Performance, environment, and cost‐benefit analysis of a split air conditioning unit using HC‐290 and HCFC‐22

A widely used hydrochlorofluorocarbon (HCFC) refrigerant HCFC‐22 in the split air conditioner (AC) is being phased out in all countries under the Montreal Protocol. Propane (HC‐290) is a favorable substitute for HCFC‐22. The performance, environment impact and cost‐benefit analysis of a split AC uni...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental progress & sustainable energy Vol. 41; no. 1
Main Authors Saravanan, A. Lalitha, Prabakaran, Rajendran, Sidney, Shaji, Kim, Sung Chul, Lal, Dhasan Mohan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A widely used hydrochlorofluorocarbon (HCFC) refrigerant HCFC‐22 in the split air conditioner (AC) is being phased out in all countries under the Montreal Protocol. Propane (HC‐290) is a favorable substitute for HCFC‐22. The performance, environment impact and cost‐benefit analysis of a split AC unit operated with HCFC‐22 and HC‐290 has been carried out experimentally under different test conditions prescribed by IS 1391. The results showed that the variation in system performance was more significant for HCFC‐22 than for that of HC‐290 while varying the refrigerant charge. The experienced optimum charges that represent the maximum coefficient of performance (COP) was varied with the working environment and it was realized that, generally the optimum charge for HC‐290 was 50% lesser than that of HCFC‐22. The COP of the AC unit with HC‐290 was observed to be 5% more than that of HCFC‐22. However, the system capacity diminished by 7.8%. The operation of a split AC unit with HC‐290 produced up to 15.9% lesser CO2 emission than that of HCFC‐22 under all the test conditions. The use of HC‐290 in an existing HCFC‐22 split AC system can save up to 12.22% of the life time total cost. Finally, it was inferred that the replacement of HCFC‐22 with HC‐290 in the split AC unit showed dominance in all aspects such as performance, emission, and life time total cost.
AbstractList Abstract A widely used hydrochlorofluorocarbon (HCFC) refrigerant HCFC‐22 in the split air conditioner (AC) is being phased out in all countries under the Montreal Protocol. Propane (HC‐290) is a favorable substitute for HCFC‐22. The performance, environment impact and cost‐benefit analysis of a split AC unit operated with HCFC‐22 and HC‐290 has been carried out experimentally under different test conditions prescribed by IS 1391. The results showed that the variation in system performance was more significant for HCFC‐22 than for that of HC‐290 while varying the refrigerant charge. The experienced optimum charges that represent the maximum coefficient of performance (COP) was varied with the working environment and it was realized that, generally the optimum charge for HC‐290 was 50% lesser than that of HCFC‐22. The COP of the AC unit with HC‐290 was observed to be 5% more than that of HCFC‐22. However, the system capacity diminished by 7.8%. The operation of a split AC unit with HC‐290 produced up to 15.9% lesser CO 2 emission than that of HCFC‐22 under all the test conditions. The use of HC‐290 in an existing HCFC‐22 split AC system can save up to 12.22% of the life time total cost. Finally, it was inferred that the replacement of HCFC‐22 with HC‐290 in the split AC unit showed dominance in all aspects such as performance, emission, and life time total cost.
A widely used hydrochlorofluorocarbon (HCFC) refrigerant HCFC‐22 in the split air conditioner (AC) is being phased out in all countries under the Montreal Protocol. Propane (HC‐290) is a favorable substitute for HCFC‐22. The performance, environment impact and cost‐benefit analysis of a split AC unit operated with HCFC‐22 and HC‐290 has been carried out experimentally under different test conditions prescribed by IS 1391. The results showed that the variation in system performance was more significant for HCFC‐22 than for that of HC‐290 while varying the refrigerant charge. The experienced optimum charges that represent the maximum coefficient of performance (COP) was varied with the working environment and it was realized that, generally the optimum charge for HC‐290 was 50% lesser than that of HCFC‐22. The COP of the AC unit with HC‐290 was observed to be 5% more than that of HCFC‐22. However, the system capacity diminished by 7.8%. The operation of a split AC unit with HC‐290 produced up to 15.9% lesser CO2 emission than that of HCFC‐22 under all the test conditions. The use of HC‐290 in an existing HCFC‐22 split AC system can save up to 12.22% of the life time total cost. Finally, it was inferred that the replacement of HCFC‐22 with HC‐290 in the split AC unit showed dominance in all aspects such as performance, emission, and life time total cost.
Author Lal, Dhasan Mohan
Prabakaran, Rajendran
Sidney, Shaji
Kim, Sung Chul
Saravanan, A. Lalitha
Author_xml – sequence: 1
  givenname: A. Lalitha
  orcidid: 0000-0002-6640-4038
  surname: Saravanan
  fullname: Saravanan, A. Lalitha
  email: irttshane@gmail.com
  organization: Kathir College of Engineering
– sequence: 2
  givenname: Rajendran
  orcidid: 0000-0002-3341-0036
  surname: Prabakaran
  fullname: Prabakaran, Rajendran
  organization: Kongu Engineering College
– sequence: 3
  givenname: Shaji
  orcidid: 0000-0003-3089-5290
  surname: Sidney
  fullname: Sidney, Shaji
  organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences
– sequence: 4
  givenname: Sung Chul
  surname: Kim
  fullname: Kim, Sung Chul
  email: sungkim@ynu.ac.kr
  organization: Yeungnam University
– sequence: 5
  givenname: Dhasan Mohan
  orcidid: 0000-0001-7882-3734
  surname: Lal
  fullname: Lal, Dhasan Mohan
  email: dr.mohanlal29@gmail.com
  organization: College of Engineering Campus, Anna University
BookMark eNp1kM1OAjEUhRuDiYAmPkKXLhjs7zBdmgmICYksdD0pnVtTM7STdtCw8xF8Rp-EAYw7V_fck--cxRmhgQ8eELqlZEoJYffQTimf5ewCDakSIpsJSQZ_WrArNErpnZCcC6WGKK0h2hC32huYYPAfLga_Bd9NsPY1NiF1P1_fG_BgXddbutknl3CwWOPUNkfPxR7ztetc8M6_4Z3v3V06ymXZh5kip65luTi97BpdWt0kuPm9Y_S6mL-Uy2z1_PhUPqwywxRnmZDS6IJxY0ghirzOwRijLC0MFzqXjLOacqZmG8s5UGkZWKHyjaRGSWnB8jG6O_eaGFKKYKs2uq2O-4qS6jhWBW11GqtHszP66RrY_8tV8_WZPwAbQW6y
CitedBy_id crossref_primary_10_1016_j_buildenv_2024_111503
crossref_primary_10_1007_s10973_022_11485_3
crossref_primary_10_1016_j_matpr_2022_04_512
crossref_primary_10_1021_acs_jced_2c00428
crossref_primary_10_1016_j_est_2023_108257
crossref_primary_10_1016_j_ijrefrig_2023_03_003
crossref_primary_10_1007_s11356_022_21263_1
crossref_primary_10_1016_j_buildenv_2022_109890
Cites_doi 10.1016/j.ijggc.2008.07.003
10.1016/j.csite.2021.100855
10.1177/0954408920964005
10.1016/j.applthermaleng.2019.114225
10.1016/j.ijrefrig.2020.01.019
10.1016/j.csite.2018.11.001
10.2298/TSCI1004121R
10.1016/j.egypro.2017.03.084
10.1016/j.ijrefrig.2019.06.012
10.1016/j.applthermaleng.2019.114432
10.1002/ep.13574
10.1016/j.csite.2021.101344
10.1002/ep.13468
10.1016/j.ijrefrig.2020.12.021
10.1016/j.enconman.2014.02.069
10.1063/1.5086566
10.1080/01430750.1995.9675672
10.4028/www.scientific.net/SSP.223.163
10.1016/j.ijrefrig.2020.07.003
10.1016/0140-7007(91)90027-E
10.1016/j.csite.2020.100671
10.1080/23744731.2020.1829456
10.1016/j.ijrefrig.2018.01.019
10.1002/er.1736
10.1080/01457632.2019.1649937
10.1016/j.ijrefrig.2020.01.012
10.1016/j.ijrefrig.2019.09.022
10.1007/s12206-013-0103-1
10.1016/j.applthermaleng.2020.115727
10.1177/0954408919871385
10.1016/j.applthermaleng.2011.08.036
10.1080/08916152.2016.1179357
10.1016/j.ijrefrig.2021.01.006
ContentType Journal Article
Copyright 2021 American Institute of Chemical Engineers.
Copyright_xml – notice: 2021 American Institute of Chemical Engineers.
DBID AAYXX
CITATION
DOI 10.1002/ep.13762
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-7450
EndPage n/a
ExternalDocumentID 10_1002_ep_13762
EP13762
Genre article
GrantInformation_xml – fundername: TEQIP
– fundername: DST‐FIST
GroupedDBID ..I
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BCU
BDRZF
BEC
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GUQSH
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
S0X
SJFOW
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c2932-455ca823cc08486d6eccc9f18c34a65232d13297bf33e15f2ef496b51c955fef3
IEDL.DBID DR2
ISSN 1944-7442
IngestDate Fri Aug 23 02:44:35 EDT 2024
Sat Aug 24 00:58:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-455ca823cc08486d6eccc9f18c34a65232d13297bf33e15f2ef496b51c955fef3
Notes Funding information
TEQIP; DST‐FIST
ORCID 0000-0002-6640-4038
0000-0002-3341-0036
0000-0001-7882-3734
0000-0003-3089-5290
PageCount 11
ParticipantIDs crossref_primary_10_1002_ep_13762
wiley_primary_10_1002_ep_13762_EP13762
PublicationCentury 2000
PublicationDate January/February 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January/February 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Environmental progress & sustainable energy
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 24
2021; 27
1991; 14
2010; 14
2013; 27
2021; 124
2020; 41
1995; 16
2010
2015; 223
2021; 125
2019; 13
2021; 182
2011; 35
2019; 106
1992
2002
2019; 162
2019; 163
2014; 82
2012; 32
2020; 109
2017; 109
2017; 30
2021
2020
2021; 235
2018
2020; 118
2015
2020; 113
2018; 94
2020; 21
2019; 2062
2020; 234
2009; 3
2021; 40
1998; 11
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
Prakash CR (e_1_2_10_32_1) 2021
Ibrahim MMM (e_1_2_10_40_1) 2021; 40
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
Moffat RJ (e_1_2_10_36_1) 1998; 11
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
Mohanraj M (e_1_2_10_5_1) 2020
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 118
  start-page: 250
  year: 2020
  end-page: 260
  article-title: Thermo‐economic and environmental analysis of a small capacity vapor compression refrigeration system using R290, R1234yf, and R600a
  publication-title: Int J Refrig
– volume: 21
  year: 2020
  article-title: Energy and exergy analysis of an R410A small vapor compression system retrofitted with R290
  publication-title: Case Stud Therm Eng
– volume: 32
  start-page: 100
  year: 2012
  end-page: 107
  article-title: Retrofit assessment of window air conditioner
  publication-title: Appl Therm Eng
– volume: 223
  start-page: 163
  year: 2015
  end-page: 170
  article-title: Research works on the influence of substituting the refrigerant R22 with propane (R290) on the condition of the state of sliding surfaces occurring in piston compressors
  publication-title: Solid State Phenom
– volume: 11
  start-page: 3
  year: 1998
  end-page: 17
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp Therm Fluid Sci
– volume: 14
  start-page: 1121
  year: 2010
  end-page: 1138
  article-title: An experimental analysis of the effect of refrigerant charge level and outdoor condition on a window air conditioner
  publication-title: Therm Sci
– volume: 40
  issue: 3
  year: 2021
  article-title: A comparative experimental study on the performance of the air‐conditioning system through effective condenser cooling and preheating the refrigerant
  publication-title: Environ Prog Sustainable Energy
– volume: 2062
  start-page: 020019
  year: 2019
  article-title: Experimental study of small wall room air conditioner for R‐22 retrofitted with R290 95.5%
  publication-title: AIP Conf Proc
– volume: 40
  issue: 3
  year: 2021
  article-title: Feasibility of using near‐azeotropic refrigerant mixture R290/R1234ze(E) as substitute for R22
  publication-title: Environ Prog Sustainable Energy
– volume: 35
  start-page: 647
  issue: 8
  year: 2011
  end-page: 669
  article-title: A review on recent developments in new refrigerant mixtures for vapour compression‐based refrigeration, air‐conditioning and heat pump units
  publication-title: Int J Energy Res
– start-page: 1
  year: 2020
  end-page: 26
  article-title: Environment friendly refrigerant options for automobile air conditioners: a review
  publication-title: J Therm Anal Calorim
– volume: 162
  year: 2019
  article-title: Performance and refrigerant mass distribution of a R290 split air conditioner with different lubricating oils
  publication-title: Appl Therm Eng
– volume: 27
  start-page: 917
  issue: 3
  year: 2013
  end-page: 926
  article-title: Exergy efficiency and irreversibility comparison of R22, R134a, R290 and R407C to replace R22 in an air conditioning system
  publication-title: J Mech Sci Technol
– volume: 163
  year: 2019
  article-title: Experimental study on electronic expansion valve failure of a R290 room air conditioner during heating‐defrosting process
  publication-title: Appl Therm Eng
– start-page: 1
  year: 2021
  end-page: 11
  article-title: CFD simulation of HC‐290 leakage from a split type room air conditioner
  publication-title: Proc Inst Mech Eng Part E
– volume: 235
  start-page: 679
  issue: 3
  year: 2021
  end-page: 693
  article-title: Charge optimisation of a solar milk chiller with direct current compressors
  publication-title: Proc Inst Mech Eng Part E J Process Mech Eng
– year: 2018
– volume: 82
  start-page: 54
  year: 2014
  end-page: 60
  article-title: Replacement of R404A with propane in a light commercial vertical freezer: a parametric study of performances for different system architectures
  publication-title: Energy Conver Manage
– year: 1992
– volume: 234
  start-page: 297
  issue: 4
  year: 2020
  end-page: 307
  article-title: Thermal analysis on optimizing the capillary tube length of a milk chiller using DC compressor operated with HFC‐134a and environment‐friendly HC‐600a refrigerants
  publication-title: Proc Inst Mech Eng Part E
– volume: 109
  start-page: 346
  year: 2017
  end-page: 352
  article-title: Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems
  publication-title: Energy Procedia
– volume: 125
  start-page: 75
  year: 2021
  end-page: 83
  article-title: Hydrocarbon refrigerant charge limits for quiescent rooms
  publication-title: Int J Refrig
– year: 2010
– volume: 106
  start-page: 1
  year: 2019
  end-page: 6
  article-title: Use of peripheral fins for R‐290 charge reduction in split‐type residential air‐conditioners
  publication-title: Int J Refrig
– volume: 13
  year: 2019
  article-title: Room air conditioning performance using liquid‐suction heat exchanger retrofitted with R290
  publication-title: Case Stud Therm Eng
– volume: 24
  year: 2021
  article-title: Performance analysis of solar milk refrigerator using energy efficient R290
  publication-title: Case Stud Therm Eng
– volume: 113
  start-page: 10
  year: 2020
  end-page: 20
  article-title: Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a
  publication-title: Int J Refrig
– volume: 27
  start-page: 226
  issue: 2
  year: 2021
  end-page: 239
  article-title: Experimental and numerical analysis on the performance of R290 rotary compressor used in split room air conditioner at high ambient temperature
  publication-title: Sci Tech Built Environ
– volume: 94
  start-page: 205
  year: 2018
  end-page: 213
  article-title: Experimental study on the tribological characteristic of vane‐roller interface of HC290 rotary compressor with mineral oil
  publication-title: Int J Refrig
– volume: 14
  start-page: 321
  year: 1991
  end-page: 328
  article-title: System performance characteristics of an air conditioner over a range of charging conditions
  publication-title: Int J Refrig
– volume: 16
  start-page: 76
  issue: 2
  year: 1995
  end-page: 82
  article-title: An environmental and thermodymanic analysis to select R22 alternative working fluids
  publication-title: Int J Ambient Energy
– volume: 3
  start-page: 108
  issue: 1
  year: 2009
  end-page: 119
  article-title: Environment friendly alternatives to halogenated refrigerants—a review
  publication-title: Int J Greenhouse Gas Control
– volume: 124
  start-page: 13
  year: 2021
  end-page: 19
  article-title: Experimental investigation on the solubility of R290 in two mineral oils
  publication-title: Int J Refrig
– year: 2002
– volume: 182
  year: 2021
  article-title: Experimental study on the oil return characteristics of miscible or partially miscible oil in R290 room air conditioners
  publication-title: Appl Therm Eng
– volume: 41
  start-page: 1499
  issue: 17
  year: 2020
  end-page: 1511
  article-title: Experimental investigation on the performance of condenser for charge reduction of HC‐290 in a Split air‐conditioning system
  publication-title: Heat Transfer Eng
– volume: 109
  start-page: 37
  year: 2020
  end-page: 44
  article-title: Experimental study on startup characteristics of a R290 room air conditioner under various ambient temperatures
  publication-title: Int J Refrig
– volume: 27
  year: 2021
  article-title: Selection of the best refrigerant for replacing R134a in automobile air conditioning system using different MCDM methods: a comparative study
  publication-title: Case Stud Therm Eng
– year: 2015
– volume: 30
  start-page: 126
  issue: 20
  year: 2017
  end-page: 138
  article-title: Investigations on charge reduction strategiesto use HC290 as an alternative to HCFC22 in a Split air conditioner
  publication-title: Exp Heat Transfer
– volume: 113
  start-page: 38
  year: 2020
  end-page: 48
  article-title: Experimental investigation on a direct‐expansion solar‐assisted heat pump water heater using R290 with micro‐channel heat transfer technology during the winter period
  publication-title: Int J Refrig
– ident: e_1_2_10_44_1
– ident: e_1_2_10_2_1
  doi: 10.1016/j.ijggc.2008.07.003
– ident: e_1_2_10_29_1
  doi: 10.1016/j.csite.2021.100855
– ident: e_1_2_10_33_1
– ident: e_1_2_10_37_1
  doi: 10.1177/0954408920964005
– ident: e_1_2_10_23_1
  doi: 10.1016/j.applthermaleng.2019.114225
– ident: e_1_2_10_14_1
  doi: 10.1016/j.ijrefrig.2020.01.019
– volume: 11
  start-page: 3
  year: 1998
  ident: e_1_2_10_36_1
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp Therm Fluid Sci
  contributor:
    fullname: Moffat RJ
– ident: e_1_2_10_16_1
  doi: 10.1016/j.csite.2018.11.001
– ident: e_1_2_10_39_1
  doi: 10.2298/TSCI1004121R
– ident: e_1_2_10_10_1
  doi: 10.1016/j.egypro.2017.03.084
– ident: e_1_2_10_35_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.ijrefrig.2019.06.012
– ident: e_1_2_10_25_1
  doi: 10.1016/j.applthermaleng.2019.114432
– ident: e_1_2_10_21_1
  doi: 10.1002/ep.13574
– ident: e_1_2_10_30_1
  doi: 10.1016/j.csite.2021.101344
– volume: 40
  start-page: e13468
  issue: 3
  year: 2021
  ident: e_1_2_10_40_1
  article-title: A comparative experimental study on the performance of the air‐conditioning system through effective condenser cooling and preheating the refrigerant
  publication-title: Environ Prog Sustainable Energy
  doi: 10.1002/ep.13468
  contributor:
    fullname: Ibrahim MMM
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ijrefrig.2020.12.021
– ident: e_1_2_10_8_1
  doi: 10.1016/j.enconman.2014.02.069
– ident: e_1_2_10_18_1
  doi: 10.1063/1.5086566
– ident: e_1_2_10_41_1
  doi: 10.1080/01430750.1995.9675672
– ident: e_1_2_10_26_1
  doi: 10.4028/www.scientific.net/SSP.223.163
– ident: e_1_2_10_43_1
  doi: 10.1016/j.ijrefrig.2020.07.003
– ident: e_1_2_10_38_1
  doi: 10.1016/0140-7007(91)90027-E
– ident: e_1_2_10_34_1
– ident: e_1_2_10_9_1
  doi: 10.1016/j.csite.2020.100671
– ident: e_1_2_10_19_1
  doi: 10.1080/23744731.2020.1829456
– ident: e_1_2_10_27_1
  doi: 10.1016/j.ijrefrig.2018.01.019
– ident: e_1_2_10_3_1
  doi: 10.1002/er.1736
– ident: e_1_2_10_13_1
  doi: 10.1080/01457632.2019.1649937
– ident: e_1_2_10_28_1
  doi: 10.1016/j.ijrefrig.2020.01.012
– start-page: 1
  year: 2021
  ident: e_1_2_10_32_1
  article-title: CFD simulation of HC‐290 leakage from a split type room air conditioner
  publication-title: Proc Inst Mech Eng Part E
  contributor:
    fullname: Prakash CR
– ident: e_1_2_10_4_1
– start-page: 1
  year: 2020
  ident: e_1_2_10_5_1
  article-title: Environment friendly refrigerant options for automobile air conditioners: a review
  publication-title: J Therm Anal Calorim
  contributor:
    fullname: Mohanraj M
– ident: e_1_2_10_20_1
  doi: 10.1016/j.ijrefrig.2019.09.022
– ident: e_1_2_10_7_1
– ident: e_1_2_10_17_1
  doi: 10.1007/s12206-013-0103-1
– ident: e_1_2_10_24_1
  doi: 10.1016/j.applthermaleng.2020.115727
– ident: e_1_2_10_6_1
– ident: e_1_2_10_42_1
  doi: 10.1177/0954408919871385
– ident: e_1_2_10_11_1
  doi: 10.1016/j.applthermaleng.2011.08.036
– ident: e_1_2_10_12_1
  doi: 10.1080/08916152.2016.1179357
– ident: e_1_2_10_31_1
  doi: 10.1016/j.ijrefrig.2021.01.006
SSID ssj0063499
Score 2.3806105
Snippet A widely used hydrochlorofluorocarbon (HCFC) refrigerant HCFC‐22 in the split air conditioner (AC) is being phased out in all countries under the Montreal...
Abstract A widely used hydrochlorofluorocarbon (HCFC) refrigerant HCFC‐22 in the split air conditioner (AC) is being phased out in all countries under the...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms COP
global warming potential
HCFC‐22
HC‐290
total equivalent warming impact
Title Performance, environment, and cost‐benefit analysis of a split air conditioning unit using HC‐290 and HCFC‐22
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.13762
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FucXEcTTurVp0jZHGRvFgwxxMPBQmi8ZwjbW7uLJP8G_0b_El3TdpiCIp9LwUkKS99n3fg-hGxJIaWKhPE3BRaEq0V6ifBCGMTi4WhirJ2y2xUOUDun9iI2WWZW2FqbCh1gF3CxnOHltGTwXRWcNGqpn7QC4w4pfi6Nn7aHHFXJUFFLXOhJcdOrFlJIad9YnnXriN020aZk61dLfQ8_1oqqMktf2ohRt-fYDr_F_q95Hu0uLE99VV-QAbenJIdrZwCE8QsVgXT7Qwhu1by2cTxSW06L8fP8QIBbNuIShCscETw3OcQFWLIyN50Bmf39X8V28AFGBbVL9C067MJlw330r7fbdKzlGw37vqZt6y24MngSTgHiUMZknJJTSQvBHKoLDl9wEiQxpHoE_S5RtWh8LE4Y6YIZoQ3kkWCA5Y0ab8AQ1JtOJPkWYMxrHCSfG8IRyQQQNtPJlooixkGFBE13XJ5PNKtCNrIJXJpmeZW4Dm-jW7fOvBFlv4J5nfyU8R9vE1ja4-MoFapTzhb4Ei6MUV-5ufQHGd9Md
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jPqgP3sV5jSA-rbNNk17wSeZG1TmGbLAHoSxpIkPYxta9-ORP8Df6SzxJ120KgvhUGk5KSHKuPec7CF0QRwjl88SSFFwUmgTSChIbhKEPDq7kSusJnW3R9KIOve-ybgFd57UwGT7EPOCmOcPIa83gOiB9tUANlaOKA-wB8ncFuJ1prrx9mmNHeS41zSPBSaeWTynJkWdtcpXP_KaLlm1To1zqm-g5X1aWU_Jamaa8It5-IDb-c91baGNmdOKb7JZso4Ic7KD1JSjCXTRpLSoIynip_K2Me4MEi-Ek_Xz_4CAZVT-FoQzKBA8V7uEJGLIw1h8Dmf4DnoV48RSkBdZ59S84qsJkEtrmW1G1bl7JHurUa-1qZM0aMlgCrAJiUcZELyCuEBqF30s8OH8RKicQLu154NKSRPet97lyXekwRaSioceZI0LGlFTuPioOhgN5gHDIqO8HIVEqDGjICaeOTGwRJERp1DCnhM7zo4lHGe5GnCEsk1iOYrOBJXRpNvpXgrjWMs_DvxKeodWo_diIG3fNhyO0RnSpgwm3HKNiOp7KEzBAUn5qLtoXC03XPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5EQfTgLtZ1BPHUtMlksh2lC3WhFLFQ8BAymxQhDW168eRP8Df6S3wzadoqCOIpZHgThpl5a977HkJXxOFcBUxYkoKLQkUorVDYIAwDcHAlU1pP6GyLrt_p07uBN5hlVepamAIfYh5w05xh5LVm8Eyo-gI0VGY1B7gDxO8a9V2iHa_m4xw6ynep6R0JPjq1AkpJCTxrk3o585sqWjZNjW5pb6PnclVFSslrbZqzGn_7Adj4v2XvoK2ZyYlvijuyi1Zkuoc2l4AI99Gkt6gfqOKl4rcqTlKB-WiSf75_MJCLapjDUAFkgkcKJ3gCZiyMDcdApv9_FwFePAVZgXVW_QvuNGAyiWzzrU6jbV7JAeq3W0-NjjVrx2BxsAmIRT2PJyFxOdcY_L7w4fR5pJyQuzTxwaElQnetD5hyXel4ikhFI595Do88T0nlHqLVdJTKI4QjjwZBGBGlopBGjDDqSGHzUBClMcOcCrosTybOCtSNuMBXJrHMYrOBFXRt9vlXgrjVM8_jvxJeoPVesx0_3HbvT9AG0XUOJtZyilbz8VSegfWRs3Nzzb4Ar8DV7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance%2C+environment%2C+and+cost%E2%80%90benefit+analysis+of+a+split+air+conditioning+unit+using+HC+%E2%80%90290+and+HCFC+%E2%80%9022&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Saravanan%2C+A.+Lalitha&rft.au=Prabakaran%2C+Rajendran&rft.au=Sidney%2C+Shaji&rft.au=Kim%2C+Sung+Chul&rft.date=2022-01-01&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=41&rft.issue=1&rft_id=info:doi/10.1002%2Fep.13762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ep_13762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon