and a field test. The uniqueness of this study lies in the fact that the displacement and the unknown parameter in strain–displacement transformation are estimated simultaneously and the accuracy of displacement estimation is improved in comparison with those of previous data fusion techniques.
AbstractList Summary For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When displacement is calculated by the double integration of acceleration, a low‐frequency drift appears in the estimated displacement. Displacement can also be estimated from strains based on the Euler–Bernoulli beam theory. However, prior knowledge of the mode shapes and the neutral axis location of the target bridge are required for strain–displacement transformation. In this study, we propose a finite impulse response filter‐based displacement estimation technique by fusing strain and acceleration measurements. First, the relationship between displacement and strain is established, and the parameter associated with this strain–displacement transformation is estimated from strain and acceleration measurements using a recursive least squares algorithm. Next, the low‐frequency displacement estimated from the strain measurements and the high‐frequency displacement obtained from an acceleration measurement are combined for high‐fidelity displacement estimation. The feasibility of the proposed technique was examined via a series of numerical simulations, a lab‐scale experiment, and a field test. The uniqueness of this study lies in the fact that the displacement and the unknown parameter in strain–displacement transformation are estimated simultaneously and the accuracy of displacement estimation is improved in comparison with those of previous data fusion techniques.
For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When displacement is calculated by the double integration of acceleration, a low‐frequency drift appears in the estimated displacement. Displacement can also be estimated from strains based on the Euler–Bernoulli beam theory. However, prior knowledge of the mode shapes and the neutral axis location of the target bridge are required for strain–displacement transformation. In this study, we propose a finite impulse response filter‐based displacement estimation technique by fusing strain and acceleration measurements. First, the relationship between displacement and strain is established, and the parameter associated with this strain–displacement transformation is estimated from strain and acceleration measurements using a recursive least squares algorithm. Next, the low‐frequency displacement estimated from the strain measurements and the high‐frequency displacement obtained from an acceleration measurement are combined for high‐fidelity displacement estimation. The feasibility of the proposed technique was examined via a series of numerical simulations, a lab‐scale experiment, and a field test. The uniqueness of this study lies in the fact that the displacement and the unknown parameter in strain–displacement transformation are estimated simultaneously and the accuracy of displacement estimation is improved in comparison with those of previous data fusion techniques.
Author Ma, Zhanxiong
Sohn, Hoon
Chung, Junyeon
Liu, Peipei
Author_xml – sequence: 1
  givenname: Zhanxiong
  surname: Ma
  fullname: Ma, Zhanxiong
  organization: Korea Advanced Institute of Science and Technology
– sequence: 2
  givenname: Junyeon
  surname: Chung
  fullname: Chung, Junyeon
  organization: Korea Advanced Institute of Science and Technology
– sequence: 3
  givenname: Peipei
  surname: Liu
  fullname: Liu, Peipei
  organization: Korea Advanced Institute of Science and Technology
– sequence: 4
  givenname: Hoon
  orcidid: 0000-0001-9337-6653
  surname: Sohn
  fullname: Sohn, Hoon
  email: hoonsohn@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology
BookMark eNp1kE9LAzEQxYNUsK2CHyHgxcvWZNLsn6MWq0LBg_UcstnZkrKbrcku0m9v2ooH0dPM4ffezHsTMnKdQ0KuOZtxxuAu9GYGmRBnZMzlXCYAqRj97FJekEkI20imkMsxWT94W22QVjbsGm2wRddTDL1tdW87R8s9rYdg3YZqY7BB37XYo6faVTT0XltHN3qIBi3qMPijPlyS81o3Aa--55S8Lx_Xi-dk9fr0srhfJQYKIRKYoy5lCYxnmSh5jkKWWckK4FzULM-ZKWpeFsBkpVlcJUBW8BpSnoLJMi2m5Obku_PdxxC_Vttu8C6eVCCBA5tHr0jdnijjuxA81mrnYzy_V5ypQ2cqdqYOnUV09gs1tj8WcYja_CVIToJP2-D-X2P1tl4c-S9mRH5q
CitedBy_id crossref_primary_10_1142_S0219455423501894
crossref_primary_10_3390_app14188556
crossref_primary_10_1155_2023_7803876
crossref_primary_10_1007_s13349_024_00863_0
crossref_primary_10_3390_app13116393
crossref_primary_10_1016_j_ymssp_2022_109582
crossref_primary_10_1177_13694332241286537
crossref_primary_10_1016_j_ymssp_2023_110408
crossref_primary_10_3390_buildings13081975
crossref_primary_10_1155_2023_6247516
crossref_primary_10_1016_j_engstruct_2024_118926
crossref_primary_10_1109_LPT_2023_3251369
crossref_primary_10_1002_tal_2095
crossref_primary_10_1016_j_engstruct_2022_114323
crossref_primary_10_1155_2023_6631716
crossref_primary_10_1061_JENMDT_EMENG_6934
crossref_primary_10_3390_buildings13112709
crossref_primary_10_1016_j_ymssp_2024_111533
crossref_primary_10_3390_s24061839
crossref_primary_10_3390_buildings13071631
crossref_primary_10_1016_j_jobe_2022_104964
crossref_primary_10_3390_rs16132263
crossref_primary_10_1016_j_ymssp_2023_111056
crossref_primary_10_1038_s41598_022_24449_2
crossref_primary_10_1061__ASCE_BE_1943_5592_0001908
crossref_primary_10_1016_j_engstruct_2024_118630
crossref_primary_10_1109_JSEN_2023_3312443
crossref_primary_10_3390_app14062526
crossref_primary_10_1016_j_measurement_2023_112532
crossref_primary_10_30932_1992_3252_2023_21_4_2
crossref_primary_10_1111_mice_12767
crossref_primary_10_1016_j_engstruct_2023_116904
crossref_primary_10_1088_1742_6596_2131_3_032015
crossref_primary_10_1016_j_aei_2023_102269
crossref_primary_10_1016_j_autcon_2022_104338
crossref_primary_10_1016_j_engstruct_2023_116535
crossref_primary_10_1016_j_engstruct_2022_114693
crossref_primary_10_1016_j_sna_2025_116430
crossref_primary_10_1016_j_ymssp_2024_111866
crossref_primary_10_1016_j_measurement_2023_113492
crossref_primary_10_1016_j_measurement_2024_115194
crossref_primary_10_3390_rs16173323
Cites_doi 10.1002/stc.2044
10.1088/0964-1726/23/12/125045
10.1061/(ASCE)0733-9445(2000)126:12(1413)
10.12989/sss.2016.17.4.647
10.3133/ofr99545
10.1002/stc.1829
10.1080/15732470903068557
10.1007/s00707-017-1994-1
10.11648/j.ijtet.20170304.13
10.1061/(ASCE)BE.1943-5592.0000765
10.12989/sem.2012.42.2.229
10.1785/0120000703
10.1016/j.ndteint.2004.06.012
10.1109/TMECH.2013.2275187
10.1177/1475921710361326
10.1002/stc.2122
10.1002/stc.2209
10.1002/stc.360
10.1016/j.engstruct.2014.02.009
10.1016/j.engstruct.2015.09.002
10.1061/(ASCE)BE.1943-5592.0000726
10.1002/nme.2769
10.1007/s11340-013-9784-8
10.1016/j.ymssp.2013.09.014
10.1016/j.compstruct.2018.08.058
10.1002/stc.2119
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2733
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2733
STC2733
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  funderid: 2017R1A5A1014883
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
ABJCF
ADMLS
AEUYN
AFKRA
AGQPQ
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2933-24eab5b201773b18e35b7b092113f0880c9f1b9205da09f1522791f26162c77a3
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Sun Sep 07 00:10:36 EDT 2025
Tue Jul 01 04:05:45 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Wed Jan 22 16:29:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-24eab5b201773b18e35b7b092113f0880c9f1b9205da09f1522791f26162c77a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9337-6653
PQID 2521204921
PQPubID 2034347
PageCount 19
ParticipantIDs proquest_journals_2521204921
crossref_primary_10_1002_stc_2733
crossref_citationtrail_10_1002_stc_2733
wiley_primary_10_1002_stc_2733_STC2733
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2001; 91
2017; 3
2018; 229
2010; 17
2015; 103
2018; 206
2005
2016; 17
2014; 23
2014; 67
2018; 25
2014; 20
2010; 82
1999
2014; 42
2013; 18
2000; 126
2015; 20
2014
2005; 38
2010; 6
2012; 42
2016; 23
2014; 54
2010; 9
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
Haykin S (e_1_2_9_27_1) 2005
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – volume: 23
  start-page: 1088
  issue: 8
  year: 2016
  end-page: 1107
  article-title: Output‐only damage detection using vehicle‐induced displacement response and mode shape curvature index
  publication-title: Struct Control Health Monit
– year: 2005
– volume: 82
  start-page: 403
  issue: 4
  year: 2010
  end-page: 434
  article-title: Design of an FIR filter for the displacement reconstruction using measured acceleration in low‐frequency dominant structures
  publication-title: Int J Numer Methods Eng
– volume: 3
  start-page: 62
  issue: 4
  year: 2017
  end-page: 66
  article-title: Linear variable differential transducer (LVDT) & its applications in civil engineering
  publication-title: Int J Transp Eng Technol
– volume: 20
  issue: 12
  year: 2015
  article-title: Model updating of railway bridge using in situ dynamic displacement measurement under trainloads
  publication-title: J Bridge Eng
– volume: 17
  start-page: 918
  issue: 8
  year: 2010
  end-page: 936
  article-title: Cost‐effective vision‐based system for monitoring dynamic response of civil engineering structures
  publication-title: Struct Control Health Monit
– volume: 25
  issue: 1
  year: 2018
  article-title: Investigation on a curvature‐based damage detection method using displacement under moving vehicle
  publication-title: Struct Control Health Monit
– volume: 54
  start-page: 255
  issue: 2
  year: 2014
  end-page: 271
  article-title: Vibration monitoring of multiple bridge points by means of a unique vision‐based measuring system
  publication-title: Exp Mech
– volume: 18
  start-page: 1675
  issue: 6
  year: 2013
  end-page: 1682
  article-title: Displacement estimation using multimetric data fusion
  publication-title: IEEE/ASME Trans Mechatr
– volume: 103
  start-page: 116
  year: 2015
  end-page: 124
  article-title: Reference free method for real time monitoring of bridge deflections
  publication-title: Eng Struct
– volume: 6
  start-page: 521
  issue: 5
  year: 2010
  end-page: 534
  article-title: An interferometric radar for non‐contact measurement of deflections on civil engineering structures: laboratory and full‐scale tests
  publication-title: Struct Infrastruct Eng
– year: 2014
– volume: 17
  start-page: 647
  issue: 4
  year: 2016
  end-page: 667
  article-title: Dynamic displacement estimation by fusing biased high‐sampling rate acceleration and low‐sampling rate displacement measurements using two‐stage Kalman estimator
  publication-title: Smart Struct Syst
– volume: 25
  issue: 3
  year: 2018
  article-title: Visual–inertial displacement sensing using data fusion of vision‐based displacement with acceleration
  publication-title: Struct Control Health Monit
– volume: 206
  start-page: 517
  year: 2018
  end-page: 525
  article-title: Kalman Filter based Neutral Axis tracking for damage detection in composites structures under changing axial loading conditions
  publication-title: Compos Struct
– volume: 9
  start-page: 361
  issue: 4
  year: 2010
  end-page: 378
  article-title: An improved conjugated beam method for deformation monitoring with a distributed sensitive fiber optic sensor
  publication-title: Struct Health Monit
– volume: 229
  start-page: 707
  issue: 2
  year: 2018
  end-page: 717
  article-title: Validation range for KF data fusion devices
  publication-title: Acta Mech
– volume: 42
  start-page: 229
  issue: 2
  year: 2012
  end-page: 245
  article-title: Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes
  publication-title: Struct Enga Mech
– volume: 126
  start-page: 1413
  issue: 12
  year: 2000
  end-page: 1419
  article-title: GPS measurement of wind‐induced suspension bridge girder displacements
  publication-title: J Struct Eng
– volume: 25
  issue: 3
  year: 2018
  article-title: Deflection distribution estimation of tied‐arch bridges using long‐gauge strain measurements
  publication-title: Struct Control Health Monit
– volume: 42
  start-page: 194
  issue: 1
  year: 2014
  end-page: 205
  article-title: Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements
  publication-title: Mech Syst Signal Process
– volume: 20
  issue: 10
  year: 2014
  article-title: Dynamic assessment of timber railroad bridges using displacements
  publication-title: J Bridge Eng
– volume: 23
  issue: 12
  year: 2014
  article-title: Strain modes based dynamic displacement estimation of beam structures with strain sensors
  publication-title: Smart Mater Struct
– volume: 25
  issue: 8
  year: 2018
  article-title: Reference‐free structural dynamic displacement estimation method
  publication-title: Struct Control Health Monit
– volume: 38
  start-page: 213
  issue: 3
  year: 2005
  end-page: 218
  article-title: Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration
  publication-title: Ndt & E International
– volume: 91
  start-page: 1199
  issue: 5
  year: 2001
  end-page: 1211
  article-title: Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi‐Chi, Taiwan, earthquake
  publication-title: Bull Seismol Soc Am
– volume: 67
  start-page: 29
  year: 2014
  end-page: 38
  article-title: Deformation monitoring of a super‐tall structure using real‐time strain data
  publication-title: Eng Struct
– year: 1999
– ident: e_1_2_9_4_1
  doi: 10.1002/stc.2044
– ident: e_1_2_9_17_1
  doi: 10.1088/0964-1726/23/12/125045
– ident: e_1_2_9_9_1
  doi: 10.1061/(ASCE)0733-9445(2000)126:12(1413)
– ident: e_1_2_9_22_1
  doi: 10.12989/sss.2016.17.4.647
– ident: e_1_2_9_14_1
  doi: 10.3133/ofr99545
– ident: e_1_2_9_2_1
  doi: 10.1002/stc.1829
– ident: e_1_2_9_8_1
  doi: 10.1080/15732470903068557
– ident: e_1_2_9_23_1
  doi: 10.1007/s00707-017-1994-1
– ident: e_1_2_9_6_1
  doi: 10.11648/j.ijtet.20170304.13
– ident: e_1_2_9_3_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000765
– ident: e_1_2_9_16_1
  doi: 10.12989/sem.2012.42.2.229
– ident: e_1_2_9_15_1
  doi: 10.1785/0120000703
– ident: e_1_2_9_7_1
  doi: 10.1016/j.ndteint.2004.06.012
– ident: e_1_2_9_26_1
  doi: 10.1109/TMECH.2013.2275187
– ident: e_1_2_9_19_1
  doi: 10.1177/1475921710361326
– ident: e_1_2_9_25_1
  doi: 10.1002/stc.2122
– ident: e_1_2_9_13_1
  doi: 10.1002/stc.2209
– ident: e_1_2_9_11_1
  doi: 10.1002/stc.360
– ident: e_1_2_9_18_1
  doi: 10.1016/j.engstruct.2014.02.009
– ident: e_1_2_9_21_1
  doi: 10.1016/j.engstruct.2015.09.002
– volume-title: Adaptive Filter Theory
  year: 2005
  ident: e_1_2_9_27_1
– ident: e_1_2_9_30_1
– ident: e_1_2_9_5_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000726
– ident: e_1_2_9_12_1
  doi: 10.1002/nme.2769
– ident: e_1_2_9_10_1
  doi: 10.1007/s11340-013-9784-8
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ymssp.2013.09.014
– ident: e_1_2_9_28_1
  doi: 10.1016/j.compstruct.2018.08.058
– ident: e_1_2_9_29_1
– ident: e_1_2_9_20_1
  doi: 10.1002/stc.2119
SSID ssj0026285
Score 2.4514189
Snippet Summary For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement....
For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acceleration measurement
accelerometer
Accelerometers
Algorithms
Beam theory (structures)
data fusion
Data integration
displacement estimation
Displacement measurement
Euler-Bernoulli beams
Field tests
finite impulse response filter
FIR filters
Frequency drift
Parameter estimation
strain gauge
Strain gauges
Transformations
Title Bridge displacement estimation by fusing accelerometer and strain gauge measurements
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2733
https://www.proquest.com/docview/2521204921
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCD7KQHv8XplAiip25N0vTjqNMxBD3oBgMPJUmTIWoVux30rzcvbbcpCuKpPSSlzUvyPvreLwgdQ8xYc8a9hFoxBIpknjQk9iIeEGOY0LH7FXN9E_aHwdWIj6qsSqiFKfkQs4AbrAy3X8MCF7LozKGhBRAIIwagT8JCwOZf3M7IURQqAx0qNeCenbK85s76tFN3_KqJ5ublopHqtExvDd3X71cmlzy2pxPZVh_f0I3_-4B1tFoZn_isnC0baEnnm2hlAUm4hQbnroILZw-FS9eC4CEGEkdZ4ojlOzaQKz_GQimrsoB2YEWDRZ7hwp03gcdiah_wPA8-Ftto2LscdPtedfKCp6z6Zx4NtJBcWuMgipgksWZcRtJPrLfIjN2XfJUYIhPq80z49pYDh5AY642FVEWRYDuokb_kehfh2MQayu2tW0IDKbLYaCbszgYZjSGnuolOaymkqsKSw9s-pSVQmaZ2nFIYpyY6mrV8LVEcP7Rp1YJMq8VYpBTqk60nREkTnTiJ_No_vRt04br314b7aJlClouLy7RQY_I21QfWTJnIQzchPwHkd-Mt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEIBPPAZg4I0oTyMhmAKJHTepmKCAynOAIjEgRXZiIwQURNoBfj13TtMWBBJiSgY7cnx-3J3vPgNsks_YSCG9GkcxhGmQedoGsRfJMLBWKBO7o5iLy2rjJjy9lbdDsFfmwhR8iJ7DjWaGW69pgpNDerdPDc0JQRgJMQyjIeoZZHkdXvXYUZxyAx0sNZQeDlpZkmd9vlvW_LoX9RXMQTXV7TPHU3BXtrAIL3nc6bT1TvrxDd74z1-Yhsmu_sn2iwEzA0OmNQsTA1TCOWgeuCQulj3kLmKL_IeMYBxFliPT78xSuPw9U2mKuxYBD1A6TLUylrsrJ9i96uAHnvv-x3webo6PmvWG1718wUtRAxAeD43SUqN-EEVCB7ERUkfar6HBKCwuTX5as4GucV9mysdXSSjCwKJBVuVpFCmxACOtl5ZZBBbb2FDGPVomPNQqi60RChc3CmqsSm4qsF2KIUm7ZHJq7VNSMJV5gv2UUD9VYKNX8rWgcfxQZqWUZNKdj3nCKUUZjSEeVGDLieTX-sl1s07Ppb8WXIexRvPiPDk_uTxbhnFOQS_OTbMCI-23jllFraWt19zo_AQkV-dM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEIAHHyB68C2uzwiip2qbNNvu0dfiG9EVBA8laRMRdRW7e9Bf70za7qooiKf2kJQ2k2QenfkCsE4xYyOF9BocxRCmQeZpG8ReJMPAWqFM7H7FnJ3XD6_D4xt5U2ZVUi1MwYfoBdxoZbj9mhb4S2a3-9DQnAiEkRCDMBzW0ZAgg-iyh47iVBroWKmh9HDOygo86_PtqudXVdS3Lz9bqU7NNCfgtnrBIrvkYavb0Vvp-zd24_--YBLGS-uT7RTTZQoGTHsaxj4xCWegtetKuFh2n7t8LYoeMkJxFDWOTL8xS8nyd0ylKeoswh2gbJhqZyx3B06wO9XFBzz1o4_5LFw3D1p7h1559IKXov4XHg-N0lKjdRBFQgexEVJH2m-guygsbkx-2rCBbnBfZsrHW0kgwsCiO1bnaRQpMQdD7ee2mQcW29hQvT36JTzUKoutEQq3NkpprEtuarBZSSFJSy45ve1jUhCVeYLjlNA41WCt1_KlYHH80GapEmRSrsY84VSgjK4QD2qw4STya__kqrVH14W_NlyFkYv9ZnJ6dH6yCKOcMl5cjGYJhjqvXbOMJktHr7i5-QGIlOX7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridge+displacement+estimation+by+fusing+accelerometer+and+strain+gauge+measurements&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Ma%2C+Zhanxiong&rft.au=Chung%2C+Junyeon&rft.au=Liu%2C+Peipei&rft.au=Sohn%2C+Hoon&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=28&rft.issue=6&rft_id=info:doi/10.1002%2Fstc.2733&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon