3D skeleton‐based action recognition by representing motion capture sequences as 2D‐RGB images

In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of cheaper depth sensors. State‐of‐the‐art methods generally represent motion sequences as high dimensional trajectories followed by a time‐warping te...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 28; no. 3-4
Main Authors Laraba, Sohaib, Brahimi, Mohammed, Tilmanne, Joëlle, Dutoit, Thierry
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of cheaper depth sensors. State‐of‐the‐art methods generally represent motion sequences as high dimensional trajectories followed by a time‐warping technique. These trajectories are used to train a classification model to predict the classes of new sequences. Despite the success of these techniques in some fields, particularly when the data used are captured by a high‐precision motion capture system, action classification is still less successful than the field of image classification, especially with the advance of deep learning. In this paper, we present a new representation of motion sequences (Seq2Im—for sequence to image), which projects motion sequences onto the RGB domain. The 3D coordinates of joints are mapped to red, green, and blue values, and therefore, action classification becomes an image classification problem and algorithms for this field can be applied. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results. In this paper, we present a new representation of motion sequences (Seq2Im‐for sequence to image), which projects motion sequences onto the RGB domain. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results.
AbstractList In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of cheaper depth sensors. State‐of‐the‐art methods generally represent motion sequences as high dimensional trajectories followed by a time‐warping technique. These trajectories are used to train a classification model to predict the classes of new sequences. Despite the success of these techniques in some fields, particularly when the data used are captured by a high‐precision motion capture system, action classification is still less successful than the field of image classification, especially with the advance of deep learning. In this paper, we present a new representation of motion sequences (Seq2Im—for sequence to image), which projects motion sequences onto the RGB domain. The 3D coordinates of joints are mapped to red, green, and blue values, and therefore, action classification becomes an image classification problem and algorithms for this field can be applied. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results.
In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of cheaper depth sensors. State‐of‐the‐art methods generally represent motion sequences as high dimensional trajectories followed by a time‐warping technique. These trajectories are used to train a classification model to predict the classes of new sequences. Despite the success of these techniques in some fields, particularly when the data used are captured by a high‐precision motion capture system, action classification is still less successful than the field of image classification, especially with the advance of deep learning. In this paper, we present a new representation of motion sequences (Seq2Im—for sequence to image), which projects motion sequences onto the RGB domain. The 3D coordinates of joints are mapped to red, green, and blue values, and therefore, action classification becomes an image classification problem and algorithms for this field can be applied. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results. In this paper, we present a new representation of motion sequences (Seq2Im‐for sequence to image), which projects motion sequences onto the RGB domain. This representation was tested with basic image classification algorithms (namely, support vector machine, k‐nearest neighbor, and random forests) in addition to convolutional neural networks. Evaluation of the proposed method on standard 3D human action recognition datasets shows its potential for action recognition and outperforms most of the state‐of‐the‐art results.
Author Laraba, Sohaib
Brahimi, Mohammed
Dutoit, Thierry
Tilmanne, Joëlle
Author_xml – sequence: 1
  givenname: Sohaib
  orcidid: 0000-0002-7937-4149
  surname: Laraba
  fullname: Laraba, Sohaib
  email: sohaib.laraba@umons.ac.be
  organization: University of Mons
– sequence: 2
  givenname: Mohammed
  orcidid: 0000-0003-2034-644X
  surname: Brahimi
  fullname: Brahimi, Mohammed
  organization: Mohamed El Bachir El Ibrahimi University
– sequence: 3
  givenname: Joëlle
  surname: Tilmanne
  fullname: Tilmanne, Joëlle
  organization: University of Mons
– sequence: 4
  givenname: Thierry
  surname: Dutoit
  fullname: Dutoit, Thierry
  organization: University of Mons
BookMark eNp1kMtKAzEUhoNUsFbBRxhw42ZqbnPJsrZahYIgKu5CJnOmTJ0mNZkq3fkIPqNPYqYVF6Kr85_Dd27_IeoZawChE4KHBGN6rtXrkGQ53UN9kvA05jR76v3olBygQ-8XgUwpwX1UsEnkn6GB1prP949CeSgjpdvamsiBtnNTb3WxCenKgQfT1mYeLe22rNWqXTuIPLyswWjwkfIRnYRJd9OLqF6qOfgjtF-pxsPxdxygh6vL-_F1PLud3oxHs1hTwWjMIOMZywmjPK14krOUUaKSEgStcqbTCmdYaVWIJIUyEWXCWSaqigFNCq0EZgN0upu7cjZc41u5sGtnwkpJBCacC5J31HBHaWe9d1BJXbeqe6Z1qm4kwbLzUQYfZedjaDj71bBy4TG3-QuNd-hb3cDmX06OR49b_gtcjYTq
CitedBy_id crossref_primary_10_3390_s24082595
crossref_primary_10_3390_s21134443
crossref_primary_10_3390_biomimetics9050296
crossref_primary_10_1109_JSEN_2019_2955929
crossref_primary_10_1051_matecconf_201927702034
crossref_primary_10_1007_s00371_018_1498_6
crossref_primary_10_1016_j_is_2018_04_002
crossref_primary_10_1007_s11042_022_12091_z
crossref_primary_10_3390_app112211050
crossref_primary_10_1109_TAFFC_2023_3305197
crossref_primary_10_3390_s20082226
crossref_primary_10_1109_ACCESS_2021_3075766
crossref_primary_10_1007_s00530_021_00754_0
crossref_primary_10_1007_s11042_019_7356_3
crossref_primary_10_1038_s41597_021_01101_8
crossref_primary_10_1007_s11042_019_07827_3
crossref_primary_10_1007_s10489_022_03436_0
crossref_primary_10_1016_j_jvcir_2018_11_042
crossref_primary_10_1049_iet_ipr_2019_0588
crossref_primary_10_1155_2022_8393612
crossref_primary_10_3390_electronics13020269
crossref_primary_10_1109_TMM_2019_2904880
crossref_primary_10_1002_cav_1996
crossref_primary_10_1002_cav_2005
crossref_primary_10_1007_s00530_021_00767_9
Cites_doi 10.1109/CVPRW.2010.5543273
10.1109/CVPR.2016.115
10.1109/CVPR.2014.98
10.1016/j.patrec.2014.04.011
10.1007/11744085_28
10.1609/aaai.v31i1.10866
10.1016/j.jvcir.2013.04.007
10.1109/CVPR.2017.137
10.1109/CVPRW.2012.6239175
10.1109/CVPR.2014.220
10.1109/CVPRW.2012.6239232
10.1109/CVPR.2009.5206848
10.1002/cav.1715
10.1007/978-3-319-46487-9_50
10.1109/ICEEI.2011.6021605
10.1145/2502081.2502103
10.1038/nature14539
10.1109/CVPR.2014.82
10.1007/s11263-012-0550-7
10.1109/CVPR.2015.7298714
10.1109/CVPRW.2012.6239233
10.1109/ACT.2009.218
10.1109/CVPR.2016.484
10.1016/j.imavis.2009.11.014
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.1782
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_1782
CAV1782
Genre article
GrantInformation_xml – fundername: Wallonia
  funderid: n 600676
– fundername: Numediart and Infortech of the University of Mons (UMONS)
– fundername: EU
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2932-3e7473813246f45836321a5de92f83c6f070acab956ed59d54379ff3e25bca903
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Wed Aug 13 06:02:49 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
Thu Jul 03 08:24:07 EDT 2025
Wed Jan 22 16:34:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-3e7473813246f45836321a5de92f83c6f070acab956ed59d54379ff3e25bca903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7937-4149
0000-0003-2034-644X
PQID 1901449180
PQPubID 2034909
PageCount 11
ParticipantIDs proquest_journals_1901449180
crossref_citationtrail_10_1002_cav_1782
crossref_primary_10_1002_cav_1782
wiley_primary_10_1002_cav_1782_CAV1782
PublicationCentury 2000
PublicationDate May/August 2017
2017-05-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May/August 2017
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 2
2012
2011
2015; 521
2010
2010; 28
2009
2013; 101
2014; 48
2016; 31
2007
2014; 25
2006
2016
2015
2014
2013
2016; 27
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
Zhang C (e_1_2_7_13_1) 2012; 2
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Bao J (e_1_2_7_18_1) 2016; 31
References_xml – start-page: 1033
  year: 2011
  end-page: 1040
– start-page: 359
  year: 2006
  end-page: 372
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 2
  start-page: 12
  issue: 4
  year: 2012
  article-title: RGB‐D camera‐based daily living activity recognition
  publication-title: J Comput Vis Image Process
– volume: 28
  start-page: 976
  issue: 6
  year: 2010
  end-page: 990
  article-title: A survey on vision‐based human action recognition
  publication-title: Image Vis Comput
– start-page: 20
  year: 2012
  end-page: 27
– start-page: 770
  year: 2016
  end-page: 778
– year: 2007
– start-page: 23
  year: 2013
  end-page: 32
– start-page: 1701
  year: 2014
  end-page: 1708
– start-page: 248
  year: 2009
  end-page: 255
– start-page: 1
  year: 2011
  end-page: 5
– start-page: 1110
  year: 2015
  end-page: 1118
– year: 2016
– start-page: 9
  year: 2010
  end-page: 14
– start-page: 4471
  year: 2016
  end-page: 4479
– volume: 48
  start-page: 70
  year: 2014
  end-page: 80
  article-title: Human activity recognition from 3D data: A review
  publication-title: Pattern Recogn Lett
– year: 2014
– start-page: 588
  year: 2014
  end-page: 595
– volume: 31
  start-page: 11
  issue: 4
  year: 2016
  end-page: 22
  article-title: Action recognition based on conceptors of skeleton joint trajectories
  publication-title: Rev Fac Ing
– start-page: 859
  year: 2009
  end-page: 863
– start-page: 1097
  year: 2012
  end-page: 1105
– start-page: 1
  year: 2015
  end-page: 9
– volume: 101
  start-page: 420
  issue: 3
  year: 2013
  end-page: 436
  article-title: Exploring the trade‐off between accuracy and observational latency in action recognition
  publication-title: Int J Comput Vis
– start-page: 137
  year: 2006
  end-page: 146
– start-page: 14
  year: 2012
  end-page: 19
– start-page: 724
  year: 2014
  end-page: 731
– start-page: 7
  year: 2012
  end-page: 12
– volume: 27
  start-page: 321
  issue: 3‐4
  year: 2016
  end-page: 329
  article-title: Dance performance evaluation using hidden Markov models
  publication-title: Comput Anim Virtual Worlds
– start-page: 816
  year: 2016
  end-page: 833
– volume: 25
  start-page: 24
  issue: 1
  year: 2014
  end-page: 38
  article-title: Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition
  publication-title: J Vis Commun Image Represent
– year: 2013
– ident: e_1_2_7_22_1
  doi: 10.1109/CVPRW.2010.5543273
– ident: e_1_2_7_23_1
  doi: 10.1109/CVPR.2016.115
– ident: e_1_2_7_31_1
  doi: 10.1109/CVPR.2014.98
– ident: e_1_2_7_3_1
  doi: 10.1016/j.patrec.2014.04.011
– ident: e_1_2_7_27_1
  doi: 10.1007/11744085_28
– ident: e_1_2_7_32_1
  doi: 10.1609/aaai.v31i1.10866
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jvcir.2013.04.007
– ident: e_1_2_7_17_1
  doi: 10.1109/CVPR.2017.137
– ident: e_1_2_7_25_1
– ident: e_1_2_7_15_1
  doi: 10.1109/CVPRW.2012.6239175
– ident: e_1_2_7_7_1
  doi: 10.1109/CVPR.2014.220
– ident: e_1_2_7_29_1
  doi: 10.1109/CVPRW.2012.6239232
– ident: e_1_2_7_12_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_7_16_1
  doi: 10.1002/cav.1715
– ident: e_1_2_7_35_1
  doi: 10.1007/978-3-319-46487-9_50
– ident: e_1_2_7_8_1
– ident: e_1_2_7_5_1
– ident: e_1_2_7_14_1
  doi: 10.1109/ICEEI.2011.6021605
– ident: e_1_2_7_30_1
  doi: 10.1145/2502081.2502103
– ident: e_1_2_7_10_1
  doi: 10.1038/nature14539
– ident: e_1_2_7_4_1
  doi: 10.1109/CVPR.2014.82
– ident: e_1_2_7_21_1
– ident: e_1_2_7_28_1
  doi: 10.1007/s11263-012-0550-7
– ident: e_1_2_7_34_1
  doi: 10.1109/CVPR.2015.7298714
– ident: e_1_2_7_6_1
  doi: 10.1109/CVPRW.2012.6239233
– ident: e_1_2_7_19_1
– ident: e_1_2_7_20_1
  doi: 10.1109/ACT.2009.218
– ident: e_1_2_7_33_1
  doi: 10.1109/CVPR.2016.484
– volume: 31
  start-page: 11
  issue: 4
  year: 2016
  ident: e_1_2_7_18_1
  article-title: Action recognition based on conceptors of skeleton joint trajectories
  publication-title: Rev Fac Ing
– volume: 2
  start-page: 12
  issue: 4
  year: 2012
  ident: e_1_2_7_13_1
  article-title: RGB‐D camera‐based daily living activity recognition
  publication-title: J Comput Vis Image Process
– ident: e_1_2_7_9_1
– ident: e_1_2_7_26_1
– ident: e_1_2_7_2_1
  doi: 10.1016/j.imavis.2009.11.014
– ident: e_1_2_7_11_1
  doi: 10.1109/CVPR.2016.90
SSID ssj0026210
Score 2.3654532
Snippet In recent years, 3D skeleton‐based action recognition has become a popular technique of action classification, thanks to development and availability of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D data representation
action recognition
Algorithms
Artificial neural networks
Classification
Color imagery
convolutional neural networks
Human motion
Image classification
Machine learning
Motion capture
Moving object recognition
Neural networks
State of the art
Three dimensional motion
Trajectories
Title 3D skeleton‐based action recognition by representing motion capture sequences as 2D‐RGB images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.1782
https://www.proquest.com/docview/1901449180
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6ykx78LU6nRBA9dWvTtGuPc3MODx6GGwMPJUlTGOocdhP05J_g3-hf4ntN26koiL20lKS0ecn7vte8fCHkWCue8Jg7lvITZfHAlpaEw3KaMoBogCGIY7bFld8b8MuRN8qzKnEtjNGHKH-44cjI_DUOcCHTxkI0VImnugP4Bu4XU7WQD_VL5SjmMyNE4HHfwiih0J21WaOo-BWJFvTyM0nNUKa7Rm6K9zPJJbf1-UzW1cs36cb_fcA6Wc3JJ22Z3rJBlvRkk6wMx-nc3E23iHQ7NL0FLAJO-P76hiAXU7P4gZbJRnAtn2mmh4lrlwD9qNkNiCoxxSkJWmZoU5FS1oEn9S_O6PgevFe6TQbd8-t2z8r3YbAUkAFmuRpiDkB2MJuf4Dyr7zJHeLEOWRK4YGRwG0IJCaGWjr0w9lDjMElczTypRGi7O6QyeZjoXUJtHfpBoF3FlOCesAULtNC6Cfbyta15lZwWNolULlKOe2XcRUZemUXQahG2WpUclSWnRpjjhzK1wqxRPjTTCBkQ56ET2FVyktnn1_pRuzXE895fC-6TZYawnyVE1khl9jjXB0BaZvIw654f8mLqeA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BPUAPUH6qLlBqJH5OWRLHCcmhB2ALy-8BAeIWbMeREGVBZBdET30E3qOv0qfok3QmTsKPQOLCgVwSRY7l2DP-ZuzxNwBzRotMpMJzdJhpR0SuchRejresIvQGOIE4RVvshe1DsXUcHPfBn-osjOWHqBfcSDOK-ZoUnBakl-5ZQ7W8bnoIcGVE5ba5vUF_Lf--2cLBned8_cfBWtspUwo4GnGNO75B8xlBClsQZrRlGPrck0FqYp5FPrYXNUBqqdBrMGkQpwHR9WWZb3igtIxdH-vthw-UQJyI-lv7NVcVD7mlPghE6JBfUjHdunypaulj7Ls3aB-axQWurY_A36pHbDjLWbPXVU396wlZ5Dvpsk8wXNrXbMUqxCj0mc4YfDw6zXv2bT4Oym-x_AzhFs3ef7_vCMdTZs93sDqeCp_VLSsoP-l4FgI8swmPmJaXtOvC6iB0JnPGW1jT_sYqOz3HCTqfgMM3-cnPMNC56JgvwFwTh1FkfM21FIF0JY-MNGYZBSQ0rhENWKyEINElDzulA_mZWAZpnuAoJTRKDZitS15a7pFnykxXcpSUs0-ekJEnROxFbgMWCoF48ftkbeWI7pOvLfgNBtsHuzvJzube9hQMcbJyivjPaRjoXvXMV7TRumqm0A0GJ28tWf8BueJGTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL0CKiG6gPKoOkCpkXisMiSOY5JFF0A6PIUqBIhdsB1HQpRhRGZAsOIT-I7-Cn_Bl_Q6TsJDRWLDgmwSRU7k2Pf6HMfX5wLMacUyljLPUTxTDgtd6Ug8HG9ZhjgboAbETbTFLt84YFtHwVEf_K32wlh9iPqHm_GMYrw2Dt5Js6VH0VAlLpse4lsZULmtr69wupb_3Iyxb-cpbf3aX9twyowCjkJYo46vkT0jRmEFeGZWDLlPPRGkOqJZ6GN10QGEEhInDToNojQwan1Z5msaSCUi18f39sMnxt3IpImI92qpKsqpVT4IGHfMtKQSunXpUlXT59D3yGefsuIC1lojcF81iI1mOW32urKpbl5oRX6MFvsCwyW7JivWHUahT7fH4PPhSd6zd_NxkH5M8lMEWyS9D7d3BsVTYnd3kDqaCq_lNSkEP83mLIR3YtMdESU6Zs2F1CHoROSExvimvfVVcnKGw3M-AQfv8pFfYaB93tbfgLg64mGofUWVYIFwBQ210HoZ7YNrV7MGLFY2kKhShd0kA_mTWP1ommAvJaaXGjBbl-xY5ZH_lJmuzCgpx548MRSPscgL3QYsFPbw6vPJ2sqhOU--teAPGPwdt5Kdzd3tKRiihuIUwZ_TMNC96OnvSNC6cqbwDALH721Y_wCGdUT8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+skeleton%E2%80%90based+action+recognition+by+representing+motion+capture+sequences+as+2D%E2%80%90RGB+images&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Laraba%2C+Sohaib&rft.au=Brahimi%2C+Mohammed&rft.au=Tilmanne%2C+Jo%C3%ABlle&rft.au=Dutoit%2C+Thierry&rft.date=2017-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=28&rft.issue=3-4&rft_id=info:doi/10.1002%2Fcav.1782&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_1782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon