Bridge displacement estimation by fusing accelerometer and strain gauge measurements
Summary For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When displacement is calculated by the double integration of acceleration, a low‐frequency drift appears in the estimated displacement. Displac...
Saved in:
Published in | Structural control and health monitoring Vol. 28; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1545-2255 1545-2263 |
DOI | 10.1002/stc.2733 |
Cover
Abstract | Summary
For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When displacement is calculated by the double integration of acceleration, a low‐frequency drift appears in the estimated displacement. Displacement can also be estimated from strains based on the Euler–Bernoulli beam theory. However, prior knowledge of the mode shapes and the neutral axis location of the target bridge are required for strain–displacement transformation. In this study, we propose a finite impulse response filter‐based displacement estimation technique by fusing strain and acceleration measurements. First, the relationship between displacement and strain is established, and the parameter associated with this strain–displacement transformation is estimated from strain and acceleration measurements using a recursive least squares algorithm. Next, the low‐frequency displacement estimated from the strain measurements and the high‐frequency displacement obtained from an acceleration measurement are combined for high‐fidelity displacement estimation. The feasibility of the proposed technique was examined via a series of numerical simulations, a lab‐scale experiment, and a field test. The uniqueness of this study lies in the fact that the displacement and the unknown parameter in strain–displacement transformation are estimated simultaneously and the accuracy of displacement estimation is improved in comparison with those of previous data fusion techniques. |
---|---|
AbstractList | Summary
For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When displacement is calculated by the double integration of acceleration, a low‐frequency drift appears in the estimated displacement. Displacement can also be estimated from strains based on the Euler–Bernoulli beam theory. However, prior knowledge of the mode shapes and the neutral axis location of the target bridge are required for strain–displacement transformation. In this study, we propose a finite impulse response filter‐based displacement estimation technique by fusing strain and acceleration measurements. First, the relationship between displacement and strain is established, and the parameter associated with this strain–displacement transformation is estimated from strain and acceleration measurements using a recursive least squares algorithm. Next, the low‐frequency displacement estimated from the strain measurements and the high‐frequency displacement obtained from an acceleration measurement are combined for high‐fidelity displacement estimation. The feasibility of the proposed technique was examined via a series of numerical simulations, a lab‐scale experiment, and a field test. The uniqueness of this study lies in the fact that the displacement and the unknown parameter in strain–displacement transformation are estimated simultaneously and the accuracy of displacement estimation is improved in comparison with those of previous data fusion techniques. For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When displacement is calculated by the double integration of acceleration, a low‐frequency drift appears in the estimated displacement. Displacement can also be estimated from strains based on the Euler–Bernoulli beam theory. However, prior knowledge of the mode shapes and the neutral axis location of the target bridge are required for strain–displacement transformation. In this study, we propose a finite impulse response filter‐based displacement estimation technique by fusing strain and acceleration measurements. First, the relationship between displacement and strain is established, and the parameter associated with this strain–displacement transformation is estimated from strain and acceleration measurements using a recursive least squares algorithm. Next, the low‐frequency displacement estimated from the strain measurements and the high‐frequency displacement obtained from an acceleration measurement are combined for high‐fidelity displacement estimation. The feasibility of the proposed technique was examined via a series of numerical simulations, a lab‐scale experiment, and a field test. The uniqueness of this study lies in the fact that the displacement and the unknown parameter in strain–displacement transformation are estimated simultaneously and the accuracy of displacement estimation is improved in comparison with those of previous data fusion techniques. |
Author | Ma, Zhanxiong Sohn, Hoon Chung, Junyeon Liu, Peipei |
Author_xml | – sequence: 1 givenname: Zhanxiong surname: Ma fullname: Ma, Zhanxiong organization: Korea Advanced Institute of Science and Technology – sequence: 2 givenname: Junyeon surname: Chung fullname: Chung, Junyeon organization: Korea Advanced Institute of Science and Technology – sequence: 3 givenname: Peipei surname: Liu fullname: Liu, Peipei organization: Korea Advanced Institute of Science and Technology – sequence: 4 givenname: Hoon orcidid: 0000-0001-9337-6653 surname: Sohn fullname: Sohn, Hoon email: hoonsohn@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology |
BookMark | eNp1kE9LAzEQxYNUsK2CHyHgxcvWZNLsn6MWq0LBg_UcstnZkrKbrcku0m9v2ooH0dPM4ffezHsTMnKdQ0KuOZtxxuAu9GYGmRBnZMzlXCYAqRj97FJekEkI20imkMsxWT94W22QVjbsGm2wRddTDL1tdW87R8s9rYdg3YZqY7BB37XYo6faVTT0XltHN3qIBi3qMPijPlyS81o3Aa--55S8Lx_Xi-dk9fr0srhfJQYKIRKYoy5lCYxnmSh5jkKWWckK4FzULM-ZKWpeFsBkpVlcJUBW8BpSnoLJMi2m5Obku_PdxxC_Vttu8C6eVCCBA5tHr0jdnijjuxA81mrnYzy_V5ypQ2cqdqYOnUV09gs1tj8WcYja_CVIToJP2-D-X2P1tl4c-S9mRH5q |
CitedBy_id | crossref_primary_10_1142_S0219455423501894 crossref_primary_10_3390_app14188556 crossref_primary_10_1155_2023_7803876 crossref_primary_10_1007_s13349_024_00863_0 crossref_primary_10_3390_app13116393 crossref_primary_10_1016_j_ymssp_2022_109582 crossref_primary_10_1177_13694332241286537 crossref_primary_10_1016_j_ymssp_2023_110408 crossref_primary_10_3390_buildings13081975 crossref_primary_10_1155_2023_6247516 crossref_primary_10_1016_j_engstruct_2024_118926 crossref_primary_10_1109_LPT_2023_3251369 crossref_primary_10_1002_tal_2095 crossref_primary_10_1016_j_engstruct_2022_114323 crossref_primary_10_1155_2023_6631716 crossref_primary_10_1061_JENMDT_EMENG_6934 crossref_primary_10_3390_buildings13112709 crossref_primary_10_1016_j_ymssp_2024_111533 crossref_primary_10_3390_s24061839 crossref_primary_10_3390_buildings13071631 crossref_primary_10_1016_j_jobe_2022_104964 crossref_primary_10_3390_rs16132263 crossref_primary_10_1016_j_ymssp_2023_111056 crossref_primary_10_1038_s41598_022_24449_2 crossref_primary_10_1061__ASCE_BE_1943_5592_0001908 crossref_primary_10_1016_j_engstruct_2024_118630 crossref_primary_10_1109_JSEN_2023_3312443 crossref_primary_10_3390_app14062526 crossref_primary_10_1016_j_measurement_2023_112532 crossref_primary_10_30932_1992_3252_2023_21_4_2 crossref_primary_10_1111_mice_12767 crossref_primary_10_1016_j_engstruct_2023_116904 crossref_primary_10_1088_1742_6596_2131_3_032015 crossref_primary_10_1016_j_aei_2023_102269 crossref_primary_10_1016_j_autcon_2022_104338 crossref_primary_10_1016_j_engstruct_2023_116535 crossref_primary_10_1016_j_engstruct_2022_114693 crossref_primary_10_1016_j_sna_2025_116430 crossref_primary_10_1016_j_ymssp_2024_111866 crossref_primary_10_1016_j_measurement_2023_113492 crossref_primary_10_1016_j_measurement_2024_115194 crossref_primary_10_3390_rs16173323 |
Cites_doi | 10.1002/stc.2044 10.1088/0964-1726/23/12/125045 10.1061/(ASCE)0733-9445(2000)126:12(1413) 10.12989/sss.2016.17.4.647 10.3133/ofr99545 10.1002/stc.1829 10.1080/15732470903068557 10.1007/s00707-017-1994-1 10.11648/j.ijtet.20170304.13 10.1061/(ASCE)BE.1943-5592.0000765 10.12989/sem.2012.42.2.229 10.1785/0120000703 10.1016/j.ndteint.2004.06.012 10.1109/TMECH.2013.2275187 10.1177/1475921710361326 10.1002/stc.2122 10.1002/stc.2209 10.1002/stc.360 10.1016/j.engstruct.2014.02.009 10.1016/j.engstruct.2015.09.002 10.1061/(ASCE)BE.1943-5592.0000726 10.1002/nme.2769 10.1007/s11340-013-9784-8 10.1016/j.ymssp.2013.09.014 10.1016/j.compstruct.2018.08.058 10.1002/stc.2119 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.2733 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_2733 STC2733 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) funderid: 2017R1A5A1014883 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2933-24eab5b201773b18e35b7b092113f0880c9f1b9205da09f1522791f26162c77a3 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Sun Sep 07 00:10:36 EDT 2025 Tue Jul 01 04:05:45 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Wed Jan 22 16:29:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2933-24eab5b201773b18e35b7b092113f0880c9f1b9205da09f1522791f26162c77a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9337-6653 |
PQID | 2521204921 |
PQPubID | 2034347 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2521204921 crossref_primary_10_1002_stc_2733 crossref_citationtrail_10_1002_stc_2733 wiley_primary_10_1002_stc_2733_STC2733 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2001; 91 2017; 3 2018; 229 2010; 17 2015; 103 2018; 206 2005 2016; 17 2014; 23 2014; 67 2018; 25 2014; 20 2010; 82 1999 2014; 42 2013; 18 2000; 126 2015; 20 2014 2005; 38 2010; 6 2012; 42 2016; 23 2014; 54 2010; 9 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 Haykin S (e_1_2_9_27_1) 2005 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_29_1 |
References_xml | – volume: 23 start-page: 1088 issue: 8 year: 2016 end-page: 1107 article-title: Output‐only damage detection using vehicle‐induced displacement response and mode shape curvature index publication-title: Struct Control Health Monit – year: 2005 – volume: 82 start-page: 403 issue: 4 year: 2010 end-page: 434 article-title: Design of an FIR filter for the displacement reconstruction using measured acceleration in low‐frequency dominant structures publication-title: Int J Numer Methods Eng – volume: 3 start-page: 62 issue: 4 year: 2017 end-page: 66 article-title: Linear variable differential transducer (LVDT) & its applications in civil engineering publication-title: Int J Transp Eng Technol – volume: 20 issue: 12 year: 2015 article-title: Model updating of railway bridge using in situ dynamic displacement measurement under trainloads publication-title: J Bridge Eng – volume: 17 start-page: 918 issue: 8 year: 2010 end-page: 936 article-title: Cost‐effective vision‐based system for monitoring dynamic response of civil engineering structures publication-title: Struct Control Health Monit – volume: 25 issue: 1 year: 2018 article-title: Investigation on a curvature‐based damage detection method using displacement under moving vehicle publication-title: Struct Control Health Monit – volume: 54 start-page: 255 issue: 2 year: 2014 end-page: 271 article-title: Vibration monitoring of multiple bridge points by means of a unique vision‐based measuring system publication-title: Exp Mech – volume: 18 start-page: 1675 issue: 6 year: 2013 end-page: 1682 article-title: Displacement estimation using multimetric data fusion publication-title: IEEE/ASME Trans Mechatr – volume: 103 start-page: 116 year: 2015 end-page: 124 article-title: Reference free method for real time monitoring of bridge deflections publication-title: Eng Struct – volume: 6 start-page: 521 issue: 5 year: 2010 end-page: 534 article-title: An interferometric radar for non‐contact measurement of deflections on civil engineering structures: laboratory and full‐scale tests publication-title: Struct Infrastruct Eng – year: 2014 – volume: 17 start-page: 647 issue: 4 year: 2016 end-page: 667 article-title: Dynamic displacement estimation by fusing biased high‐sampling rate acceleration and low‐sampling rate displacement measurements using two‐stage Kalman estimator publication-title: Smart Struct Syst – volume: 25 issue: 3 year: 2018 article-title: Visual–inertial displacement sensing using data fusion of vision‐based displacement with acceleration publication-title: Struct Control Health Monit – volume: 206 start-page: 517 year: 2018 end-page: 525 article-title: Kalman Filter based Neutral Axis tracking for damage detection in composites structures under changing axial loading conditions publication-title: Compos Struct – volume: 9 start-page: 361 issue: 4 year: 2010 end-page: 378 article-title: An improved conjugated beam method for deformation monitoring with a distributed sensitive fiber optic sensor publication-title: Struct Health Monit – volume: 229 start-page: 707 issue: 2 year: 2018 end-page: 717 article-title: Validation range for KF data fusion devices publication-title: Acta Mech – volume: 42 start-page: 229 issue: 2 year: 2012 end-page: 245 article-title: Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes publication-title: Struct Enga Mech – volume: 126 start-page: 1413 issue: 12 year: 2000 end-page: 1419 article-title: GPS measurement of wind‐induced suspension bridge girder displacements publication-title: J Struct Eng – volume: 25 issue: 3 year: 2018 article-title: Deflection distribution estimation of tied‐arch bridges using long‐gauge strain measurements publication-title: Struct Control Health Monit – volume: 42 start-page: 194 issue: 1 year: 2014 end-page: 205 article-title: Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements publication-title: Mech Syst Signal Process – volume: 20 issue: 10 year: 2014 article-title: Dynamic assessment of timber railroad bridges using displacements publication-title: J Bridge Eng – volume: 23 issue: 12 year: 2014 article-title: Strain modes based dynamic displacement estimation of beam structures with strain sensors publication-title: Smart Mater Struct – volume: 25 issue: 8 year: 2018 article-title: Reference‐free structural dynamic displacement estimation method publication-title: Struct Control Health Monit – volume: 38 start-page: 213 issue: 3 year: 2005 end-page: 218 article-title: Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration publication-title: Ndt & E International – volume: 91 start-page: 1199 issue: 5 year: 2001 end-page: 1211 article-title: Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi‐Chi, Taiwan, earthquake publication-title: Bull Seismol Soc Am – volume: 67 start-page: 29 year: 2014 end-page: 38 article-title: Deformation monitoring of a super‐tall structure using real‐time strain data publication-title: Eng Struct – year: 1999 – ident: e_1_2_9_4_1 doi: 10.1002/stc.2044 – ident: e_1_2_9_17_1 doi: 10.1088/0964-1726/23/12/125045 – ident: e_1_2_9_9_1 doi: 10.1061/(ASCE)0733-9445(2000)126:12(1413) – ident: e_1_2_9_22_1 doi: 10.12989/sss.2016.17.4.647 – ident: e_1_2_9_14_1 doi: 10.3133/ofr99545 – ident: e_1_2_9_2_1 doi: 10.1002/stc.1829 – ident: e_1_2_9_8_1 doi: 10.1080/15732470903068557 – ident: e_1_2_9_23_1 doi: 10.1007/s00707-017-1994-1 – ident: e_1_2_9_6_1 doi: 10.11648/j.ijtet.20170304.13 – ident: e_1_2_9_3_1 doi: 10.1061/(ASCE)BE.1943-5592.0000765 – ident: e_1_2_9_16_1 doi: 10.12989/sem.2012.42.2.229 – ident: e_1_2_9_15_1 doi: 10.1785/0120000703 – ident: e_1_2_9_7_1 doi: 10.1016/j.ndteint.2004.06.012 – ident: e_1_2_9_26_1 doi: 10.1109/TMECH.2013.2275187 – ident: e_1_2_9_19_1 doi: 10.1177/1475921710361326 – ident: e_1_2_9_25_1 doi: 10.1002/stc.2122 – ident: e_1_2_9_13_1 doi: 10.1002/stc.2209 – ident: e_1_2_9_11_1 doi: 10.1002/stc.360 – ident: e_1_2_9_18_1 doi: 10.1016/j.engstruct.2014.02.009 – ident: e_1_2_9_21_1 doi: 10.1016/j.engstruct.2015.09.002 – volume-title: Adaptive Filter Theory year: 2005 ident: e_1_2_9_27_1 – ident: e_1_2_9_30_1 – ident: e_1_2_9_5_1 doi: 10.1061/(ASCE)BE.1943-5592.0000726 – ident: e_1_2_9_12_1 doi: 10.1002/nme.2769 – ident: e_1_2_9_10_1 doi: 10.1007/s11340-013-9784-8 – ident: e_1_2_9_24_1 doi: 10.1016/j.ymssp.2013.09.014 – ident: e_1_2_9_28_1 doi: 10.1016/j.compstruct.2018.08.058 – ident: e_1_2_9_29_1 – ident: e_1_2_9_20_1 doi: 10.1002/stc.2119 |
SSID | ssj0026285 |
Score | 2.4514189 |
Snippet | Summary
For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement.... For large‐span bridge monitoring, displacement measurement is essential. However, it remains challenging to accurately estimate bridge displacement. When... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acceleration measurement accelerometer Accelerometers Algorithms Beam theory (structures) data fusion Data integration displacement estimation Displacement measurement Euler-Bernoulli beams Field tests finite impulse response filter FIR filters Frequency drift Parameter estimation strain gauge Strain gauges Transformations |
Title | Bridge displacement estimation by fusing accelerometer and strain gauge measurements |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2733 https://www.proquest.com/docview/2521204921 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCD7KQHv8XplAiip25N0vTjqNMxBD3oBgMPJUmTIWoVux30rzcvbbcpCuKpPSSlzUvyPvreLwgdQ8xYc8a9hFoxBIpknjQk9iIeEGOY0LH7FXN9E_aHwdWIj6qsSqiFKfkQs4AbrAy3X8MCF7LozKGhBRAIIwagT8JCwOZf3M7IURQqAx0qNeCenbK85s76tFN3_KqJ5ublopHqtExvDd3X71cmlzy2pxPZVh_f0I3_-4B1tFoZn_isnC0baEnnm2hlAUm4hQbnroILZw-FS9eC4CEGEkdZ4ojlOzaQKz_GQimrsoB2YEWDRZ7hwp03gcdiah_wPA8-Ftto2LscdPtedfKCp6z6Zx4NtJBcWuMgipgksWZcRtJPrLfIjN2XfJUYIhPq80z49pYDh5AY642FVEWRYDuokb_kehfh2MQayu2tW0IDKbLYaCbszgYZjSGnuolOaymkqsKSw9s-pSVQmaZ2nFIYpyY6mrV8LVEcP7Rp1YJMq8VYpBTqk60nREkTnTiJ_No_vRt04br314b7aJlClouLy7RQY_I21QfWTJnIQzchPwHkd-Mt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEIBPPAZg4I0oTyMhmAKJHTepmKCAynOAIjEgRXZiIwQURNoBfj13TtMWBBJiSgY7cnx-3J3vPgNsks_YSCG9GkcxhGmQedoGsRfJMLBWKBO7o5iLy2rjJjy9lbdDsFfmwhR8iJ7DjWaGW69pgpNDerdPDc0JQRgJMQyjIeoZZHkdXvXYUZxyAx0sNZQeDlpZkmd9vlvW_LoX9RXMQTXV7TPHU3BXtrAIL3nc6bT1TvrxDd74z1-Yhsmu_sn2iwEzA0OmNQsTA1TCOWgeuCQulj3kLmKL_IeMYBxFliPT78xSuPw9U2mKuxYBD1A6TLUylrsrJ9i96uAHnvv-x3webo6PmvWG1718wUtRAxAeD43SUqN-EEVCB7ERUkfar6HBKCwuTX5as4GucV9mysdXSSjCwKJBVuVpFCmxACOtl5ZZBBbb2FDGPVomPNQqi60RChc3CmqsSm4qsF2KIUm7ZHJq7VNSMJV5gv2UUD9VYKNX8rWgcfxQZqWUZNKdj3nCKUUZjSEeVGDLieTX-sl1s07Ppb8WXIexRvPiPDk_uTxbhnFOQS_OTbMCI-23jllFraWt19zo_AQkV-dM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEIAHHyB68C2uzwiip2qbNNvu0dfiG9EVBA8laRMRdRW7e9Bf70za7qooiKf2kJQ2k2QenfkCsE4xYyOF9BocxRCmQeZpG8ReJMPAWqFM7H7FnJ3XD6_D4xt5U2ZVUi1MwYfoBdxoZbj9mhb4S2a3-9DQnAiEkRCDMBzW0ZAgg-iyh47iVBroWKmh9HDOygo86_PtqudXVdS3Lz9bqU7NNCfgtnrBIrvkYavb0Vvp-zd24_--YBLGS-uT7RTTZQoGTHsaxj4xCWegtetKuFh2n7t8LYoeMkJxFDWOTL8xS8nyd0ylKeoswh2gbJhqZyx3B06wO9XFBzz1o4_5LFw3D1p7h1559IKXov4XHg-N0lKjdRBFQgexEVJH2m-guygsbkx-2rCBbnBfZsrHW0kgwsCiO1bnaRQpMQdD7ee2mQcW29hQvT36JTzUKoutEQq3NkpprEtuarBZSSFJSy45ve1jUhCVeYLjlNA41WCt1_KlYHH80GapEmRSrsY84VSgjK4QD2qw4STya__kqrVH14W_NlyFkYv9ZnJ6dH6yCKOcMl5cjGYJhjqvXbOMJktHr7i5-QGIlOX7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridge+displacement+estimation+by+fusing+accelerometer+and+strain+gauge+measurements&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Ma%2C+Zhanxiong&rft.au=Chung%2C+Junyeon&rft.au=Liu%2C+Peipei&rft.au=Sohn%2C+Hoon&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=28&rft.issue=6&rft_id=info:doi/10.1002%2Fstc.2733&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |