Unified synchronization and fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural networks

Summary This work primarily concentrates on the design of fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural networks subject to time delay, matched and mismatched disturbances. Moreover, in the addressed network model, we consider parameter uncertainties...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 34; no. 4; pp. 2849 - 2864
Main Authors Satheesh, T., Sakthivel, R., Aravinth, N., Karimi, H.R.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 10.03.2024
Subjects
Online AccessGet full text
ISSN1049-8923
1099-1239
DOI10.1002/rnc.7112

Cover

Abstract Summary This work primarily concentrates on the design of fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural networks subject to time delay, matched and mismatched disturbances. Moreover, in the addressed network model, we consider parameter uncertainties and actuator faults. Firstly in order to estimate the matched disturbances generated by the exogenous system, a disturbance observer is devised. Whereas, the mismatched part is tackled by employing the mixed ℋ∞$$ {\mathscr{H}}_{\infty } $$ and passivity performance indexes. Subsequently, a unified controller is designed by incorporating error feedback control and the disturbance estimate. Further, with the assistance of Lyapunov stability theory and linear matrix inequality technique, an adequate criteria is procured to ascertain the required synchronization criteria for the assayed network model with the mixed ℋ∞$$ {\mathscr{H}}_{\infty } $$ and passivity performance indexes. Following this, by basing on the established conditions, the explicit form of the controller and observer gain matrices is obtained. In the end, a numerical example with simulation results is shown to confirm the potential and usefulness of the conclusions acquired from the theoretical analysis.
AbstractList Summary This work primarily concentrates on the design of fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural networks subject to time delay, matched and mismatched disturbances. Moreover, in the addressed network model, we consider parameter uncertainties and actuator faults. Firstly in order to estimate the matched disturbances generated by the exogenous system, a disturbance observer is devised. Whereas, the mismatched part is tackled by employing the mixed ℋ∞$$ {\mathscr{H}}_{\infty } $$ and passivity performance indexes. Subsequently, a unified controller is designed by incorporating error feedback control and the disturbance estimate. Further, with the assistance of Lyapunov stability theory and linear matrix inequality technique, an adequate criteria is procured to ascertain the required synchronization criteria for the assayed network model with the mixed ℋ∞$$ {\mathscr{H}}_{\infty } $$ and passivity performance indexes. Following this, by basing on the established conditions, the explicit form of the controller and observer gain matrices is obtained. In the end, a numerical example with simulation results is shown to confirm the potential and usefulness of the conclusions acquired from the theoretical analysis.
This work primarily concentrates on the design of fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural networks subject to time delay, matched and mismatched disturbances. Moreover, in the addressed network model, we consider parameter uncertainties and actuator faults. Firstly in order to estimate the matched disturbances generated by the exogenous system, a disturbance observer is devised. Whereas, the mismatched part is tackled by employing the mixed ℋ∞$$ {\mathscr{H}}_{\infty } $$ and passivity performance indexes. Subsequently, a unified controller is designed by incorporating error feedback control and the disturbance estimate. Further, with the assistance of Lyapunov stability theory and linear matrix inequality technique, an adequate criteria is procured to ascertain the required synchronization criteria for the assayed network model with the mixed ℋ∞$$ {\mathscr{H}}_{\infty } $$ and passivity performance indexes. Following this, by basing on the established conditions, the explicit form of the controller and observer gain matrices is obtained. In the end, a numerical example with simulation results is shown to confirm the potential and usefulness of the conclusions acquired from the theoretical analysis.
This work primarily concentrates on the design of fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural networks subject to time delay, matched and mismatched disturbances. Moreover, in the addressed network model, we consider parameter uncertainties and actuator faults. Firstly in order to estimate the matched disturbances generated by the exogenous system, a disturbance observer is devised. Whereas, the mismatched part is tackled by employing the mixed and passivity performance indexes. Subsequently, a unified controller is designed by incorporating error feedback control and the disturbance estimate. Further, with the assistance of Lyapunov stability theory and linear matrix inequality technique, an adequate criteria is procured to ascertain the required synchronization criteria for the assayed network model with the mixed and passivity performance indexes. Following this, by basing on the established conditions, the explicit form of the controller and observer gain matrices is obtained. In the end, a numerical example with simulation results is shown to confirm the potential and usefulness of the conclusions acquired from the theoretical analysis.
Author Satheesh, T.
Aravinth, N.
Sakthivel, R.
Karimi, H.R.
Author_xml – sequence: 1
  givenname: T.
  orcidid: 0000-0003-2186-1187
  surname: Satheesh
  fullname: Satheesh, T.
  organization: Karpagam Academy of Higher Education
– sequence: 2
  givenname: R.
  orcidid: 0000-0002-5528-2709
  surname: Sakthivel
  fullname: Sakthivel, R.
  email: krsakthivel0209@gmail.com
  organization: Bharathiar University
– sequence: 3
  givenname: N.
  orcidid: 0000-0002-1717-7668
  surname: Aravinth
  fullname: Aravinth, N.
  organization: Bharathiar University
– sequence: 4
  givenname: H.R.
  orcidid: 0000-0001-7629-3266
  surname: Karimi
  fullname: Karimi, H.R.
  organization: Politecnico di Milano
BookMark eNp1kMtKAzEUhoMo2FbBRxhw42ZqLnNpllK8QVGQuh4ymQymZpJ6kqHUlVt3PqNPYtq68rI6Jyf_9x_OP0T71lmF0AnBY4IxPQcrxyUhdA8NCOY8JZTx_U2f8XTCKTtEQ-8XGMc_mg3Q-6PVrVZN4tdWPoGz-lUE7WwibJO0ojfh8-0jOKNA2BCHQcd3o33ooRZWqkQ6G8CZpHXwy8O1SRcd9NKopFMdRMxB5Gvh40arehAmlrBy8OyP0EErjFfH33WE5leX8-lNOru_vp1ezFJJOaNpKQpKJiIjUoqsbASLTVbjuikFnmBFaEFITpVimYozLtpCSs4yiVkxiSgbodOd7RLcS698qBauBxs3VpRTglme51lUne1UEpz3oNpqCboTsK4IrjY5VzHnapNzlI5_SKUO2_sDCG3-AtIdsNJGrf81rh7uplv9F0Fsl6U
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3375346
crossref_primary_10_1109_TCSII_2024_3435475
crossref_primary_10_1016_j_jfranklin_2024_106876
crossref_primary_10_1109_ACCESS_2024_3396909
crossref_primary_10_1177_01423312241261747
crossref_primary_10_1177_09596518241246812
crossref_primary_10_1109_ACCESS_2024_3359411
crossref_primary_10_1080_15435075_2024_2415542
crossref_primary_10_1016_j_ejcon_2025_101194
crossref_primary_10_1016_j_chaos_2024_115690
Cites_doi 10.1109/TCYB.2019.2945580
10.1109/JAS.2022.105566
10.1109/TCT.1971.1083337
10.1016/j.amc.2021.126839
10.1016/j.jfranklin.2021.03.026
10.1016/j.jfranklin.2020.09.016
10.1016/j.knosys.2021.107395
10.1109/TNNLS.2020.2985860
10.1109/TCYB.2020.2983481
10.1016/j.chaos.2022.113034
10.1016/j.neunet.2021.06.019
10.1016/j.jfranklin.2018.05.016
10.1016/j.physa.2022.127107
10.1016/j.isatra.2018.09.006
10.1109/TSMC.2021.3101202
10.1109/TCYB.2019.2953236
10.1109/JAS.2022.105692
10.1109/TSMC.2022.3201671
10.1109/TCSI.2020.3004170
10.1002/acs.3283
10.1016/j.knosys.2022.109338
10.1109/TAC.2018.2819683
10.1016/j.ins.2021.09.027
10.1109/TFUZZ.2020.2998519
10.1016/j.nahs.2018.11.001
10.1109/TNNLS.2018.2874035
10.1109/TIE.2019.2902825
10.1016/j.physa.2021.126431
10.1016/j.ins.2020.08.063
10.1016/j.jfranklin.2019.09.015
10.1016/j.jfranklin.2020.03.031
10.1109/TSMC.2021.3061768
10.1109/TNNLS.2020.3009081
10.1002/rnc.6036
10.1038/nature06932
10.1109/TSMC.2021.3071811
10.1016/j.knosys.2022.109104
10.1109/ACCESS.2021.3089374
10.1109/TASE.2022.3184022
10.1109/TNNLS.2020.3017171
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.7112
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 2864
ExternalDocumentID 10_1002_rnc_7112
RNC7112
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
TUS
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2932-7a6218a41cca47da31cc4b0bd7a080e1261152ee34ebd79af6cc934c0368a623
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Sun Jul 13 04:17:09 EDT 2025
Tue Jul 01 01:03:15 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Wed Jan 22 16:14:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-7a6218a41cca47da31cc4b0bd7a080e1261152ee34ebd79af6cc934c0368a623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7629-3266
0000-0002-5528-2709
0000-0002-1717-7668
0000-0003-2186-1187
PQID 2921035554
PQPubID 1026344
PageCount 16
ParticipantIDs proquest_journals_2921035554
crossref_primary_10_1002_rnc_7112
crossref_citationtrail_10_1002_rnc_7112
wiley_primary_10_1002_rnc_7112_RNC7112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 March 2024
PublicationDateYYYYMMDD 2024-03-10
PublicationDate_xml – month: 03
  year: 2024
  text: 10 March 2024
  day: 10
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2022; 596
2022; 252
2022; 250
2019; 51
2019; 50
2021; 544
2019; 32
2023; 167
2018; 63
2018; 83
2022; 418
2020; 32
2021; 143
2021; 52
2022; 415
2018; 47
2023; 20
2021; 35
2022; 585
2022; 582
2020; 51
2019; 66
1971; 18
2018; 355
2021; 358
2022; 9
2020; 357
2019; 356
2021; 230
2018; 30
2022; 52
2022; 53
2020; 67
2022; 32
2008; 453
2020; 29
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
Song S (e_1_2_9_42_1) 2018; 47
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Zhu S (e_1_2_9_5_1) 2022; 415
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 418
  year: 2022
  article-title: Disturbance rejection using SMC‐based‐equivalent‐input‐disturbance approach
  publication-title: Appl Math Comput
– volume: 9
  start-page: 1262
  year: 2022
  end-page: 1272
  article-title: Discounted iterative adaptive critic designs with novel stability analysis for tracking control
  publication-title: IEEE/CAA J Automat Sin
– volume: 47
  start-page: 443
  year: 2018
  end-page: 462
  article-title: Mixed /passive projective synchronization for nonidentical uncertain fractional‐order neural networks based on adaptive sliding mode control
  publication-title: Neural Process Lett
– volume: 83
  start-page: 13
  year: 2018
  end-page: 24
  article-title: Robust control for networked control systems with randomly occurring uncertainties: observer‐based case
  publication-title: ISA Trans
– volume: 415
  year: 2022
  article-title: Event‐triggered synchronization of coupled memristive neural networks
  publication-title: Appl Math Comput
– volume: 20
  start-page: 1663
  year: 2023
  end-page: 1674
  article-title: Adaptive neural self‐triggered bipartite fault‐tolerant control for nonlinear MASs with dead‐zone constraints
  publication-title: IEEE Trans Autom Sci Eng
– volume: 53
  start-page: 1584
  year: 2022
  end-page: 1595
  article-title: Dual event‐triggered constrained control through adaptive critic for discrete‐time zero‐sum games
  publication-title: IEEE Trans Syst Man Cybern: Syst
– volume: 9
  start-page: 89461
  year: 2021
  end-page: 89475
  article-title: Finite‐time mixed /passivity for neural networks with mixed interval time‐varying delays using the multiple integral Lyapunov‐Krasovskii functional
  publication-title: IEEE Access
– volume: 167
  year: 2023
  article-title: Reinforcement learning‐based decentralized fault tolerant control for constrained interconnected nonlinear systems
  publication-title: Chaos Solitons Fract
– volume: 9
  start-page: 893
  year: 2022
  end-page: 906
  article-title: Active disturbance rejection control for uncertain nonlinear systems with sporadic measurements
  publication-title: IEEE/CAA J Automat Sin
– volume: 596
  year: 2022
  article-title: Finite‐time adaptive synchronization of coupled uncertain neural networks via intermittent control
  publication-title: Phys A: Stat Mech Appl
– volume: 250
  year: 2022
  article-title: Fixed‐time synchronization for inertial Cohen‐Grossberg delayed neural networks: an event‐triggered approach
  publication-title: Knowl‐Based Syst
– volume: 230
  year: 2021
  article-title: Finite‐time stabilization of memristor‐based inertial neural networks with time‐varying delays combined with interval matrix method
  publication-title: Knowl‐Based Syst
– volume: 357
  start-page: 6352
  year: 2020
  end-page: 6369
  article-title: Non‐fragile mixed passive and state estimation for singularly perturbed neural networks with semi‐Markov jumping parameters
  publication-title: J Franklin Inst
– volume: 355
  start-page: 4897
  year: 2018
  end-page: 4915
  article-title: Composite fault‐tolerant control with disturbance observer for stochastic systems with multiple disturbances
  publication-title: J Franklin Inst
– volume: 18
  start-page: 507
  year: 1971
  end-page: 519
  article-title: Memristor‐the missing circuit element
  publication-title: IEEE Trans Circuit Theory
– volume: 453
  start-page: 80
  year: 2008
  end-page: 83
  article-title: The missing memristor found
  publication-title: Nature
– volume: 32
  start-page: 2952
  year: 2020
  end-page: 2964
  article-title: Gain‐scheduled finite‐time synchronization for reaction‐diffusion memristive neural networks subject to inconsistent Markov chains
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 52
  start-page: 2994
  year: 2021
  end-page: 3004
  article-title: ℌ state estimation for switched inertial neural networks with time‐varying delays: a persistent dwell‐time scheme
  publication-title: IEEE Trans Syst Man Cybern: Syst
– volume: 252
  year: 2022
  article-title: Finite‐time dissipative control for bidirectional associative memory neural networks with state‐dependent switching and time‐varying delays
  publication-title: Knowl‐Based Syst
– volume: 51
  start-page: 427
  year: 2020
  end-page: 437
  article-title: Periodic event‐triggered synchronization of multiple memristive neural networks with switching topologies and parameter mismatch
  publication-title: IEEE Trans Cybern
– volume: 32
  start-page: 4281
  year: 2022
  end-page: 4299
  article-title: Disturbance estimation and synchronization control design for nonlinear complex dynamical networks with input delays
  publication-title: Int J Robust Nonlinear Control
– volume: 51
  start-page: 2944
  year: 2019
  end-page: 2955
  article-title: Finite‐time and fixed‐time synchronization of coupled memristive neural networks with time delay
  publication-title: IEEE Trans Cybern
– volume: 544
  start-page: 395
  year: 2021
  end-page: 414
  article-title: Fault tolerant sampled‐data control for networked control systems with probabilistic time‐varying delay
  publication-title: Inform Sci
– volume: 67
  start-page: 5233
  year: 2020
  end-page: 5245
  article-title: Robust pinning synchronization for complex networks with event‐triggered communication scheme
  publication-title: IEEE Trans Circuits Syst I: Regul Pap
– volume: 356
  start-page: 9928
  year: 2019
  end-page: 9952
  article-title: Finite/fixed‐time synchronization control of coupled memristive neural networks
  publication-title: J Franklin Inst
– volume: 66
  start-page: 8947
  year: 2019
  end-page: 8957
  article-title: Uncertainty and disturbance estimator based controller equipped with a multiple‐time‐delayed filter to improve the voltage quality of inverters
  publication-title: IEEE Trans Ind Electron
– volume: 29
  start-page: 2349
  year: 2020
  end-page: 2360
  article-title: Sliding‐mode control of fuzzy singularly perturbed descriptor systems
  publication-title: IEEE Trans Fuzzy Syst
– volume: 52
  start-page: 3568
  year: 2021
  end-page: 3580
  article-title: Sampled‐data‐based event‐triggered synchronization strategy for fractional and impulsive complex networks with switching topologies and time‐varying delay
  publication-title: IEEE Trans Syst Man Cybern: Syst
– volume: 30
  start-page: 1841
  year: 2018
  end-page: 1853
  article-title: Nonfragile dissipative synchronization for Markovian memristive neural networks: a gain‐scheduled control scheme
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 50
  start-page: 4008
  year: 2019
  end-page: 4019
  article-title: Coordination control for uncertain networked systems using interval observers
  publication-title: IEEE Trans Cybern
– volume: 357
  start-page: 12308
  year: 2020
  end-page: 12325
  article-title: Fixed‐time synchronization of delayed complex dynamical systems with stochastic perturbation via impulsive pinning control
  publication-title: J Franklin Inst
– volume: 32
  start-page: 65
  year: 2019
  end-page: 78
  article-title: Robust non‐fragile fault detection filter design for delayed singular Markovian jump systems with linear fractional parametric uncertainties
  publication-title: Nonlinear Anal: Hybrid Syst
– volume: 143
  start-page: 377
  year: 2021
  end-page: 385
  article-title: Neural adaptive fault‐tolerant finite‐time control for nonstrict feedback systems: an event‐triggered mechanism
  publication-title: Neural Netw
– volume: 63
  start-page: 4345
  year: 2018
  end-page: 4352
  article-title: Composite robust control for uncertain stochastic nonlinear systems with state delay via a disturbance observer
  publication-title: IEEE Trans Automat Contr
– volume: 585
  year: 2022
  article-title: Finite‐time bipartite synchronization of coupled neural networks with uncertain parameters
  publication-title: Phys A: Stat Mech Appl
– volume: 32
  start-page: 1642
  year: 2020
  end-page: 1653
  article-title: Bipartite synchronization of multiple memristor‐based neural networks with antagonistic interactions
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 358
  start-page: 4602
  year: 2021
  end-page: 4625
  article-title: Observer‐based synchronization of fractional‐order Markovian jump multi‐weighted complex dynamical networks subject to actuator faults
  publication-title: J Franklin Inst
– volume: 32
  start-page: 4191
  year: 2020
  end-page: 4201
  article-title: Synchronization of switched discrete‐time neural networks via quantized output control with actuator fault
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 52
  start-page: 4611
  year: 2022
  end-page: 4622
  article-title: Robust stabilization for a class of nonlinear positive systems with multiple disturbances
  publication-title: IEEE Trans Syst Man Cybern: Syst
– volume: 35
  start-page: 1664
  year: 2021
  end-page: 1684
  article-title: Small‐gain technique‐based adaptive fuzzy command filtered control for uncertain nonlinear systems with unmodeled dynamics and disturbances
  publication-title: Int J Adapt Control Signal Process
– volume: 582
  start-page: 302
  year: 2022
  end-page: 315
  article-title: Stability of stochastic delay switched neural networks with all unstable subsystems: a multiple discretized Lyapunov‐Krasovskii functionals method
  publication-title: Inform Sci
– volume: 47
  start-page: 443
  year: 2018
  ident: e_1_2_9_42_1
  article-title: Mixed H∞$$ {\mathcal{H}}_{\infty } $$/passive projective synchronization for nonidentical uncertain fractional‐order neural networks based on adaptive sliding mode control
  publication-title: Neural Process Lett
– ident: e_1_2_9_18_1
  doi: 10.1109/TCYB.2019.2945580
– ident: e_1_2_9_33_1
  doi: 10.1109/JAS.2022.105566
– ident: e_1_2_9_3_1
  doi: 10.1109/TCT.1971.1083337
– ident: e_1_2_9_31_1
  doi: 10.1016/j.amc.2021.126839
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jfranklin.2021.03.026
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jfranklin.2020.09.016
– ident: e_1_2_9_10_1
  doi: 10.1016/j.knosys.2021.107395
– ident: e_1_2_9_8_1
  doi: 10.1109/TNNLS.2020.2985860
– ident: e_1_2_9_9_1
  doi: 10.1109/TCYB.2020.2983481
– ident: e_1_2_9_26_1
  doi: 10.1016/j.chaos.2022.113034
– ident: e_1_2_9_24_1
  doi: 10.1016/j.neunet.2021.06.019
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jfranklin.2018.05.016
– ident: e_1_2_9_21_1
  doi: 10.1016/j.physa.2022.127107
– ident: e_1_2_9_23_1
  doi: 10.1016/j.isatra.2018.09.006
– ident: e_1_2_9_37_1
  doi: 10.1109/TSMC.2021.3101202
– ident: e_1_2_9_7_1
  doi: 10.1109/TCYB.2019.2953236
– ident: e_1_2_9_13_1
  doi: 10.1109/JAS.2022.105692
– ident: e_1_2_9_30_1
  doi: 10.1109/TSMC.2022.3201671
– ident: e_1_2_9_35_1
  doi: 10.1109/TCSI.2020.3004170
– ident: e_1_2_9_20_1
  doi: 10.1002/acs.3283
– ident: e_1_2_9_36_1
  doi: 10.1016/j.knosys.2022.109338
– ident: e_1_2_9_38_1
  doi: 10.1109/TAC.2018.2819683
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ins.2021.09.027
– ident: e_1_2_9_34_1
  doi: 10.1109/TFUZZ.2020.2998519
– ident: e_1_2_9_43_1
  doi: 10.1016/j.nahs.2018.11.001
– volume: 415
  year: 2022
  ident: e_1_2_9_5_1
  article-title: Event‐triggered synchronization of coupled memristive neural networks
  publication-title: Appl Math Comput
– ident: e_1_2_9_11_1
  doi: 10.1109/TNNLS.2018.2874035
– ident: e_1_2_9_32_1
  doi: 10.1109/TIE.2019.2902825
– ident: e_1_2_9_22_1
  doi: 10.1016/j.physa.2021.126431
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ins.2020.08.063
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jfranklin.2019.09.015
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jfranklin.2020.03.031
– ident: e_1_2_9_17_1
  doi: 10.1109/TSMC.2021.3061768
– ident: e_1_2_9_12_1
  doi: 10.1109/TNNLS.2020.3009081
– ident: e_1_2_9_19_1
  doi: 10.1002/rnc.6036
– ident: e_1_2_9_4_1
  doi: 10.1038/nature06932
– ident: e_1_2_9_16_1
  doi: 10.1109/TSMC.2021.3071811
– ident: e_1_2_9_2_1
  doi: 10.1016/j.knosys.2022.109104
– ident: e_1_2_9_41_1
  doi: 10.1109/ACCESS.2021.3089374
– ident: e_1_2_9_27_1
  doi: 10.1109/TASE.2022.3184022
– ident: e_1_2_9_29_1
  doi: 10.1109/TNNLS.2020.3017171
SSID ssj0009924
Score 2.457138
Snippet Summary This work primarily concentrates on the design of fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural...
This work primarily concentrates on the design of fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural networks...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2849
SubjectTerms Actuators
Control systems design
Controllers
Criteria
Disturbance observers
Error feedback
fault‐tolerant control
Feedback control
Linear matrix inequalities
Memristors
multiple disturbances
multiple memristor‐based neural networks
Neural networks
Parameter uncertainty
Performance indices
Synchronism
synchronization
time delay and parameter uncertainties
Title Unified synchronization and fault‐tolerant anti‐disturbance control for synchronization of multiple memristor‐based neural networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.7112
https://www.proquest.com/docview/2921035554
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NS8MwGMeD7KQH38XplAiip25rm7brUaZjCO4wJgw8lCRNQdw66bqDnrx68zP6SfynL9t8A_HUNiRtmjzp80t58g8hp6bPBRwPMyK4Z0xQuGVwxTDnCR0_AlA0latXI9_03O4tux46wyKqUq-FyfUh5j_c9MjIvtd6gHMxbSxEQxOMH8_MNhg2bVfL5l_2F8pRvp_vZwsANlp4Zqk727QaZcHPnmiBl8uQmnmZzga5K-uXB5c81GepqMvnL9KN_3uBTbJewCe9yK1li6yoeJusLUkS7pBXQGgELKXTp1hmwrn5Ok3K45BGfDZK31_e0slIwcelSEzvcR3CVmaJ0AZEi9h3Chj-do9JRMsARjpW40zWIEF57UpDqqU1Ubs4D0yf7pJB52rQ7hrFdg2GBDOA07kLXuDMhFEwL-Q2TphoitDjwFJlYq4GWFDKZgppPo9cKX2bSfjQForae6QST2K1T6jGQuWFLUfia8Gili-FyR1mhVHTU44nquS87LlAFlLmekeNUZCLMFsB2jbQbVslJ_Ocj7l8xw95amXnB8UAngaWj7kwWMxhVXKW9eKv5YN-r62PB3_NeEhWLaCRkUUF1kglTWbqCGiTiuPMiD8AWUn8xw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ27TsMwFIaPEAzAwB1RrkZCMAWa1GkaMaECKtB2qIrUASlyHEdClBS16QATKxvPyJPwOxdabhJiSmLZufk45zvR8W-iPdMVPhwPN0K4ZwQowjKE4oh5AtsNARRFVdazkRvNcu2aX3bszgQd53NhUn2Ijx9uemQk32s9wPUP6aORamgfA8gx9QrDUxycoSOv09ZIO8p10xVtgcBGBVfNlWeL1lHe8rMvGgHmOKYmfuZ8nm7yO0zTS-4Oh7F_KJ--iDf-8xEWaC7jT3aSGswiTahoiWbHVAmX6QUcGoJM2eAxkol2bjpVk4koYKEYduO359e411VwczEK41scBzCXYd_XNsSy9HcGHv52jl7I8hxGdq_uE2WDPtprbxowra6Ju4vS3PTBCrXPz9rVmpGt2GBIYANQXZSBDIKbsAvuBKKEHe4X_cARIFNlIlwDLyhV4gplrgjLUrolLuFGK2haWqXJqBepNWKaDJUTVGyJDwYPK670TWFzKwiLjrIdv0AHedd5MlMz14tqdL1Uh9ny8G49_W4LtPtR8yFV8Pihzmbe-142hgee5SIcBo7ZvED7STf-2t5rNat6u_7Xijs0XWs36l79onm1QTMWSMlIkgQ3aTLuD9UWSCf2txOLfgcLtwD1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LS8MwHMeDKIgefIvzGUH01Ll2abseRR0-h4wJAw8lzQPErZOtO-jJqzf_Rv8Sv-nD-QTx1DYkbZr80t8n5ZdvCNmxAx7B8TBLwz1jgsIdiyuGOY90Aw2gqCjPrEa-bHgn1-ys7bbzqEqzFibTh3j_4WZGRvq9NgP8Xur9kWhoH-PHt80GwxPMA0gYIGqOpKOCINvQFgRs1fDQQni24uwXJT-7ohFffqTU1M3UZ8lNUcEsuuSuPEyisnj8ot34vzeYIzM5fdKDzFzmyZiKF8j0B03CRfIMCtXgUjp4iEWqnJst1KQ8llTzYSd5fXpJeh0FJ5cgMbnFtYSxDPuRsSCaB79T0PC3e_Q0LSIYaVd1U12DPsobXyqp0dZE7eIsMn2wRFr149bhiZXv12AJQANAnXsABs5sWAXzJa_ihEWVSPocXKpsTNZAC0pVmUJawLUnRFBlAk60hqLVZTIe92K1QqjhQuXLmivwuWC6FojI5i5zpK74yvWjEtkrei4UuZa52VKjE2YqzE6Itg1N25bI9nvO-0y_44c860Xnh_kIHoROgMkwYMxlJbKb9uKv5cNm49AcV_-acYtMXh3Vw4vTxvkamXKASVYaIbhOxpP-UG0Ac5JoM7XnNyQ8_5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unified+synchronization+and+fault%E2%80%90tolerant+anti%E2%80%90disturbance+control+for+synchronization+of+multiple+memristor%E2%80%90based+neural+networks&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Satheesh%2C+T&rft.au=Sakthivel%2C+R&rft.au=Aravinth%2C+N&rft.au=Karimi%2C+H+R&rft.date=2024-03-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=34&rft.issue=4&rft.spage=2849&rft.epage=2864&rft_id=info:doi/10.1002%2Frnc.7112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon