Influence of shape memory alloy brace design parameters on seismic performance of self‐centering steel frame buildings
Summary This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA‐braced steel frame building is designed to have comparable strength and stiffne...
Saved in:
Published in | Structural control and health monitoring Vol. 27; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1545-2255 1545-2263 |
DOI | 10.1002/stc.2462 |
Cover
Abstract | Summary
This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA‐braced steel frame building is designed to have comparable strength and stiffness with a steel‐moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA‐braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and incremental dynamic analysis. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post‐event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum interstory drift demand at maximum considered earthquake level for satisfactory seismic performance, whereas larger values provide higher collapse capacity for the SMA‐braced frame. |
---|---|
AbstractList | This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA‐braced steel frame building is designed to have comparable strength and stiffness with a steel‐moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA‐braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and incremental dynamic analysis. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post‐event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum interstory drift demand at maximum considered earthquake level for satisfactory seismic performance, whereas larger values provide higher collapse capacity for the SMA‐braced frame. Summary This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA‐braced steel frame building is designed to have comparable strength and stiffness with a steel‐moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA‐braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and incremental dynamic analysis. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post‐event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum interstory drift demand at maximum considered earthquake level for satisfactory seismic performance, whereas larger values provide higher collapse capacity for the SMA‐braced frame. |
Author | Shi, Fei Zhou, Yun Ozbulut, Osman E. |
Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0001-6804-5115 surname: Shi fullname: Shi, Fei organization: Guangzhou University – sequence: 2 givenname: Osman E. orcidid: 0000-0003-3836-3416 surname: Ozbulut fullname: Ozbulut, Osman E. email: ozbulut@virginia.edu organization: University of Virginia – sequence: 3 givenname: Yun surname: Zhou fullname: Zhou, Yun organization: Guangzhou University |
BookMark | eNp1kM1KxDAURoOMoDMKPkLAjZuOzU3baZcy-AeCC2df0vRGI2lSkw7anY_gM_okZhx1Ibq64eZ858I3JRPrLBJyxNI5S1M4DYOcQ1bADtlneZYnAAWf_LzzfI9MQ3iMZAFlvk9erq0ya7QSqVM0PIgeaYed8yMVxriRNl7EvxaDvre0F150OKAP1FkaUIdOS9qjV8534luCRr2_vkm0EdT2noYB0VC1idJmrU0bl-GA7CphAh5-zRlZXZyvllfJze3l9fLsJpFQcUhaUTScoRKNhAwk8LZqFjzlUDYlhxQZtlCkeSUFtAoWfMEhEwyLatGyskQ-I8dbbe_d0xrDUD-6tbfxYg1RklVVwVikTraU9C4Ej6ruve6EH2uW1pta61hrvak1ovNfqNSDGLSzgxfa_BVItoFnbXD8V1zfrZaf_AeFpo1G |
CitedBy_id | crossref_primary_10_1038_s41598_024_70280_2 crossref_primary_10_1016_j_jobe_2023_107384 crossref_primary_10_1016_j_engstruct_2025_119895 crossref_primary_10_1007_s10518_021_01060_w crossref_primary_10_3390_app142210283 crossref_primary_10_1016_j_engstruct_2021_112456 crossref_primary_10_1007_s11709_022_0807_3 crossref_primary_10_1002_stc_2697 crossref_primary_10_1016_j_soildyn_2020_106546 crossref_primary_10_1002_stc_3125 crossref_primary_10_1016_j_engstruct_2022_114935 crossref_primary_10_1016_j_heliyon_2025_e42303 crossref_primary_10_1002_stc_2596 crossref_primary_10_1016_j_soildyn_2023_108113 crossref_primary_10_1016_j_istruc_2023_04_022 crossref_primary_10_1088_1361_665X_ad3bf9 crossref_primary_10_1177_1045389X211027954 crossref_primary_10_1016_j_engstruct_2023_116664 crossref_primary_10_1016_j_soildyn_2021_106794 crossref_primary_10_1155_2024_7970436 crossref_primary_10_1016_j_soildyn_2022_107442 crossref_primary_10_1016_j_tws_2023_111456 crossref_primary_10_1016_j_jobe_2021_103839 crossref_primary_10_1061_JMCEE7_MTENG_19463 crossref_primary_10_1002_eng2_13094 crossref_primary_10_1016_j_istruc_2021_06_019 crossref_primary_10_1016_j_soildyn_2023_108291 crossref_primary_10_1088_1361_665X_ad43cc crossref_primary_10_1002_stc_2625 crossref_primary_10_1016_j_engstruct_2020_110506 crossref_primary_10_1007_s10518_022_01571_0 crossref_primary_10_1002_eqe_3821 crossref_primary_10_1016_j_jcsr_2023_108447 crossref_primary_10_1016_j_jobe_2022_104340 crossref_primary_10_1002_stc_2847 crossref_primary_10_1002_stc_2549 crossref_primary_10_1080_19648189_2020_1858169 crossref_primary_10_1016_j_engstruct_2020_111611 crossref_primary_10_1016_j_conbuildmat_2024_137700 crossref_primary_10_1016_j_istruc_2022_02_064 crossref_primary_10_1177_1045389X231215377 crossref_primary_10_3390_buildings14020407 crossref_primary_10_1016_j_jcsr_2024_108700 crossref_primary_10_3390_app132413205 crossref_primary_10_1016_j_jobe_2021_102914 crossref_primary_10_1155_2022_6797938 crossref_primary_10_1016_j_jobe_2022_105667 crossref_primary_10_1016_j_jobe_2024_109504 |
Cites_doi | 10.1002/eqe.2659 10.1002/eqe.495 10.1002/stc.332 10.1061/(ASCE)0733-9445(2008)134:1(121) 10.1002/stc.327 10.1061/(ASCE)MT.1943-5533.0001457 10.1088/0964-1726/19/6/065004 10.1002/eqe.2523 10.1088/0964-1726/19/8/085006 10.1016/j.engstruct.2017.10.075 10.1016/j.compstruc.2007.01.037 10.1002/stc.159 10.1193/021113EQS025M 10.1002/eqe.2777 10.1007/s10518-018-0415-8 10.1016/j.jcsr.2016.07.002 10.1002/tal.1149 10.1061/(ASCE)0733-9445(2007)133:6(862) 10.1007/s11665-015-1607-x 10.1002/stc.1855 10.1002/stc.428 10.1016/j.engstruct.2016.09.051 10.1002/stc.1644 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-# 10.1002/stc.2233 10.1088/0964-1726/25/5/055030 10.1016/j.jcsr.2014.05.020 10.1016/j.jcsr.2016.11.022 10.1061/(ASCE)ST.1943-541X.0001973 10.1080/13632460601125763 10.1088/1361-665X/aa9819 10.1016/j.jcsr.2015.12.008 10.1007/978-3-319-10136-1_1 10.12989/sss.2011.7.1.041 10.1061/(ASCE)ST.1943-541X.0000376 10.1016/j.engstruct.2015.10.005 10.1002/stc.2110 10.1002/eqe.141 10.12989/sss.2011.8.4.399 10.1088/1361-665X/aa6abc 10.1002/eqe.152 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.2462 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_2462 STC2462 |
Genre | article |
GrantInformation_xml | – fundername: Guangzhou University Graduate Innovative Research funderid: 2017GDJC‐D15 – fundername: Natural Science Foundation of China funderid: 51878195 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2932-da6b31efabc242c23d9b730328b8320e1ed26059ca2df2737324a1e697d188e3 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Sun Sep 07 08:40:41 EDT 2025 Tue Jul 01 01:26:31 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Wed Jan 22 16:40:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2932-da6b31efabc242c23d9b730328b8320e1ed26059ca2df2737324a1e697d188e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3836-3416 0000-0001-6804-5115 |
PQID | 2328499611 |
PQPubID | 2034347 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2328499611 crossref_primary_10_1002_stc_2462 crossref_citationtrail_10_1002_stc_2462 wiley_primary_10_1002_stc_2462_STC2462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2011; 137 2018; 144 2000; 29 2012 2017; 26 2010; 19 2002; 31 2015; 105 2010 2017; 27 2015; 31 2017; 46 2017; 24 2009 2012; 19 2017; 130 2016; 126 2007; 11 2011; 8 2014; 23 2011; 7 2007; 14 2018; 25 2014; 21 1999 2015; 24 2018; 154 2015; 28 2016; 119 2007; 133 2015; 44 2014 2008; 86 2008; 134 2009; 16 2016; 25 2018; 16 2005; 34 2016; 45 2014; 101 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 FEMA P695 (e_1_2_7_46_1) 2009 ASCE 7–10 (e_1_2_7_41_1) 2010 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 23 start-page: 1406 issue: 18 year: 2014 end-page: 1425 article-title: Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces publication-title: Struct Design Tall Spec Build – volume: 27 issue: 1 year: 2017 article-title: Tensile and superelastic fatigue characterization of NiTi shape memory cables publication-title: Smart Mater Struct – volume: 16 start-page: 5937 issue: 12 year: 2018 end-page: 5962 article-title: Probabilistic seismic performance evaluation of SMA‐braced steel frames considering SMA brace failure publication-title: Bulletin Earthq Eng – volume: 25 issue: 3 year: 2018 article-title: Effect of hysteretic properties of SMAs on seismic behavior of self‐centering concentrically braced frames publication-title: Struct Control Health Monit – year: 2009 – volume: 25 issue: 9 year: 2018 article-title: A re‐centering deformation‐amplified shape memory alloy damper for mitigating seismic response of building structures publication-title: Struct Control Health Monit – volume: 16 start-page: 668 issue: 6 year: 2009 end-page: 685 article-title: Seismic performance of benchmark base‐isolated bridges with superelastic Cu–Al–Be restraining damping device publication-title: Struct Control Health Monit – volume: 25 issue: 5 year: 2016 article-title: An innovative seismic bracing system based on a superelastic shape memory alloy ring publication-title: Smart Mater Struct – volume: 130 start-page: 65 year: 2017 end-page: 78 article-title: Investigation of an articulated quadrilateral bracing system utilizing shape memory alloys publication-title: J Constr Steel Res – volume: 31 start-page: 579 issue: 1 year: 2015 end-page: 599 article-title: Efficient analytical fragility function fitting using dynamic structural analysis publication-title: Earthq Spectra – volume: 26 year: 2017 article-title: Evaluating the ductility characteristics of self‐centering buckling‐restrained shape memory alloy braces publication-title: Smart Mater Struct – volume: 126 start-page: 26 year: 2016 end-page: 36 article-title: Seismic collapse evaluation of steel moment resisting frames with superelastic viscous damper publication-title: J Constr Steel Res – volume: 24 issue: 1 year: 2017 article-title: Investigation on the fatigue performance of Ni‐Ti thin wires publication-title: Struct Control Health Monit – volume: 154 start-page: 93 issue: 1 year: 2018 end-page: 102 article-title: Seismic performance of concentrically braced frames with non‐buckling braces: a comparative study publication-title: Eng Struct – volume: 144 issue: 4 year: 2018 article-title: State‐of‐the‐art review on seismic design of steel structures publication-title: J Struct Eng – volume: 86 start-page: 330 issue: 3–5 year: 2008 end-page: 339 article-title: Structural components in shape memory alloy for localized energy dissipation publication-title: Comput Struct – volume: 105 start-page: 152 year: 2015 end-page: 164 article-title: A superelastic viscous damper for enhanced seismic performance of steel moment frames publication-title: Eng Struct – year: 2014 – volume: 28 issue: 4 year: 2015 article-title: Shape memory alloy cables for structural applications publication-title: J Mater Civil Eng – year: 2010 – year: 2012 – volume: 16 start-page: 657 issue: 6 year: 2009 end-page: 667 article-title: An SMA passive device proposed within the highway bridge benchmark publication-title: Struct Control Health Monit – volume: 7 start-page: 41 issue: 1 year: 2011 end-page: 57 article-title: Fatigue laboratory tests toward the design of SMA portico‐braces publication-title: Smart Struct Syst – volume: 101 start-page: 351 year: 2014 end-page: 362 article-title: Influence of the gravity framing system on the collapse performance of special steel moment frames publication-title: J Constr Steel Res – volume: 31 start-page: 1131 issue: 5 year: 2002 end-page: 1150 article-title: Seismic response of self‐centring hysteretic SDOF systems publication-title: Earthq Eng Struct Dyn – volume: 19 year: 2010 article-title: GA‐based optimum design of a shape memory alloy device for seismic response mitigation publication-title: Smart Mater Struct – volume: 24 start-page: 3323 issue: 9 year: 2015 end-page: 3327 article-title: Behavior of NiTi wires for dampers and actuators in extreme conditions publication-title: J Mater Eng Perform – volume: 11 start-page: 326 issue: 3 year: 2007 end-page: 342 article-title: Effect of SMA braces in a steel frame building publication-title: J Earthq Eng – volume: 134 start-page: 121 issue: 1 year: 2008 end-page: 131 article-title: Seismic analysis of concentrically braced frame systems with self‐centering friction damping braces publication-title: J Struct Eng – volume: 8 start-page: 399 issue: 4 year: 2011 end-page: 412 article-title: Energy‐balance assessment of shape memory alloy‐based seismic isolation devices publication-title: Smart Struct Syst – volume: 21 start-page: 1304 issue: 10 year: 2014 end-page: 1315 article-title: Feasibility of tension braces using Cu‐Al‐Mn superelastic alloy bars publication-title: Struct Control Health Monit – volume: 133 start-page: 862 issue: 6 year: 2007 end-page: 870 article-title: Seismic assessment of concentrically braced steel frames with shape memory alloy braces publication-title: J Struct Eng – volume: 119 start-page: 133 year: 2016 end-page: 143 article-title: High‐mode effects on seismic performance of a multi‐story self‐centering‐braced steel frame publication-title: J Constr Steel Res – volume: 19 issue: 8 year: 2010 article-title: Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity publication-title: Smart Mater Struct – volume: 19 start-page: 102 issue: 1 year: 2012 end-page: 119 article-title: Seismic response attenuation of structures using shape memory alloy dampers publication-title: Struct Control Health Monit – volume: 45 start-page: 297 issue: 2 year: 2016 end-page: 314 article-title: Shaking table tests of steel frame with superelastic Cu‐Al‐Mn SMA tension braces publication-title: Earthq Eng Struct Dyn – volume: 130 start-page: 67 year: 2017 end-page: 82 article-title: Performance‐based seismic design of self‐centering steel frames with SMA‐based damping braces publication-title: Eng Struct – volume: 14 start-page: 301 issue: 2 year: 2007 end-page: 320 article-title: Effect of hysteretic properties of superelastic shape memory alloys on the seismic performance of structures publication-title: Struct Control Health Monit – volume: 34 start-page: 1489 issue: 12 year: 2005 end-page: 1511 article-title: Hysteretic models that incorporate strength and stiffness deterioration publication-title: Earthq Eng Struct Dyn – volume: 31 start-page: 491 issue: 3 year: 2002 end-page: 514 article-title: Incremental dynamic analysis publication-title: Earthq Eng Struct Dyn – volume: 137 start-page: 1291 issue: 11 year: 2011 end-page: 1302 article-title: Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading publication-title: J Struct Eng – volume: 46 start-page: 117 issue: 1 year: 2017 end-page: 137 article-title: Shake table test and numerical study of self‐centering steel framewith SMA braces publication-title: Earthq Eng Struct Dyn – volume: 29 start-page: 945 issue: 7 year: 2000 end-page: 968 article-title: Implementation and testing of passive control devices based on shape memory alloys publication-title: Earthq Eng Struct Dyn – volume: 44 start-page: 1391 issue: 9 year: 2015 end-page: 1407 article-title: Aftershock seismic assessment taking into account postmainshock residual drifts publication-title: Earthq Eng Struct Dyn – year: 1999 – ident: e_1_2_7_20_1 doi: 10.1002/eqe.2659 – ident: e_1_2_7_36_1 doi: 10.1002/eqe.495 – ident: e_1_2_7_7_1 doi: 10.1002/stc.332 – ident: e_1_2_7_34_1 – ident: e_1_2_7_45_1 doi: 10.1061/(ASCE)0733-9445(2008)134:1(121) – ident: e_1_2_7_9_1 doi: 10.1002/stc.327 – ident: e_1_2_7_25_1 doi: 10.1061/(ASCE)MT.1943-5533.0001457 – ident: e_1_2_7_19_1 doi: 10.1088/0964-1726/19/6/065004 – ident: e_1_2_7_4_1 doi: 10.1002/eqe.2523 – volume-title: Quantification of building seismic performance factors year: 2009 ident: e_1_2_7_46_1 – ident: e_1_2_7_43_1 doi: 10.1088/0964-1726/19/8/085006 – ident: e_1_2_7_3_1 doi: 10.1016/j.engstruct.2017.10.075 – ident: e_1_2_7_17_1 doi: 10.1016/j.compstruc.2007.01.037 – ident: e_1_2_7_31_1 doi: 10.1002/stc.159 – ident: e_1_2_7_48_1 doi: 10.1193/021113EQS025M – ident: e_1_2_7_22_1 doi: 10.1002/eqe.2777 – ident: e_1_2_7_27_1 doi: 10.1007/s10518-018-0415-8 – ident: e_1_2_7_8_1 doi: 10.1016/j.jcsr.2016.07.002 – ident: e_1_2_7_13_1 doi: 10.1002/tal.1149 – ident: e_1_2_7_14_1 doi: 10.1061/(ASCE)0733-9445(2007)133:6(862) – ident: e_1_2_7_42_1 doi: 10.1007/s11665-015-1607-x – ident: e_1_2_7_44_1 doi: 10.1002/stc.1855 – ident: e_1_2_7_6_1 doi: 10.1002/stc.428 – ident: e_1_2_7_30_1 doi: 10.1016/j.engstruct.2016.09.051 – ident: e_1_2_7_5_1 – ident: e_1_2_7_21_1 doi: 10.1002/stc.1644 – ident: e_1_2_7_16_1 doi: 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-# – ident: e_1_2_7_10_1 doi: 10.1002/stc.2233 – ident: e_1_2_7_24_1 doi: 10.1088/0964-1726/25/5/055030 – ident: e_1_2_7_40_1 doi: 10.1016/j.jcsr.2014.05.020 – ident: e_1_2_7_23_1 doi: 10.1016/j.jcsr.2016.11.022 – ident: e_1_2_7_2_1 doi: 10.1061/(ASCE)ST.1943-541X.0001973 – ident: e_1_2_7_18_1 doi: 10.1080/13632460601125763 – ident: e_1_2_7_26_1 doi: 10.1088/1361-665X/aa9819 – ident: e_1_2_7_38_1 – ident: e_1_2_7_35_1 – ident: e_1_2_7_29_1 doi: 10.1016/j.jcsr.2015.12.008 – ident: e_1_2_7_39_1 doi: 10.1007/978-3-319-10136-1_1 – ident: e_1_2_7_12_1 doi: 10.12989/sss.2011.7.1.041 – ident: e_1_2_7_37_1 doi: 10.1061/(ASCE)ST.1943-541X.0000376 – ident: e_1_2_7_32_1 doi: 10.1016/j.engstruct.2015.10.005 – ident: e_1_2_7_33_1 doi: 10.1002/stc.2110 – ident: e_1_2_7_47_1 doi: 10.1002/eqe.141 – volume-title: Minimum design loads for buildings and other structures year: 2010 ident: e_1_2_7_41_1 – ident: e_1_2_7_11_1 doi: 10.12989/sss.2011.8.4.399 – ident: e_1_2_7_15_1 doi: 10.1088/1361-665X/aa6abc – ident: e_1_2_7_28_1 doi: 10.1002/eqe.152 |
SSID | ssj0026285 |
Score | 2.4480433 |
Snippet | Summary
This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of... This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acceleration Aseismic buildings brace failure Case studies Collapse collapse performance Deformation Design Design parameters Drift Earthquakes Failure analysis Frame structures incremental dynamic analysis Nonlinear analysis Nonlinear response Performance assessment Reinforcement (structures) Seismic activity Seismic analysis Seismic hazard Seismic response shape memory alloy Shape memory alloys SMA bracing system Steel Steel frames Steel structures Stiffness |
Title | Influence of shape memory alloy brace design parameters on seismic performance of self‐centering steel frame buildings |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2462 https://www.proquest.com/docview/2328499611 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtVVhA9pU2ySZocpVqqoAetUPAQ9hUs9oVpwXryJ_gb_SXObJK2ioJ4yiE72WRndvabzew3hBw70mY-08pSXESWp21h8YhFlhZRXfiOToThmb2-CVr33lXH7-RZlXgWJuOHmG244cww_honOBdpbU4amiIDoWfcr8MCpM0_v50xR7l4MtBQpXq-BSbrF7yztlsrBL-uRHN4uQhSzSrTXCMPxftlySVP1clYVOXrN-rG_33AOlnNwSc9y6xlgyzpwSZZWaAk3CIvl0XVEjpMaPrIR5r2MRt3SvEX_ZRCj3BPmcQPisThfUyoSelwQFPdTftdSUfzwwjmIbqXfLy9Yxqo6YSCYekeTVCUirwsd7pN2s2LdqNl5dUZLAkQwQXlBoKBMrmQsMxLl6lIgLtgbijAS9ja0QpjpUhyVyUAkuoA3bijg6iunDDUbIeUBsOB3iUUUJG0FYyKn4QeS0KuIOiUygc7YQFPWJmcFoqKZc5cjgU0enHGuezGMJQxDmWZHM1ajjK2jh_aVApdx_l8TWPAlSHEfoHjlMmJUdqv8vFdu4HXvb823CfLLgbpZt-mQkrj54k-ACQzFofGZj8BYoLzjQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1ED-rBXRzXFkRP0SSdZBI8iQvjetARPAghvQQHZ8OMoJ78BL_RL7Gqk8yoKIinHNKdTrqqq19Vql8BbDjS5j7XylKJiCxP28JKIh5ZWkRV4Ts6FYZn9vwiqF17Jzf-zRDslmdhcn6IfsCNVoax17TAKSC9M2ANzYiC0CP7O-IhziDP6-Cyzx3l0tlAQ5bq-RYqrV8yz9ruTtnz6140AJifYarZZ44m4bZ8wzy95H77sSe25cs38sZ_fsIUTBT4k-3lCjMNQ7o9A-OfWAln4em4LFzCOinL7pKuZi1KyH1m9Jf-meGQeE-Z3A9G3OEtyqnJWKfNMt3IWg3JuoPzCOYhupm-v75RJqgZhKFu6SZLqSsTRWXubA7qR4f1_ZpVFGiwJKIEF-UbCI7yTITEnV66XEUCLQZ3Q4GGwtaOVuQuRTJxVYo4qYroLXF0EFWVE4aaz8Nwu9PWC8AQGElb4az4aejxNEwU-p1S-agqPEhSXoGtUlKxLMjLqYZGM85pl90YpzKmqazAer9lNyfs-KHNcinsuFiyWYzQMkT3L3CcCmwaqf3aP76q79N18a8N12C0Vj8_i8-OL06XYMwln92EcZZhuPfwqFcQ2PTEqlHgD5TJ96w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EQfTgW6zPFURPqUk2SZOjqMU3ohUKHkL2hcW-MC1YT_4Ef6O_xJlN0qooiKccspNNdmZnv9nMfkPIjiNs5jMlLZnwyPKUza0kYpGleFThvqM0Nzyzl1fByZ13VvfreVYlnoXJ-CGGG244M4y_xgnelXp_RBqaIgOhh-53wgsASCAguhlSR7l4NNBwpXq-BTbrF8SztrtfSH5dikb48jNKNctMdZbcFy-YZZc8lvs9XhYv37gb__cFc2QmR5_0IDOXeTKm2gtk-hMn4SJ5Pi3KltCOpulD0lW0hem4A4r_6AcUeoR70mR-UGQOb2FGTUo7bZqqRtpqCNodnUYwD1FN_f76hnmgphMKlqWaVKMo5Xld7nSJ1KrHtcMTKy_PYAnACC5oN-AMtJlwAeu8cJmMOPgL5oYc3IStHCUxWIpE4koNKKkC2C1xVBBVpBOGii2T8XanrVYIBVgkbAmj4uvQYzpMJESdQvpgKCxINCuRvUJRscipy7GCRjPOSJfdGIYyxqEske1hy25G1_FDm_VC13E-YdMYgGUIwV_gOCWya5T2q3x8WzvE6-pfG26RyeujanxxenW-RqZcDNjNHs46Ge899dUGoJoe3zTm-wHE4fZb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+shape+memory+alloy+brace+design+parameters+on+seismic+performance+of+self%E2%80%90centering+steel+frame+buildings&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Shi%2C+Fei&rft.au=Ozbulut%2C+Osman+E.&rft.au=Zhou%2C+Yun&rft.date=2020-01-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=27&rft.issue=1&rft_id=info:doi/10.1002%2Fstc.2462&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |