Proportioning of self‐centering energy dissipative braces

Self‐centering energy dissipative (SCED) braces are designed to limit the maximum story drifts in buildings during earthquakes and to nearly eliminate residual drifts. The key properties of conventional braces (eg, strength, stiffness) can be determined with current seismic design procedures, but ad...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 50; no. 10; pp. 2613 - 2633
Main Authors Xiao, Yi, Eberhard, Marc O., Zhou, Ying, Stanton, John F.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self‐centering energy dissipative (SCED) braces are designed to limit the maximum story drifts in buildings during earthquakes and to nearly eliminate residual drifts. The key properties of conventional braces (eg, strength, stiffness) can be determined with current seismic design procedures, but additional criteria are needed to select the hysteretic properties of SCED braces (eg, prestressing level, fuse activating deformation). Past investigations of the seismic performance of the SCED braced frames selected brace characteristics to match the hysteretic characteristics of buckling restrained braces (BRB). However, those characteristics may not be achieved because the performance of the SCED system is constrained by the elongation capacity of the post‐tensioned tendons. To develop recommendations for proportioning SCED braces, the researchers conducted a parametric study on the properties of two typical SCED systems, using a nine‐story steel braced frame office building. The seismic performances of the SCED systems were then compared with that of a BRB system including an analysis without property uncertainty and an analysis with uncertainty using Monte Carlo simulation. Based on the cost and seismic performances of SCED systems designed using various characteristics, recommendations are proposed for proportioning the SCED systems. Besides having much smaller residual drifts, the SCED systems had a smaller likelihood of exceeding a maximum story drift of 3% and less drift concentration compared with the BRB system, though they generated larger floor accelerations and forces in connections and adjacent members. The property uncertainty increased the residual drift of the SCED systems.
AbstractList Self‐centering energy dissipative (SCED) braces are designed to limit the maximum story drifts in buildings during earthquakes and to nearly eliminate residual drifts. The key properties of conventional braces (eg, strength, stiffness) can be determined with current seismic design procedures, but additional criteria are needed to select the hysteretic properties of SCED braces (eg, prestressing level, fuse activating deformation). Past investigations of the seismic performance of the SCED braced frames selected brace characteristics to match the hysteretic characteristics of buckling restrained braces (BRB). However, those characteristics may not be achieved because the performance of the SCED system is constrained by the elongation capacity of the post‐tensioned tendons. To develop recommendations for proportioning SCED braces, the researchers conducted a parametric study on the properties of two typical SCED systems, using a nine‐story steel braced frame office building. The seismic performances of the SCED systems were then compared with that of a BRB system including an analysis without property uncertainty and an analysis with uncertainty using Monte Carlo simulation. Based on the cost and seismic performances of SCED systems designed using various characteristics, recommendations are proposed for proportioning the SCED systems. Besides having much smaller residual drifts, the SCED systems had a smaller likelihood of exceeding a maximum story drift of 3% and less drift concentration compared with the BRB system, though they generated larger floor accelerations and forces in connections and adjacent members. The property uncertainty increased the residual drift of the SCED systems.
Abstract Self‐centering energy dissipative (SCED) braces are designed to limit the maximum story drifts in buildings during earthquakes and to nearly eliminate residual drifts. The key properties of conventional braces (eg, strength, stiffness) can be determined with current seismic design procedures, but additional criteria are needed to select the hysteretic properties of SCED braces (eg, prestressing level, fuse activating deformation). Past investigations of the seismic performance of the SCED braced frames selected brace characteristics to match the hysteretic characteristics of buckling restrained braces (BRB). However, those characteristics may not be achieved because the performance of the SCED system is constrained by the elongation capacity of the post‐tensioned tendons. To develop recommendations for proportioning SCED braces, the researchers conducted a parametric study on the properties of two typical SCED systems, using a nine‐story steel braced frame office building. The seismic performances of the SCED systems were then compared with that of a BRB system including an analysis without property uncertainty and an analysis with uncertainty using Monte Carlo simulation. Based on the cost and seismic performances of SCED systems designed using various characteristics, recommendations are proposed for proportioning the SCED systems. Besides having much smaller residual drifts, the SCED systems had a smaller likelihood of exceeding a maximum story drift of 3% and less drift concentration compared with the BRB system, though they generated larger floor accelerations and forces in connections and adjacent members. The property uncertainty increased the residual drift of the SCED systems.
Author Eberhard, Marc O.
Stanton, John F.
Zhou, Ying
Xiao, Yi
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0003-0691-886X
  surname: Xiao
  fullname: Xiao, Yi
  organization: University of Washington
– sequence: 2
  givenname: Marc O.
  surname: Eberhard
  fullname: Eberhard, Marc O.
  organization: University of Washington
– sequence: 3
  givenname: Ying
  orcidid: 0000-0001-9553-5419
  surname: Zhou
  fullname: Zhou, Ying
  email: yingzhou@tongji.edu.cn
  organization: Tongji University
– sequence: 4
  givenname: John F.
  surname: Stanton
  fullname: Stanton, John F.
  organization: University of Washington
BookMark eNp10M1KAzEQwPEgFWyr4CMsePGydfKx2QRPUuoHFFTQc9juTkpKTbbJVunNR_AZfRK31qungeHHDPxHZOCDR0LOKUwoALvCDU64kPyIDClomWsligEZAmiVKyXKEzJKaQUAXEI5JNdPMbQhdi5455dZsFnCtf3-_KrRdxj3O_QYl7uscSm5turcO2aLWNWYTsmxrdYJz_7mmLzezl6m9_n88e5hejPPa6Y5z6kFpFrokivW0EYUoEqmacWoZKBq0NZyWUjJ7cI2pdBaKSZ4wXkNnEqx4GNycbjbxrDZYurMKmyj718aVhSM0pJy1qvLg6pjSCmiNW10b1XcGQpmn8b0acw-TU_zA_1wa9z968zsefbrfwCd3WU5
CitedBy_id crossref_primary_10_1002_eqe_3623
crossref_primary_10_1002_eqe_3704
crossref_primary_10_1177_87552930231176840
crossref_primary_10_1016_j_engstruct_2024_118524
crossref_primary_10_1016_j_fmre_2022_05_009
crossref_primary_10_1016_j_soildyn_2024_108537
crossref_primary_10_1016_j_soildyn_2024_108602
crossref_primary_10_1016_j_tws_2023_110927
crossref_primary_10_1016_j_engstruct_2023_115965
crossref_primary_10_3390_ma15072349
crossref_primary_10_1016_j_engstruct_2022_115019
crossref_primary_10_1016_j_istruc_2024_105960
crossref_primary_10_1016_j_soildyn_2023_108131
crossref_primary_10_1002_tal_2010
crossref_primary_10_1016_j_jcsr_2022_107252
crossref_primary_10_1016_j_jobe_2022_104761
crossref_primary_10_1016_j_engstruct_2023_116111
crossref_primary_10_1016_j_jcsr_2022_107267
crossref_primary_10_1016_j_jcsr_2023_108186
crossref_primary_10_1016_j_jobe_2022_105667
crossref_primary_10_1016_j_jobe_2024_109504
crossref_primary_10_1061_JSENDH_STENG_13616
crossref_primary_10_1002_eqe_3982
crossref_primary_10_1016_j_engstruct_2023_116292
Cites_doi 10.1061/(ASCE)0733-9445(2008)134:1(108)
10.15554/pcij.09011991.62.71
10.1016/j.engstruct.2015.11.028
10.1016/j.jcsr.2015.12.008
10.1016/j.engstruct.2014.04.022
10.1061/(ASCE)ST.1943-541X.0001109
10.1016/j.jsv.2014.02.008
10.1016/j.jcsr.2019.04.044
10.1680/stbu.2009.162.4.221
10.1016/j.conbuildmat.2019.02.106
10.1016/j.jcsr.2014.04.035
10.1016/j.strusafe.2014.12.002
10.1002/eqe.2678
10.1061/(ASCE)0733-9445(2008)134:1(96)
10.1115/1.4046953
10.1016/j.engstruct.2016.02.023
10.1002/eqe.2202
10.1002/eqe.2844
10.1193/052418EQS123M
10.1061/(ASCE)CC.1943-5614.0000565
10.1061/(ASCE)0733-9445(2004)130:9(1371)
10.1193/082712EQS272M
10.1016/j.jcsr.2019.02.007
10.1061/(ASCE)0733-9399(2002)128:1(121)
10.1002/9780470172841
10.1016/j.engstruct.2012.02.037
10.1061/AJRUA6.0000931
10.1061/(ASCE)ST.1943-541X.0001166
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.3463
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 2633
ExternalDocumentID 10_1002_eqe_3463
EQE3463
Genre article
GrantInformation_xml – fundername: China Scholarship Council (CSC)
– fundername: Peak Disciplinary Research Project
  funderid: 2019010107
– fundername: State Key Laboratory of Disaster Reduction in Civil Engineering Research Project of China
  funderid: SLDRCE19‐B‐31
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c2933-1f0e19497382d1d45087291a216208c09ff365663fbfd749988243533c03164b3
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Thu Oct 10 18:13:04 EDT 2024
Fri Aug 23 04:05:23 EDT 2024
Sat Aug 24 01:01:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2933-1f0e19497382d1d45087291a216208c09ff365663fbfd749988243533c03164b3
ORCID 0000-0003-0691-886X
0000-0001-9553-5419
PQID 2552117132
PQPubID 866380
PageCount 21
ParticipantIDs proquest_journals_2552117132
crossref_primary_10_1002_eqe_3463
wiley_primary_10_1002_eqe_3463_EQE3463
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 141
1991; 36
2015; 19
2017; 3
2012
2011
2020; 142
2019; 10
2015; 31
2015; 53
2019; 35
2017; 46
2013; 42
2009
2008
2007
2004
1992
2019; 206
2014; 333
2000
2016; 119
2004; 130
2019; 159
2016; 113
2002; 128
2019; 157
2017
2016
2016; 116
2009; 162
2014
2008; 134
2014; 141
2014; 72
2014; 101
2016; 45
2012; 40
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
ASCE (e_1_2_9_17_1) 2016
e_1_2_9_12_1
ASTM A36/A36M‐08 (e_1_2_9_32_1) 2008
Zhou Y (e_1_2_9_5_1) 2019; 10
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
AISC 341‐16 (e_1_2_9_19_1) 2016
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
ASTM International (e_1_2_9_21_1) 2007
AISC Committee (e_1_2_9_20_1) 2016
GB 50017–2017 (e_1_2_9_33_1) 2017
FEMA P695 (e_1_2_9_27_1) 2009
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
FEMA 355C (e_1_2_9_18_1) 2000
e_1_2_9_28_1
e_1_2_9_29_1
Clawson Jan (e_1_2_9_42_1) 2014
References_xml – year: 2011
– volume: 162
  start-page: 221
  issue: 4
  year: 2009
  end-page: 232
  article-title: Stress limits for aramid fibres
  publication-title: Proc Institutn Civil Eng‐Struct Build
– year: 2008
  article-title: Post‐tensioned concrete walls and frames for seismic‐resistance‐a case study of the David Brower Center
– year: 2009
– volume: 116
  start-page: 26
  year: 2016
  end-page: 39
  article-title: Influence of tube length tolerance on seismic responses of multi‐storey buildings with dual‐tube self‐centering buckling‐restrained braces
  publication-title: Eng Struct
– volume: 130
  start-page: 1371
  issue: 9
  year: 2004
  end-page: 1380
  article-title: Moment–rotation parameters for composite shear tab connections
  publication-title: J Struct Eng
– volume: 159
  start-page: 428
  year: 2019
  end-page: 441
  article-title: Effect of beam yielding on chevron braced frames
  publication-title: J Constr Steel Res
– volume: 142
  issue: 5
  year: 2020
  article-title: Parametric study and uncertainty quantification of the nonlinear modal properties of frictional dampers
  publication-title: J Vib Acoust
– volume: 128
  start-page: 121
  issue: 1
  year: 2002
  end-page: 125
  article-title: Latin hypercube sampling for stochastic finite element analysis
  publication-title: J Eng Mech
– volume: 141
  issue: 6
  year: 2014
  article-title: Design and testing of an enhanced‐elongation telescoping self‐centering energy‐dissipative brace
  publication-title: J Struct Eng
– year: 2007
– volume: 157
  start-page: 103
  year: 2019
  end-page: 120
  article-title: Nonlinear modeling of concentrically braced frames
  publication-title: J Constr Steel Res
– volume: 119
  start-page: 133
  year: 2016
  end-page: 143
  article-title: High‐mode effects on seismic performance of multi‐story self‐centering braced steel frames
  publication-title: J Constr Steel Res
– volume: 40
  start-page: 288
  year: 2012
  end-page: 298
  article-title: Development and experimental validation of a nickel–titanium shape memory alloy self‐centering buckling‐restrained brace
  publication-title: Eng Struct
– volume: 206
  start-page: 665
  year: 2019
  end-page: 673
  article-title: Experimental and numerical investigations of statistical size effect in S235JR steel structural elements
  publication-title: Constr Build Mater
– volume: 46
  start-page: 1065
  issue: 7
  year: 2017
  end-page: 1080
  article-title: Cyclic behavior and failure mechanism of self‐centering energy dissipation braces with pre‐pressed combination disc springs
  publication-title: Earthquk Engineern Struct Dynamics
– year: 2016
– volume: 333
  start-page: 2699
  issue: 13
  year: 2014
  end-page: 2712
  article-title: Reliability optimization of friction‐damped systems using nonlinear modes
  publication-title: J Sound Vib
– year: 1992
– year: 2014
– volume: 19
  issue: 6
  year: 2015
  article-title: Experimental investigation of the hysteretic performance of dual‐tube self‐centering buckling‐restrained braces with composite tendons
  publication-title: J Compos Constr
– volume: 42
  start-page: 183
  issue: 2
  year: 2013
  end-page: 200
  article-title: A model to simulate special concentrically braced frames beyond brace fracture
  publication-title: Earthquk. Engineerng Struct Dynam
– year: 2012
– volume: 36
  start-page: 62
  issue: 5
  year: 1991
  end-page: 71
  article-title: PRESSS Project 1.3: connection classification and evaluation
  publication-title: PCI J
– volume: 134
  start-page: 96
  issue: 1
  year: 2008
  end-page: 107
  article-title: Self‐centering energy dissipative bracing system for the seismic resistance of structures: development and validation
  publication-title: J Struct Eng
– volume: 72
  start-page: 26
  year: 2014
  end-page: 40
  article-title: Steel braced frames with dual‐core SCBs and sandwiched BRBs: mechanics, modeling and seismic demands
  publication-title: Eng Struct
– volume: 101
  start-page: 19
  year: 2014
  end-page: 32
  article-title: Development of cross‐anchored dual‐core self‐centering braces for seismic resistance
  publication-title: J Constr Steel Res
– year: 2008
– volume: 141
  issue: 8
  year: 2015
  article-title: Design, testing, and detailed component modeling of a high‐capacity self‐centering energy‐dissipative brace
  publication-title: J Struct Eng
– volume: 53
  start-page: 26
  year: 2015
  end-page: 35
  article-title: Statistical analysis of the material properties of selected structural carbon steels
  publication-title: Struct Saf
– year: 2004
– volume: 35
  start-page: 1261
  issue: 3
  year: 2019
  end-page: 1287
  article-title: Impacts of simulated M9 Cascadia subduction zone motions on idealized systems
  publication-title: Earthquake Spectra
– volume: 113
  start-page: 89
  year: 2016
  end-page: 102
  article-title: Experimental investigation on the development of wear in grouted connections for offshore wind turbine generators
  publication-title: Eng Struct
– start-page: 12
  year: 2008
  end-page: 17
  article-title: Permissible residual deformation levels for building structures considering both safety and human elements
– volume: 31
  start-page: 247
  issue: 1
  year: 2015
  end-page: 272
  article-title: Development of steel dual‐core self‐centering braces: quasi‐static cyclic tests and finite element analyses
  publication-title: Earthquake Spectra
– volume: 134
  start-page: 108
  issue: 1
  year: 2008
  end-page: 120
  article-title: Seismic response of multistory buildings with self‐centering energy dissipative steel braces
  publication-title: J Struct Eng
– year: 2017
– volume: 10
  start-page: 17
  year: 2019
  end-page: 26
  article-title: Self‐centering braced rocking frame systems and the displacement‐based seismic design method
  publication-title: J. Buildng Struct
– year: 2000
  article-title: State of the art report on systems performance of steel moment frames subject to earthquake ground shaking
  publication-title: Federal Emergency Management Agency
– volume: 3
  issue: 4
  year: 2017
  article-title: Statistical investigation of effective prestress in prestressed concrete bridges
  publication-title: ASCE‐ASME J Risk Uncertainty Engineerng Systems, Part A: Civil Engineering
– volume: 45
  start-page: 653
  issue: 4
  year: 2016
  end-page: 672
  article-title: Ductility‐dependent intensity measure that accounts for ground‐motion spectral shape and duration
  publication-title: Earthquk Engineerng Structurl Dynamics
– ident: e_1_2_9_12_1
  doi: 10.1061/(ASCE)0733-9445(2008)134:1(108)
– ident: e_1_2_9_2_1
  doi: 10.15554/pcij.09011991.62.71
– ident: e_1_2_9_39_1
  doi: 10.1016/j.engstruct.2015.11.028
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jcsr.2015.12.008
– volume-title: Standards for Steel Structure Design
  year: 2017
  ident: e_1_2_9_33_1
  contributor:
    fullname: GB 50017–2017
– ident: e_1_2_9_13_1
  doi: 10.1016/j.engstruct.2014.04.022
– ident: e_1_2_9_31_1
– ident: e_1_2_9_7_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001109
– volume-title: Standard Specification for Cold‐formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
  year: 2007
  ident: e_1_2_9_21_1
  contributor:
    fullname: ASTM International
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jsv.2014.02.008
– volume-title: Structure and Defects in High‐Performance Aramid Fibers
  year: 2014
  ident: e_1_2_9_42_1
  contributor:
    fullname: Clawson Jan
– ident: e_1_2_9_3_1
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jcsr.2019.04.044
– volume-title: Specification for Structural Steel Buildings (ANSI/AISC 360‐10)
  year: 2016
  ident: e_1_2_9_20_1
  contributor:
    fullname: AISC Committee
– ident: e_1_2_9_41_1
  doi: 10.1680/stbu.2009.162.4.221
– volume-title: Minimum Design Loads for Buildings and Other Structures
  year: 2016
  ident: e_1_2_9_17_1
  contributor:
    fullname: ASCE
– ident: e_1_2_9_34_1
  doi: 10.1016/j.conbuildmat.2019.02.106
– ident: e_1_2_9_36_1
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jcsr.2014.04.035
– ident: e_1_2_9_35_1
  doi: 10.1016/j.strusafe.2014.12.002
– ident: e_1_2_9_28_1
  doi: 10.1002/eqe.2678
– ident: e_1_2_9_6_1
  doi: 10.1061/(ASCE)0733-9445(2008)134:1(96)
– volume: 10
  start-page: 17
  year: 2019
  ident: e_1_2_9_5_1
  article-title: Self‐centering braced rocking frame systems and the displacement‐based seismic design method
  publication-title: J. Buildng Struct
  contributor:
    fullname: Zhou Y
– ident: e_1_2_9_38_1
  doi: 10.1115/1.4046953
– ident: e_1_2_9_15_1
  doi: 10.1016/j.engstruct.2016.02.023
– ident: e_1_2_9_23_1
  doi: 10.1002/eqe.2202
– ident: e_1_2_9_4_1
– ident: e_1_2_9_11_1
  doi: 10.1002/eqe.2844
– ident: e_1_2_9_44_1
  doi: 10.1193/052418EQS123M
– year: 2000
  ident: e_1_2_9_18_1
  article-title: State of the art report on systems performance of steel moment frames subject to earthquake ground shaking
  publication-title: Federal Emergency Management Agency
  contributor:
    fullname: FEMA 355C
– volume-title: Standard Specification for Carbon Structural Steel
  year: 2008
  ident: e_1_2_9_32_1
  contributor:
    fullname: ASTM A36/A36M‐08
– ident: e_1_2_9_10_1
  doi: 10.1061/(ASCE)CC.1943-5614.0000565
– ident: e_1_2_9_26_1
  doi: 10.1061/(ASCE)0733-9445(2004)130:9(1371)
– volume-title: Seismic Provisions for Structural Steel Buildings
  year: 2016
  ident: e_1_2_9_19_1
  contributor:
    fullname: AISC 341‐16
– ident: e_1_2_9_30_1
  doi: 10.1193/082712EQS272M
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jcsr.2019.02.007
– ident: e_1_2_9_46_1
– ident: e_1_2_9_43_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:1(121)
– ident: e_1_2_9_22_1
– ident: e_1_2_9_29_1
  doi: 10.1002/9780470172841
– ident: e_1_2_9_9_1
  doi: 10.1016/j.engstruct.2012.02.037
– volume-title: Quantification of Building Seismic Performance Factors
  year: 2009
  ident: e_1_2_9_27_1
  contributor:
    fullname: FEMA P695
– ident: e_1_2_9_40_1
  doi: 10.1061/AJRUA6.0000931
– ident: e_1_2_9_16_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001166
– ident: e_1_2_9_45_1
SSID ssj0003607
Score 2.4907045
Snippet Self‐centering energy dissipative (SCED) braces are designed to limit the maximum story drifts in buildings during earthquakes and to nearly eliminate residual...
Abstract Self‐centering energy dissipative (SCED) braces are designed to limit the maximum story drifts in buildings during earthquakes and to nearly eliminate...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2613
SubjectTerms Bracing
Cost analysis
Deformation
design recommendations
Drift
Earthquakes
Elongation
energy dissipative brace
Hysteresis
Monte Carlo simulation
Office buildings
Parametric statistics
parametric study
Prestressing
Properties
Reinforcement (structures)
Seismic activity
Seismic design
Seismic response
self‐centering
Statistical methods
Steel frames
Stiffness
system cost
Tendons
Uncertainty
Title Proportioning of self‐centering energy dissipative braces
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3463
https://www.proquest.com/docview/2552117132
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6kJz34FqtVVhBv22aTdB94Em0pgqJioeBhSbaZi9JqHx48-RP8jf4SJ9ndtgqCeNpLAtlJZuab5MsXgGOJMqNa1vgYKO1L-5C7DhXShHCmmVBxgvZE9-o67HTlZa_ZK1iV9i5Mrg8x23CznuHitXVwpceNuWioeTF1IUMr9BmIyLK5Lu7mylEiZDO5zJgicKk7y3ij7Pg9E83h5SJIdVmmvQYP5fhycsljfTrR9ezth3Tj_35gHVYL8Omd5atlA5bMYBNWFiQJt-D0xj6bMCq2ab0hemPzhJ_vH5bF6dp4xl0X9OxJvuNjvxqPhkHxZhu67db9eccvHljwM8rywg-QmSCRSSRi3g_6ksAaYe1A8SDkLM5Ygigs3hOosR9RbURwnOCVEBmFglBqsQOVwXBgdsGLmKTFEMfNMEPJVawEohGYUPrjfa6wCkelsdPnXEcjzRWTeUqGSK0hqlArZyEtPGmcUslDNSqV0rwKJ86cv_ZPW7ct-937a8N9WOaWouL4fDWoTEZTc0AYY6IP3Wr6AorHzPI
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gHtSDbyOKuibG22K3LctuOBmFoAJRAwkHk2Yf7UUDysODJ3-Cv9Ff4rS7C2hiYjztpU2603l8006_ATjhikeYy0pbOUFoc93IPXQDhRtCSUhY4PlK3-i22m6jy6975V4OqtlbmIQfYnrgpi3D-Gtt4PpA-mzGGipfZIlxly3AIlo7030bLu9n3FHMJVPCTA99cMY8S-hZNvN7LJoBzHmYauJMfQ0eshUm5SWPpck4LEVvP8gb__kL67Ca4k_rPFGYDcjJ_iaszLESbkH1VndOGKYntdZAWSP5pD7fP3QhpxljSfNi0NKX-aYk-1VauA50OdvQrdc6Fw077bFgRxjome0oIh2f-xXm0diJOeI1hNtOQB2XEi8ivlJMQz6mQhVXMD1CRI4Ii7EIvYHLQ7YD-f6gL3fBqhCO-uB5ZTdSnAZewJSSTPkYAWlMA1WA40za4jmh0hAJaTIVKAihBVGAYrYNIjWmkcCsB9NUzKZpAU6NPH-dL2p3Nf3d--vAI1hqdFpN0bxq3-zDMtUVK6a8rwj58XAiDxByjMNDo1pfX7nRCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60gujBt1ituoJ42zabpNtdPIm21FepolDwsOwjc1Ha2ocHT_4Ef6O_xEl211ZBEC-bSwLZSWbmm2TyDcChRBlTLKtsdMLIlrqQe-SGSAvCWcRE6Pmob3SvW27zXl50qp0sq1K_hUn5Ib4O3LRmGHutFbyfYGVCGqqeVVlIV8zCHH2ZuaK9nVBHCZd98WV6ZIJz4lnGK_nI765ogi-nUapxM41leMgnmGaXPJbHo6gcv_7gbvzfH6zAUoY-rZN0u6zCjOquweIUJ-E6HLd13YRBdk5r9dAaqif8eHvXaZymj6XMe0FLX-WbhOwXZdE0yOBswH2jfnfatLMKC3ZMbl7YDjLl-NKvCY8nTiIJrRHYdkLuuJx5MfMRhQZ8AiNMahQcER4nfCVETLbAlZHYhEK311VbYNWYpN3geVU3RslDLxSISqBP_o8nPMQiHOTCDvopkUaQUibzgAQRaEEUoZSvQpCp0jCgmIeCVIqleRGOjDh_HR_Ub-q63f5rx32Yb581gqvz1uUOLHCdrmJy-0pQGA3GapfwxijaMxvrExlVz7k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proportioning+of+self%E2%80%90centering+energy+dissipative+braces&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Xiao%2C+Yi&rft.au=Eberhard%2C+Marc+O.&rft.au=Zhou%2C+Ying&rft.au=Stanton%2C+John+F.&rft.date=2021-08-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=50&rft.issue=10&rft.spage=2613&rft.epage=2633&rft_id=info:doi/10.1002%2Feqe.3463&rft.externalDBID=10.1002%252Feqe.3463&rft.externalDocID=EQE3463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon