Cyclic test and analysis of UHTCC‐enhanced buckling‐restrained steel plate shear walls

The ultra‐high toughness cementitious composite (UHTCC) has the tensile strain‐hardening characteristic and an excellent ability to prevent tensile cracking. To enhance the seismic and durability performance of the conventional buckling‐restrained steel plate shear wall (BRSPSW), UHTCC‐enhanced BRSP...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 53; no. 13; pp. 4006 - 4031
Main Authors Tong, Jing‐Zhong, Wang, Ling‐Qi, Wu, Ruo‐Min, Hou, Jian, Li, Qing‐Hua, Xu, Shi‐Lang
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ultra‐high toughness cementitious composite (UHTCC) has the tensile strain‐hardening characteristic and an excellent ability to prevent tensile cracking. To enhance the seismic and durability performance of the conventional buckling‐restrained steel plate shear wall (BRSPSW), UHTCC‐enhanced BRSPSW (UBRSPSW) was proposed in this paper as a new type of lateral bearing system. The buckling of the inner steel plate is restrained by UHTCC‐normal concrete (NC) functionally graded panels, where the panels are composed of UHTCC and NC layers. In this study, experimental and numerical research was carried out on the UBRSPSWs. Six specimens were tested to investigate the seismic behavior of the UBRSPSW. Parameters including the number of stiffeners, the thickness of UHTCC‐NC functionally graded panels, the material of restraining panels, and the gap between the inner steel plate and restraining panels were considered in the test design. Mechanical response and failure modes of the structures under cyclic loads were analyzed. The obtained hysteretic curves and corresponding skeleton curves indicated that the proposed design had excellent seismic performance. Compared to the steel plate shear wall (SPSW), the load‐bearing capacity of UBRSPSW was improved by 13%, respectively. The appearance of macrocracks was delayed by a drift angle of 1.2%. In addition, a refined finite element (FE) model was developed and validated by the results obtained from experiments. The development and distribution of bending moments in the restraining panels were extracted based on the FE method. Then, the loading capacity design method of restraining panels and a theoretical model for controlling the crack width of restraining panels were proposed. The research results of this paper can provide useful suggestions for the seismic design of UBRSPSWs.
AbstractList The ultra‐high toughness cementitious composite (UHTCC) has the tensile strain‐hardening characteristic and an excellent ability to prevent tensile cracking. To enhance the seismic and durability performance of the conventional buckling‐restrained steel plate shear wall (BRSPSW), UHTCC‐enhanced BRSPSW (UBRSPSW) was proposed in this paper as a new type of lateral bearing system. The buckling of the inner steel plate is restrained by UHTCC‐normal concrete (NC) functionally graded panels, where the panels are composed of UHTCC and NC layers. In this study, experimental and numerical research was carried out on the UBRSPSWs. Six specimens were tested to investigate the seismic behavior of the UBRSPSW. Parameters including the number of stiffeners, the thickness of UHTCC‐NC functionally graded panels, the material of restraining panels, and the gap between the inner steel plate and restraining panels were considered in the test design. Mechanical response and failure modes of the structures under cyclic loads were analyzed. The obtained hysteretic curves and corresponding skeleton curves indicated that the proposed design had excellent seismic performance. Compared to the steel plate shear wall (SPSW), the load‐bearing capacity of UBRSPSW was improved by 13%, respectively. The appearance of macrocracks was delayed by a drift angle of 1.2%. In addition, a refined finite element (FE) model was developed and validated by the results obtained from experiments. The development and distribution of bending moments in the restraining panels were extracted based on the FE method. Then, the loading capacity design method of restraining panels and a theoretical model for controlling the crack width of restraining panels were proposed. The research results of this paper can provide useful suggestions for the seismic design of UBRSPSWs.
Author Hou, Jian
Tong, Jing‐Zhong
Wu, Ruo‐Min
Xu, Shi‐Lang
Li, Qing‐Hua
Wang, Ling‐Qi
Author_xml – sequence: 1
  givenname: Jing‐Zhong
  orcidid: 0000-0003-3190-518X
  surname: Tong
  fullname: Tong, Jing‐Zhong
  email: tongjz@zju.edu.cn
  organization: Zhejiang University
– sequence: 2
  givenname: Ling‐Qi
  surname: Wang
  fullname: Wang, Ling‐Qi
  organization: Zhejiang University
– sequence: 3
  givenname: Ruo‐Min
  surname: Wu
  fullname: Wu, Ruo‐Min
  organization: Zhejiang University
– sequence: 4
  givenname: Jian
  surname: Hou
  fullname: Hou, Jian
  organization: Zhejiang University of Technology
– sequence: 5
  givenname: Qing‐Hua
  surname: Li
  fullname: Li, Qing‐Hua
  organization: Zhejiang University
– sequence: 6
  givenname: Shi‐Lang
  surname: Xu
  fullname: Xu, Shi‐Lang
  organization: Zhejiang University
BookMark eNp1kM9KAzEQxoNUsK2CjxDw4mVr_u5mj7JUKxREaC9elmw2sVtjtk22lL35CD6jT2JqPYkeZgY-ft8w843AwLVOA3CJ0QQjRG70Vk8YweQEDDHK0yQXjA_AEKFcJEKw7AyMQlgjhGiKsiF4LnplGwU7HTooXR1L2j40AbYGLmeLovh8_9BuJZ3SNax26tU27iVqPhq8bFxUQ6e1hRsrOw3DSksP99LacA5OjbRBX_zMMVjeTRfFLJk_3j8Ut_NEkZyShHLBDE85T4WhVFKZMc1llaVE1RwrwrkQWAgtsKKVYRU1BlcZIzJnaVbXgo7B1XHvxrfbXTyrXLc7H98IJcUxCZHFFqnJkVK-DcFrU6qmk13TusMbtsSoPORXxvxKdjRc_zJsfPMmff8XmhzRfWN1_y9XTp-m3_wXaVCBzg
CitedBy_id crossref_primary_10_1016_j_tws_2024_112646
crossref_primary_10_3390_buildings15020181
crossref_primary_10_1016_j_engstruct_2024_119264
crossref_primary_10_1016_j_jobe_2024_111685
crossref_primary_10_1016_j_jcsr_2025_109480
crossref_primary_10_1016_j_istruc_2024_108069
crossref_primary_10_3390_buildings14123925
crossref_primary_10_1016_j_engstruct_2025_120061
crossref_primary_10_3390_su17052119
Cites_doi 10.1016/0958-9465(92)90006-H
10.1177/1056789511435426
10.1016/j.tws.2023.111243
10.1016/j.engstruct.2023.116946
10.54113/j.sust.2024.000035
10.1016/j.conbuildmat.2024.135287
10.3151/jact.6.181
10.1016/j.jcsr.2021.106699
10.4028/www.scientific.net/AMR.79-82.1293
10.1007/s11803-011-0047-3
10.26599/JIC.2024.9180012
10.1016/j.jcsr.2019.02.026
10.1002/suco.201500033
10.1016/j.cemconres.2018.08.013
10.1016/j.istruc.2023.01.143
10.1016/j.conbuildmat.2016.10.036
10.1016/j.jcsr.2023.108258
10.1016/j.tws.2022.110488
10.54113/j.sust.2022.000013
10.1016/j.jobe.2023.107582
10.1016/j.soildyn.2017.09.021
10.1016/j.conbuildmat.2024.135136
10.1016/j.conbuildmat.2018.11.102
10.1016/j.engstruct.2024.118267
10.1002/eqe.3920
10.1016/j.jcsr.2023.108360
10.1016/j.jcsr.2016.07.016
10.1061/(ASCE)0733-9445(2004)130:2(271)
10.1061/JSENDH.STENG-12285
10.54113/j.sust.2021.000002
10.1061/JSENDH.STENG-11751
10.1016/j.engstruct.2022.114737
10.1061/(ASCE)MT.1943-5533.0001034
10.1002/eqe.4091
10.1016/j.jcsr.2011.02.011
10.1016/j.engstruct.2023.117218
10.1016/j.cemconcomp.2021.104339
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.4212
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 4031
ExternalDocumentID 10_1002_eqe_4212
EQE4212
Genre article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LR24E080002
– fundername: National Natural Science Foundation of China
  funderid: 52108180
GroupedDBID -~X
.3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
.Y3
31~
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACKIV
ACRPL
ACSCC
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AI.
ARCSS
ASPBG
AVWKF
AZFZN
CITATION
CKXBT
EJD
FEDTE
HF~
HVGLF
LW6
M58
PALCI
RIWAO
RJQFR
RNS
SAMSI
TUS
VH1
ZY4
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c2932-3584f565568f33a3a74e5ab762cd51c25588188e81c3bf4b3ff1b742a9467dd83
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Sat Jul 26 00:36:48 EDT 2025
Tue Jul 01 02:22:00 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Wed Jan 22 17:13:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2932-3584f565568f33a3a74e5ab762cd51c25588188e81c3bf4b3ff1b742a9467dd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3190-518X
PQID 3121287212
PQPubID 866380
PageCount 26
ParticipantIDs proquest_journals_3121287212
crossref_citationtrail_10_1002_eqe_4212
crossref_primary_10_1002_eqe_4212
wiley_primary_10_1002_eqe_4212_EQE4212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 52
2023; 78
2013; 22
2023; 184
2010
2021; 182
2023; 149
2007
2024; 53
2011; 10
1992; 14
2008; 6
2016; 127
2024; 300
2016; 126
2002
2021; 1
2016; 17
2009; 30
2015; 27
2024; 313
2023
2021
2023; 49
2004; 130
2024; 416
2023; 297
2019; 115
2009; 79‐82
2019; 157
2017
2016
2024; 2
2015
2011; 67
2024; 4
2024; 212
2024; 213
2022; 2
2022; 55
2019; 195
2017; 103
2022; 126
2024; 194
2001; 98
2024; 150
2022; 268
e_1_2_9_50_1
e_1_2_9_10_1
(e_1_2_9_43_1) 2017
e_1_2_9_12_1
Astaneh‐Asl A (e_1_2_9_5_1) 2002
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
Guo YL (e_1_2_9_6_1) 2009; 30
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_8_1
(e_1_2_9_34_1) 2015
Chen YL (e_1_2_9_41_1) 2024; 2
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
(e_1_2_9_35_1) 2021
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
(e_1_2_9_44_1) 2010
Dou C (e_1_2_9_20_1) 2023
Li VC (e_1_2_9_36_1) 2001; 98
Shi ZC (e_1_2_9_48_1) 2022; 55
(e_1_2_9_31_1) 2016
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
(e_1_2_9_39_1) 2015
e_1_2_9_7_1
e_1_2_9_3_1
(e_1_2_9_33_1) 2016
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 30
  start-page: 31
  issue: 1
  year: 2009
  end-page: 39
  article-title: Tests and analysis on hysteretic behavior of buckling‐restrained steel plate shear wall
  publication-title: J Build Struct
– volume: 6
  start-page: 181
  issue: 1
  year: 2008
  end-page: 193
  article-title: Fiber‐bridging constitutive law of engineered cementitious composites
  publication-title: J Adv Concr Technol
– volume: 2
  start-page: 13
  issue: 1
  year: 2022
  article-title: Mechanical behavior analysis of LEM‐infilled cold‐formed steel walls
  publication-title: Sustain Struct
– volume: 1
  start-page: 2
  issue: 1
  year: 2021
  article-title: Semi‐rigid behaviour of stainless steel beam‐to‐column bolted connections
  publication-title: Sustain Struct
– volume: 53
  start-page: 1681
  issue: 5
  year: 2024
  end-page: 1704
  article-title: Seismic experiments and shear resistance prediction of multi‐celled corrugated‐plate CFST walls
  publication-title: Earthq Eng Struc Dyn
– volume: 313
  year: 2024
  article-title: Experimental study on axial compressive behavior of concrete‐filled corrugated steel tubular columns
  publication-title: Eng Struct
– volume: 194
  year: 2024
  article-title: Design method of axial compression stability for cross‐section corrugated plate steel special‐shaped column
  publication-title: Thin Walled Struct
– start-page: 805
  year: 2007
  end-page: 811
  article-title: Experimental research on seismic behavior of two‐sided composite steel plate walls
– volume: 103
  start-page: 64
  year: 2017
  end-page: 75
  article-title: Seismic behavior of novel partially connected buckling‐restrained steel plate shear walls
  publication-title: Soil Dyn Earthquake Eng
– year: 2021
– volume: 182
  year: 2021
  article-title: Seismic performance assessment of steel frame structures equipped with buckling‐restrained slotted steel plate shear walls
  publication-title: J Constr Steel Res
– volume: 212
  year: 2024
  article-title: Flexural behavior of novel profiled steel‐UHTCC assembled composite bridge decks
  publication-title: J Constr Steel Res
– volume: 49
  start-page: 748
  year: 2023
  end-page: 764
  article-title: Cyclic test and lateral resistant design of corrugated plate shear walls
  publication-title: Structures
– volume: 130
  start-page: 271
  issue: 2
  year: 2004
  end-page: 284
  article-title: Cyclic behavior of traditional and innovative composite shear walls
  publication-title: J Struct Eng ASCE
– volume: 213
  year: 2024
  article-title: Experimental and numerical study on seismic performance of L‐shaped multi‐cellular CFST frames
  publication-title: J Constr Steel Res
– volume: 115
  start-page: 294
  year: 2019
  end-page: 307
  article-title: Modeling of water transport in highly saturated concrete with wet surface during freeze/thaw
  publication-title: Cem Concr Res
– volume: 416
  year: 2024
  article-title: RBSM‐based mesoscale study of mechanical properties and frost damage behaviors for recycled fine aggregate concrete
  publication-title: Constr Build Mater
– volume: 150
  issue: 6
  year: 2024
  article-title: Lateral resistant behavior of grid‐reinforced steel corrugated shear walls
  publication-title: J Struct Eng, ASCE
– year: 2016
– volume: 55
  start-page: 50
  year: 2022
  end-page: 60
  article-title: Axial tension behavior of segmented‐casting rectangular joint of steel‐UHPC composite bridge deck
  publication-title: China Civ Eng J
– volume: 195
  start-page: 638
  issue: 20
  year: 2019
  end-page: 649
  article-title: Experimental study on the interfacial bonding behaviors between sprayed UHTCC and concrete substrate
  publication-title: Constr Build Mater
– volume: 98
  start-page: 483
  issue: 6
  year: 2001
  end-page: 492
  article-title: Tensile strain‐hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA‐ECC)
  publication-title: ACI Mater J
– volume: 184
  year: 2023
  article-title: Flexural design of restraining panels in buckling‐restrained steel plate shear walls considering high‐order buckling modes
  publication-title: Thin Walled Struct
– year: 2010
– volume: 17
  start-page: 365
  year: 2016
  end-page: 376
  article-title: An improvement to eurocode 2 and fib model code 2010 methods for calculating crack width in RC structures
  publication-title: Struct Concr
– volume: 22
  start-page: 116
  issue: 1
  year: 2013
  end-page: 132
  article-title: Deformation calculation of ultra‐high toughness cementitious composite – concrete beam under flexure fatigue with ultra‐high toughness cementitious composite fatigue damage model
  publication-title: Int J Damage Mech
– volume: 2
  year: 2024
  article-title: Application of high‐performance cementitious composites in steel – concrete composite bridge deck systems: a review
  publication-title: J Intell Constr
– volume: 268
  year: 2022
  article-title: Tensile behavior of a prefabricated steel‐UHPC composite deck system with notched perfobond strips
  publication-title: Eng Struct
– start-page: 66
  year: 2023
  article-title: Cyclic loading test and lateral resistant behavior of flat‐ corrugated steel plate shear walls
  publication-title: J Build Eng
– volume: 52
  start-page: 3551
  issue: 12
  year: 2023
  end-page: 3574
  article-title: Experimental and numerical investigations on seismic behavior of stiffened corrugated steel plate shear walls
  publication-title: Earthq Eng Struc Dyn
– year: 2002
– volume: 14
  start-page: 131
  year: 1992
  end-page: 141
  article-title: A simplified micromechanical model of compressive strength of fiber‐reinforced cementitious composites
  publication-title: Cem Concr Compos
– volume: 79‐82
  start-page: 1293
  year: 2009
  end-page: 1296
  article-title: A study on the crack‐controlled layer of UHTCC in functionally‐graded composite beams
  publication-title: Adv Mater Res
– volume: 300
  year: 2024
  article-title: Elastic buckling formulas of multi‐stiffened corrugated steel plate shear walls
  publication-title: Eng Struct
– volume: 127
  start-page: 494
  year: 2016
  end-page: 503
  article-title: Experimental and analytical investigation on bond‐slip behaviour of deformed bars embedded in engineered cementitious composites
  publication-title: Constr Build Mater
– volume: 416
  year: 2024
  article-title: A recycling approach of natural stone from crushed concrete based on freeze‐thaw modification and usage of spalling mortar as recycled fine aggregate
  publication-title: Constr Build Mater
– volume: 27
  start-page: 10
  issue: 1
  year: 2015
  article-title: Mechanical behavior of fiber‐reinforced engineered cementitious composites in uniaxial compression
  publication-title: J Mater Civ Eng
– volume: 4
  start-page: 35
  issue: 1
  year: 2024
  article-title: State‐of‐the‐art review on steel‐concrete composite walls
  publication-title: Sustain Struct
– volume: 149
  issue: 4
  year: 2023
  article-title: Flexural performance and design of steel‐UHTCC composite bridge decks with different composite degrees under hogging moments
  publication-title: J Struct Eng
– volume: 126
  year: 2022
  article-title: Experimental and numerical investigations on ultra‐high toughness cementitious composite slabs subjected to close‐in blast loadings
  publication-title: Cem Concr Compos
– volume: 10
  start-page: 65
  issue: 1
  year: 2011
  end-page: 73
  article-title: Experimental research on the seismic behavior of CSPSWs connected to frame beams
  publication-title: Earthq Eng Eng Vib
– volume: 157
  start-page: 397
  year: 2019
  end-page: 413
  article-title: Seismic behavior of buckling‐restrained steel plate shear wall with assembled multi‐RC panels
  publication-title: J Constr Steel Res
– year: 2017
– volume: 78
  year: 2023
  article-title: Shear resistance design of semi‐supported buckling‐restrained steel plate shear walls: analytical and numerical investigation
  publication-title: J Build Eng
– volume: 67
  start-page: 1185
  issue: 8
  year: 2011
  end-page: 1197
  article-title: Experimental and constitutive model study of structural steel under cyclic loading
  publication-title: J Constr Steel Res
– year: 2015
– volume: 126
  start-page: 117
  year: 2016
  end-page: 128
  article-title: Experimental and numerical study on steel‐concrete composite shear wall using light‐weight concrete
  publication-title: J Constr Steel Res
– volume: 297
  year: 2023
  article-title: Experimental investigation on the seismic behavior of composite steel plate shear wall restrained by ECC panels
  publication-title: Eng Struct
– ident: e_1_2_9_27_1
  doi: 10.1016/0958-9465(92)90006-H
– ident: e_1_2_9_28_1
  doi: 10.1177/1056789511435426
– start-page: 66
  year: 2023
  ident: e_1_2_9_20_1
  article-title: Cyclic loading test and lateral resistant behavior of flat‐ corrugated steel plate shear walls
  publication-title: J Build Eng
– volume: 30
  start-page: 31
  issue: 1
  year: 2009
  ident: e_1_2_9_6_1
  article-title: Tests and analysis on hysteretic behavior of buckling‐restrained steel plate shear wall
  publication-title: J Build Struct
– ident: e_1_2_9_19_1
  doi: 10.1016/j.tws.2023.111243
– ident: e_1_2_9_26_1
  doi: 10.1016/j.engstruct.2023.116946
– volume-title: Seismic Provisions for Structural Steel Buildings
  year: 2016
  ident: e_1_2_9_33_1
– ident: e_1_2_9_9_1
  doi: 10.54113/j.sust.2024.000035
– ident: e_1_2_9_23_1
  doi: 10.1016/j.conbuildmat.2024.135287
– ident: e_1_2_9_37_1
  doi: 10.3151/jact.6.181
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jcsr.2021.106699
– volume-title: Techinical Specification for Steel Plate Shear Walls
  year: 2016
  ident: e_1_2_9_31_1
– volume-title: Standard for Design of Steel Structures
  year: 2017
  ident: e_1_2_9_43_1
– ident: e_1_2_9_47_1
  doi: 10.4028/www.scientific.net/AMR.79-82.1293
– ident: e_1_2_9_12_1
  doi: 10.1007/s11803-011-0047-3
– volume: 2
  year: 2024
  ident: e_1_2_9_41_1
  article-title: Application of high‐performance cementitious composites in steel – concrete composite bridge deck systems: a review
  publication-title: J Intell Constr
  doi: 10.26599/JIC.2024.9180012
– volume-title: Specification for Seismic Test of Buildings
  year: 2015
  ident: e_1_2_9_39_1
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jcsr.2019.02.026
– ident: e_1_2_9_50_1
  doi: 10.1002/suco.201500033
– ident: e_1_2_9_24_1
  doi: 10.1016/j.cemconres.2018.08.013
– ident: e_1_2_9_21_1
  doi: 10.1016/j.istruc.2023.01.143
– ident: e_1_2_9_51_1
  doi: 10.1016/j.conbuildmat.2016.10.036
– volume-title: Test Method of Cement Mortar Strength
  year: 2021
  ident: e_1_2_9_35_1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jcsr.2023.108258
– ident: e_1_2_9_10_1
  doi: 10.1016/j.tws.2022.110488
– ident: e_1_2_9_8_1
  doi: 10.54113/j.sust.2022.000013
– volume-title: Steel Tips Report
  year: 2002
  ident: e_1_2_9_5_1
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jobe.2023.107582
– ident: e_1_2_9_11_1
– ident: e_1_2_9_13_1
  doi: 10.1016/j.soildyn.2017.09.021
– ident: e_1_2_9_25_1
  doi: 10.1016/j.conbuildmat.2024.135136
– ident: e_1_2_9_30_1
  doi: 10.1016/j.conbuildmat.2018.11.102
– ident: e_1_2_9_4_1
  doi: 10.1016/j.engstruct.2024.118267
– volume: 55
  start-page: 50
  year: 2022
  ident: e_1_2_9_48_1
  article-title: Axial tension behavior of segmented‐casting rectangular joint of steel‐UHPC composite bridge deck
  publication-title: China Civ Eng J
– ident: e_1_2_9_17_1
  doi: 10.1002/eqe.3920
– ident: e_1_2_9_2_1
  doi: 10.1016/j.jcsr.2023.108360
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jcsr.2016.07.016
– ident: e_1_2_9_7_1
  doi: 10.1061/(ASCE)0733-9445(2004)130:2(271)
– ident: e_1_2_9_40_1
  doi: 10.1061/JSENDH.STENG-12285
– volume: 98
  start-page: 483
  issue: 6
  year: 2001
  ident: e_1_2_9_36_1
  article-title: Tensile strain‐hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA‐ECC)
  publication-title: ACI Mater J
– ident: e_1_2_9_32_1
  doi: 10.54113/j.sust.2021.000002
– ident: e_1_2_9_38_1
  doi: 10.1061/JSENDH.STENG-11751
– ident: e_1_2_9_49_1
  doi: 10.1016/j.engstruct.2022.114737
– ident: e_1_2_9_45_1
  doi: 10.1061/(ASCE)MT.1943-5533.0001034
– ident: e_1_2_9_3_1
  doi: 10.1002/eqe.4091
– volume-title: Technical Specification for Steel Structure of Tall Building
  year: 2015
  ident: e_1_2_9_34_1
– ident: e_1_2_9_42_1
  doi: 10.1016/j.jcsr.2011.02.011
– ident: e_1_2_9_18_1
  doi: 10.1016/j.engstruct.2023.117218
– ident: e_1_2_9_29_1
  doi: 10.1016/j.cemconcomp.2021.104339
– volume-title: Code for Design of Concrete Structure
  year: 2010
  ident: e_1_2_9_44_1
SSID ssj0003607
Score 2.5088863
Snippet The ultra‐high toughness cementitious composite (UHTCC) has the tensile strain‐hardening characteristic and an excellent ability to prevent tensile cracking....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4006
SubjectTerms Bearing capacity
Bearing strength
Bending moments
Buckling
buckling‐restrained steel plate shear wall
Constraining
crack width prediction
Cyclic loads
Deformation
Design
Design analysis
experimental study
Failure modes
Finite element method
Fracture toughness
Functionally gradient materials
Mechanical analysis
numerical study
Panels
Seismic activity
Seismic design
seismic performance
Seismic response
Shear
Shear walls
Steel
Steel plates
Tensile strain
ultra‐high toughness cementitious composite
Title Cyclic test and analysis of UHTCC‐enhanced buckling‐restrained steel plate shear walls
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4212
https://www.proquest.com/docview/3121287212
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Skx58i9UqEURPfWSzTdOjLC1FUFBaKHpYkmwWxWVb3RbRkz_B3-gvcWYfbRUF8bDskkwgr5l8SWa_IeQ44IIz1dJVyw1sUIxoV9saD-BDx7jSGNHQeKN7cSl6A_d82BzmXpX4L0zGDzE7cEPNSO01KrjSSX1OGmofbQ2vM8H8oqsW4qHrOXMUF40ZXaYEC1zwzjacelHw60o0h5eLIDVdZbpr5LaoX-Zc8lCbTnTNvH6jbvxfA9bJag4-6Vk2WzbIko03ycoCJeEWufFeTHRvKCDQCVVxAE_GWkJHIR30-p738fZu47vUcYBqvBmGcpCGMT4w3ASkwsSxER1HAGNpghGz6bOKomSbDLqdvter5vEXqgZAADr5SzcEwNcUMuRccdVybVNpMJ8maDIDmxEJy720khmuQ1fzMGQattqqDdY3CCTfIaV4FNtdQgEnSqFEiwU2cOGjzVyEWlZYy4QjWZmcFmPhm5ycHCsd-RmtsuNDb_nYW2VyNJMcZ4QcP8hUiuH0c5VMfM4gR7bS7JN0XH4t73euOvje-6vgPll2AOxkTn4VUpo8Te0BgJWJPkyn5SerwuZ_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB4VOCwceOyCeOOVdtlTSx2nrnvggPpQWQrSolZCXELsOAIRhUeLEJz4CfwP_gq_gl_CTB4tu2KlvXDYQ5TIj8jxeDyf7ck3AN8CIQX3q7pohcEFipG1Yk3TBnzoGFcZI8uaTnT3D2S75_48qhwV4Cn_FyblhxhuuJFmJPM1KThtSG-NWEPtlS3ReWbmUbln725xvdbf3m2gcL87TqvZrbeLWUiBokG7Rn7ryg0Rw1SkCoXwhV91bcXXOCOYoMIN4muFFkxZxY3QoatFGHKNq0efItEHgRL43jGYoADiRNTfOBxxVQlZHhJ0Kpzzc6bbsrOVt_R32zcCtG9hcWLXWjPwnPdI6s5yXroZ6JK5_4Ms8j_pslmYzvA120kVYg4KNv4MU29YF7_Acf3ORGeGIcgeMD8O8EqJWdhFyHrtbr3-8vBo49PEN4JpOvzGephGYUwoogamom7YiF1GiNRZn4KCs1s_ivrz0PuQj1uA8fgitovAEAor6csqD2zg4kONu4QmrbSWS0fxJfiRC98zGf86NTryUuZox0PpeCSdJfg6LHmZco68U2Y1Hz9eNuv0PcExR1WT7M1kIPy1vtf81aT78r8W3IBP7e5-x-vsHuytwKSD2C71aVyF8cH1jV1DbDbQ64lOMDj56BH1CtinQmY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSAgO7IgdI7GcWuo4dd0DB9RFZRUgKiEuIXYcgYhCoa0qOPEJfAe_wl_wJYyztIBA4sKBQ5TIS-R4PJ5ne_IGYM1jnFG3IDOaKVygKF7MFKXZgPctZQuleE6aE93DI16r23vn-fM-eEn_hYn5IbobbkYzovnaKHjD87d6pKH6TmfNcWbiULmvHzq4XGtu75ZRtuuWVa2clWqZJKJARqFZM27rwvYRwuS58BlzmVuwdd6VOCEoL08VwmuBBkxoQRWTvi2Z71OJi0fXBKL3PMHwvf0waPNc0YSJKJ_2qKoYz3X5OQVO-SnRbc7aSlv62fT18OxHVByZteoYvKYdEnuz3GTbLZlVj1-4Iv9Hj43DaIKuyU6sDhPQp8NJGPnAuTgFF6UHFVwrghC7RdzQwyumZSG3PqnXzkqlt6dnHV5FnhFEmqNvrIdpJoiJiaeBqagZOiCNAHE6aZqQ4KTjBkFzGup_8nEzMBDehnoWCAJhwV1eoJ72bHwoUttgSc21ptwSdA42U9k7KmFfN40OnJg32nJQOo6Rzhysdks2YsaRb8ospsPHSeacpsMo5ohClL0RjYMf6zuVk4q5z_-24AoMHZerzsHu0f4CDFsI7GKHxkUYaN239RICs5ZcjjSCwOVfD6h3sRNBFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+test+and+analysis+of+UHTCC%E2%80%90enhanced+buckling%E2%80%90restrained+steel+plate+shear+walls&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Tong%2C+Jing%E2%80%90Zhong&rft.au=Wang%2C+Ling%E2%80%90Qi&rft.au=Wu%2C+Ruo%E2%80%90Min&rft.au=Hou%2C+Jian&rft.date=2024-10-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=53&rft.issue=13&rft.spage=4006&rft.epage=4031&rft_id=info:doi/10.1002%2Feqe.4212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_4212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon