3D skeleton‐based action recognition by representing motion capture sequences as 2D‐RGB images
In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of cheaper depth sensors. State‐of‐the‐art methods generally represent motion sequences as high dimensional trajectories followed by a time‐warping te...
Saved in:
Published in | Computer animation and virtual worlds Vol. 28; no. 3-4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of cheaper depth sensors. State‐of‐the‐art methods generally represent motion sequences as high dimensional trajectories followed by a time‐warping technique. These trajectories are used to train a classification model to predict the classes of new sequences. Despite the success of these techniques in some fields, particularly when the data used are captured by a high‐precision motion capture system, action classification is still less successful than the field of image classification, especially with the advance of deep learning. In this paper, we present a new representation of motion sequences (Seq2Im—for sequence to image), which projects motion sequences onto the RGB domain. The 3D coordinates of joints are mapped to red, green, and blue values, and therefore, action classification becomes an image classification problem and algorithms for this field can be applied. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results.
In this paper, we present a new representation of motion sequences (Seq2Im‐for sequence to image), which projects motion sequences onto the RGB domain. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results. |
---|---|
AbstractList | In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of cheaper depth sensors. State‐of‐the‐art methods generally represent motion sequences as high dimensional trajectories followed by a time‐warping technique. These trajectories are used to train a classification model to predict the classes of new sequences. Despite the success of these techniques in some fields, particularly when the data used are captured by a high‐precision motion capture system, action classification is still less successful than the field of image classification, especially with the advance of deep learning. In this paper, we present a new representation of motion sequences (Seq2Im—for sequence to image), which projects motion sequences onto the RGB domain. The 3D coordinates of joints are mapped to red, green, and blue values, and therefore, action classification becomes an image classification problem and algorithms for this field can be applied. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results. In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of cheaper depth sensors. State‐of‐the‐art methods generally represent motion sequences as high dimensional trajectories followed by a time‐warping technique. These trajectories are used to train a classification model to predict the classes of new sequences. Despite the success of these techniques in some fields, particularly when the data used are captured by a high‐precision motion capture system, action classification is still less successful than the field of image classification, especially with the advance of deep learning. In this paper, we present a new representation of motion sequences (Seq2Im—for sequence to image), which projects motion sequences onto the RGB domain. The 3D coordinates of joints are mapped to red, green, and blue values, and therefore, action classification becomes an image classification problem and algorithms for this field can be applied. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results. In this paper, we present a new representation of motion sequences (Seq2Im‐for sequence to image), which projects motion sequences onto the RGB domain. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results. |
Author | Laraba, Sohaib Brahimi, Mohammed Dutoit, Thierry Tilmanne, Joëlle |
Author_xml | – sequence: 1 givenname: Sohaib orcidid: 0000-0002-7937-4149 surname: Laraba fullname: Laraba, Sohaib email: sohaib.laraba@umons.ac.be organization: University of Mons – sequence: 2 givenname: Mohammed orcidid: 0000-0003-2034-644X surname: Brahimi fullname: Brahimi, Mohammed organization: Mohamed El Bachir El Ibrahimi University – sequence: 3 givenname: Joëlle surname: Tilmanne fullname: Tilmanne, Joëlle organization: University of Mons – sequence: 4 givenname: Thierry surname: Dutoit fullname: Dutoit, Thierry organization: University of Mons |
BookMark | eNp1kMtKAzEUhoNUsFbBRxhw42ZqbnPJsrZahYIgKu5CJnOmTJ0mNZkq3fkIPqNPYqYVF6Kr85_Dd27_IeoZawChE4KHBGN6rtXrkGQ53UN9kvA05jR76v3olBygQ-8XgUwpwX1UsEnkn6GB1prP949CeSgjpdvamsiBtnNTb3WxCenKgQfT1mYeLe22rNWqXTuIPLyswWjwkfIRnYRJd9OLqF6qOfgjtF-pxsPxdxygh6vL-_F1PLud3oxHs1hTwWjMIOMZywmjPK14krOUUaKSEgStcqbTCmdYaVWIJIUyEWXCWSaqigFNCq0EZgN0upu7cjZc41u5sGtnwkpJBCacC5J31HBHaWe9d1BJXbeqe6Z1qm4kwbLzUQYfZedjaDj71bBy4TG3-QuNd-hb3cDmX06OR49b_gtcjYTq |
CitedBy_id | crossref_primary_10_3390_s24082595 crossref_primary_10_3390_s21134443 crossref_primary_10_3390_biomimetics9050296 crossref_primary_10_1109_JSEN_2019_2955929 crossref_primary_10_1051_matecconf_201927702034 crossref_primary_10_1007_s00371_018_1498_6 crossref_primary_10_1016_j_is_2018_04_002 crossref_primary_10_1007_s11042_022_12091_z crossref_primary_10_3390_app112211050 crossref_primary_10_1109_TAFFC_2023_3305197 crossref_primary_10_3390_s20082226 crossref_primary_10_1109_ACCESS_2021_3075766 crossref_primary_10_1007_s00530_021_00754_0 crossref_primary_10_1007_s11042_019_7356_3 crossref_primary_10_1038_s41597_021_01101_8 crossref_primary_10_1007_s11042_019_07827_3 crossref_primary_10_1007_s10489_022_03436_0 crossref_primary_10_1016_j_jvcir_2018_11_042 crossref_primary_10_1049_iet_ipr_2019_0588 crossref_primary_10_1155_2022_8393612 crossref_primary_10_3390_electronics13020269 crossref_primary_10_1109_TMM_2019_2904880 crossref_primary_10_1002_cav_1996 crossref_primary_10_1002_cav_2005 crossref_primary_10_1007_s00530_021_00767_9 |
Cites_doi | 10.1109/CVPRW.2010.5543273 10.1109/CVPR.2016.115 10.1109/CVPR.2014.98 10.1016/j.patrec.2014.04.011 10.1007/11744085_28 10.1609/aaai.v31i1.10866 10.1016/j.jvcir.2013.04.007 10.1109/CVPR.2017.137 10.1109/CVPRW.2012.6239175 10.1109/CVPR.2014.220 10.1109/CVPRW.2012.6239232 10.1109/CVPR.2009.5206848 10.1002/cav.1715 10.1007/978-3-319-46487-9_50 10.1109/ICEEI.2011.6021605 10.1145/2502081.2502103 10.1038/nature14539 10.1109/CVPR.2014.82 10.1007/s11263-012-0550-7 10.1109/CVPR.2015.7298714 10.1109/CVPRW.2012.6239233 10.1109/ACT.2009.218 10.1109/CVPR.2016.484 10.1016/j.imavis.2009.11.014 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.1782 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_1782 CAV1782 |
Genre | article |
GrantInformation_xml | – fundername: Wallonia funderid: n 600676 – fundername: Numediart and Infortech of the University of Mons (UMONS) – fundername: EU |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2932-3e7473813246f45836321a5de92f83c6f070acab956ed59d54379ff3e25bca903 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Wed Aug 13 06:02:49 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Thu Jul 03 08:24:07 EDT 2025 Wed Jan 22 16:34:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2932-3e7473813246f45836321a5de92f83c6f070acab956ed59d54379ff3e25bca903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7937-4149 0000-0003-2034-644X |
PQID | 1901449180 |
PQPubID | 2034909 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1901449180 crossref_citationtrail_10_1002_cav_1782 crossref_primary_10_1002_cav_1782 wiley_primary_10_1002_cav_1782_CAV1782 |
PublicationCentury | 2000 |
PublicationDate | May/August 2017 2017-05-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May/August 2017 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 2 2012 2011 2015; 521 2010 2010; 28 2009 2013; 101 2014; 48 2016; 31 2007 2014; 25 2006 2016 2015 2014 2013 2016; 27 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_11_1 Zhang C (e_1_2_7_13_1) 2012; 2 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 Bao J (e_1_2_7_18_1) 2016; 31 |
References_xml | – start-page: 1033 year: 2011 end-page: 1040 – start-page: 359 year: 2006 end-page: 372 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 2 start-page: 12 issue: 4 year: 2012 article-title: RGB‐D camera‐based daily living activity recognition publication-title: J Comput Vis Image Process – volume: 28 start-page: 976 issue: 6 year: 2010 end-page: 990 article-title: A survey on vision‐based human action recognition publication-title: Image Vis Comput – start-page: 20 year: 2012 end-page: 27 – start-page: 770 year: 2016 end-page: 778 – year: 2007 – start-page: 23 year: 2013 end-page: 32 – start-page: 1701 year: 2014 end-page: 1708 – start-page: 248 year: 2009 end-page: 255 – start-page: 1 year: 2011 end-page: 5 – start-page: 1110 year: 2015 end-page: 1118 – year: 2016 – start-page: 9 year: 2010 end-page: 14 – start-page: 4471 year: 2016 end-page: 4479 – volume: 48 start-page: 70 year: 2014 end-page: 80 article-title: Human activity recognition from 3D data: A review publication-title: Pattern Recogn Lett – year: 2014 – start-page: 588 year: 2014 end-page: 595 – volume: 31 start-page: 11 issue: 4 year: 2016 end-page: 22 article-title: Action recognition based on conceptors of skeleton joint trajectories publication-title: Rev Fac Ing – start-page: 859 year: 2009 end-page: 863 – start-page: 1097 year: 2012 end-page: 1105 – start-page: 1 year: 2015 end-page: 9 – volume: 101 start-page: 420 issue: 3 year: 2013 end-page: 436 article-title: Exploring the trade‐off between accuracy and observational latency in action recognition publication-title: Int J Comput Vis – start-page: 137 year: 2006 end-page: 146 – start-page: 14 year: 2012 end-page: 19 – start-page: 724 year: 2014 end-page: 731 – start-page: 7 year: 2012 end-page: 12 – volume: 27 start-page: 321 issue: 3‐4 year: 2016 end-page: 329 article-title: Dance performance evaluation using hidden Markov models publication-title: Comput Anim Virtual Worlds – start-page: 816 year: 2016 end-page: 833 – volume: 25 start-page: 24 issue: 1 year: 2014 end-page: 38 article-title: Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition publication-title: J Vis Commun Image Represent – year: 2013 – ident: e_1_2_7_22_1 doi: 10.1109/CVPRW.2010.5543273 – ident: e_1_2_7_23_1 doi: 10.1109/CVPR.2016.115 – ident: e_1_2_7_31_1 doi: 10.1109/CVPR.2014.98 – ident: e_1_2_7_3_1 doi: 10.1016/j.patrec.2014.04.011 – ident: e_1_2_7_27_1 doi: 10.1007/11744085_28 – ident: e_1_2_7_32_1 doi: 10.1609/aaai.v31i1.10866 – ident: e_1_2_7_24_1 doi: 10.1016/j.jvcir.2013.04.007 – ident: e_1_2_7_17_1 doi: 10.1109/CVPR.2017.137 – ident: e_1_2_7_25_1 – ident: e_1_2_7_15_1 doi: 10.1109/CVPRW.2012.6239175 – ident: e_1_2_7_7_1 doi: 10.1109/CVPR.2014.220 – ident: e_1_2_7_29_1 doi: 10.1109/CVPRW.2012.6239232 – ident: e_1_2_7_12_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_7_16_1 doi: 10.1002/cav.1715 – ident: e_1_2_7_35_1 doi: 10.1007/978-3-319-46487-9_50 – ident: e_1_2_7_8_1 – ident: e_1_2_7_5_1 – ident: e_1_2_7_14_1 doi: 10.1109/ICEEI.2011.6021605 – ident: e_1_2_7_30_1 doi: 10.1145/2502081.2502103 – ident: e_1_2_7_10_1 doi: 10.1038/nature14539 – ident: e_1_2_7_4_1 doi: 10.1109/CVPR.2014.82 – ident: e_1_2_7_21_1 – ident: e_1_2_7_28_1 doi: 10.1007/s11263-012-0550-7 – ident: e_1_2_7_34_1 doi: 10.1109/CVPR.2015.7298714 – ident: e_1_2_7_6_1 doi: 10.1109/CVPRW.2012.6239233 – ident: e_1_2_7_19_1 – ident: e_1_2_7_20_1 doi: 10.1109/ACT.2009.218 – ident: e_1_2_7_33_1 doi: 10.1109/CVPR.2016.484 – volume: 31 start-page: 11 issue: 4 year: 2016 ident: e_1_2_7_18_1 article-title: Action recognition based on conceptors of skeleton joint trajectories publication-title: Rev Fac Ing – volume: 2 start-page: 12 issue: 4 year: 2012 ident: e_1_2_7_13_1 article-title: RGB‐D camera‐based daily living activity recognition publication-title: J Comput Vis Image Process – ident: e_1_2_7_9_1 – ident: e_1_2_7_26_1 – ident: e_1_2_7_2_1 doi: 10.1016/j.imavis.2009.11.014 – ident: e_1_2_7_11_1 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0026210 |
Score | 2.3654532 |
Snippet | In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3D data representation action recognition Algorithms Artificial neural networks Classification Color imagery convolutional neural networks Human motion Image classification Machine learning Motion capture Moving object recognition Neural networks State of the art Three dimensional motion Trajectories |
Title | 3D skeleton‐based action recognition by representing motion capture sequences as 2D‐RGB images |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.1782 https://www.proquest.com/docview/1901449180 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6ykx78LU6nRBA9dWvTtGuPc3MODx6GGwMPJUlTGOocdhP05J_g3-hf4ntN26koiL20lKS0ecn7vte8fCHkWCue8Jg7lvITZfHAlpaEw3KaMoBogCGIY7bFld8b8MuRN8qzKnEtjNGHKH-44cjI_DUOcCHTxkI0VImnugP4Bu4XU7WQD_VL5SjmMyNE4HHfwiih0J21WaOo-BWJFvTyM0nNUKa7Rm6K9zPJJbf1-UzW1cs36cb_fcA6Wc3JJ22Z3rJBlvRkk6wMx-nc3E23iHQ7NL0FLAJO-P76hiAXU7P4gZbJRnAtn2mmh4lrlwD9qNkNiCoxxSkJWmZoU5FS1oEn9S_O6PgevFe6TQbd8-t2z8r3YbAUkAFmuRpiDkB2MJuf4Dyr7zJHeLEOWRK4YGRwG0IJCaGWjr0w9lDjMElczTypRGi7O6QyeZjoXUJtHfpBoF3FlOCesAULtNC6Cfbyta15lZwWNolULlKOe2XcRUZemUXQahG2WpUclSWnRpjjhzK1wqxRPjTTCBkQ56ET2FVyktnn1_pRuzXE895fC-6TZYawnyVE1khl9jjXB0BaZvIw654f8mLqeA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BPUAPUH6qLlBqJH5OWRLHCcmhB2ALy-8BAeIWbMeREGVBZBdET30E3qOv0qfok3QmTsKPQOLCgVwSRY7l2DP-ZuzxNwBzRotMpMJzdJhpR0SuchRejresIvQGOIE4RVvshe1DsXUcHPfBn-osjOWHqBfcSDOK-ZoUnBakl-5ZQ7W8bnoIcGVE5ba5vUF_Lf--2cLBned8_cfBWtspUwo4GnGNO75B8xlBClsQZrRlGPrck0FqYp5FPrYXNUBqqdBrMGkQpwHR9WWZb3igtIxdH-vthw-UQJyI-lv7NVcVD7mlPghE6JBfUjHdunypaulj7Ls3aB-axQWurY_A36pHbDjLWbPXVU396wlZ5Dvpsk8wXNrXbMUqxCj0mc4YfDw6zXv2bT4Oym-x_AzhFs3ef7_vCMdTZs93sDqeCp_VLSsoP-l4FgI8swmPmJaXtOvC6iB0JnPGW1jT_sYqOz3HCTqfgMM3-cnPMNC56JgvwFwTh1FkfM21FIF0JY-MNGYZBSQ0rhENWKyEINElDzulA_mZWAZpnuAoJTRKDZitS15a7pFnykxXcpSUs0-ekJEnROxFbgMWCoF48ftkbeWI7pOvLfgNBtsHuzvJzube9hQMcbJyivjPaRjoXvXMV7TRumqm0A0GJ28tWf8BueJGTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL0CKiG6gPKoOkCpkXisMiSOY5JFF0A6PIUqBIhdsB1HQpRhRGZAsOIT-I7-Cn_Bl_Q6TsJDRWLDgmwSRU7k2Pf6HMfX5wLMacUyljLPUTxTDgtd6Ug8HG9ZhjgboAbETbTFLt84YFtHwVEf_K32wlh9iPqHm_GMYrw2Dt5Js6VH0VAlLpse4lsZULmtr69wupb_3Iyxb-cpbf3aX9twyowCjkJYo46vkT0jRmEFeGZWDLlPPRGkOqJZ6GN10QGEEhInDToNojQwan1Z5msaSCUi18f39sMnxt3IpImI92qpKsqpVT4IGHfMtKQSunXpUlXT59D3yGefsuIC1lojcF81iI1mOW32urKpbl5oRX6MFvsCwyW7JivWHUahT7fH4PPhSd6zd_NxkH5M8lMEWyS9D7d3BsVTYnd3kDqaCq_lNSkEP83mLIR3YtMdESU6Zs2F1CHoROSExvimvfVVcnKGw3M-AQfv8pFfYaB93tbfgLg64mGofUWVYIFwBQ210HoZ7YNrV7MGLFY2kKhShd0kA_mTWP1ommAvJaaXGjBbl-xY5ZH_lJmuzCgpx548MRSPscgL3QYsFPbw6vPJ2sqhOU--teAPGPwdt5Kdzd3tKRiihuIUwZ_TMNC96OnvSNC6cqbwDALH721Y_wCGdUT8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+skeleton%E2%80%90based+action+recognition+by+representing+motion+capture+sequences+as+2D%E2%80%90RGB+images&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Laraba%2C+Sohaib&rft.au=Brahimi%2C+Mohammed&rft.au=Tilmanne%2C+Jo%C3%ABlle&rft.au=Dutoit%2C+Thierry&rft.date=2017-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=28&rft.issue=3-4&rft_id=info:doi/10.1002%2Fcav.1782&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_1782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |