A convolutional neural network‐based full‐field response reconstruction framework with multitype inputs and outputs
Summary Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy‐measuring responses to the target one is a p...
Saved in:
Published in | Structural control and health monitoring Vol. 29; no. 7 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1545-2255 1545-2263 |
DOI | 10.1002/stc.2961 |
Cover
Abstract | Summary
Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy‐measuring responses to the target one is a popular way. Relative approaches are separated into data‐driven and model‐driven ones. This paper proposes a deep learning‐based framework to reconstruct multitypes of full‐field responses. The adopted architecture is a convolutional neural network (CNN) with an autoencoder structure and skip connections. Varied from other data‐driven approaches, the training set in this paper is the responses computed by a finite element model (FEM), with which the CNN can learn the full‐field mapping relationships among varied response types. Therefore, the proposed framework is data‐model‐co‐driven. In the numerical simulation section, a simply‐supported beam and a continuous beam bridge have been adopted to discuss the influence of hyperparameters (training epoch, kernel size, skip connection, and bottleneck size), sensor arrangement, modeling error, and measurement noise, which indicates that the framework applies to the in‐field structures. Furtherly, a laboratory experiment has been conducted to validate the framework using a two‐span continuous bridge with obvious FEM error. All results have shown that the deep‐learning‐based response reconstruction algorithms can obtain the training set from not only in‐field measurements, but also numerical models to improve the diversity of training data. |
---|---|
AbstractList | Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy‐measuring responses to the target one is a popular way. Relative approaches are separated into data‐driven and model‐driven ones. This paper proposes a deep learning‐based framework to reconstruct multitypes of full‐field responses. The adopted architecture is a convolutional neural network (CNN) with an autoencoder structure and skip connections. Varied from other data‐driven approaches, the training set in this paper is the responses computed by a finite element model (FEM), with which the CNN can learn the full‐field mapping relationships among varied response types. Therefore, the proposed framework is data‐model‐co‐driven. In the numerical simulation section, a simply‐supported beam and a continuous beam bridge have been adopted to discuss the influence of hyperparameters (training epoch, kernel size, skip connection, and bottleneck size), sensor arrangement, modeling error, and measurement noise, which indicates that the framework applies to the in‐field structures. Furtherly, a laboratory experiment has been conducted to validate the framework using a two‐span continuous bridge with obvious FEM error. All results have shown that the deep‐learning‐based response reconstruction algorithms can obtain the training set from not only in‐field measurements, but also numerical models to improve the diversity of training data. Summary Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy‐measuring responses to the target one is a popular way. Relative approaches are separated into data‐driven and model‐driven ones. This paper proposes a deep learning‐based framework to reconstruct multitypes of full‐field responses. The adopted architecture is a convolutional neural network (CNN) with an autoencoder structure and skip connections. Varied from other data‐driven approaches, the training set in this paper is the responses computed by a finite element model (FEM), with which the CNN can learn the full‐field mapping relationships among varied response types. Therefore, the proposed framework is data‐model‐co‐driven. In the numerical simulation section, a simply‐supported beam and a continuous beam bridge have been adopted to discuss the influence of hyperparameters (training epoch, kernel size, skip connection, and bottleneck size), sensor arrangement, modeling error, and measurement noise, which indicates that the framework applies to the in‐field structures. Furtherly, a laboratory experiment has been conducted to validate the framework using a two‐span continuous bridge with obvious FEM error. All results have shown that the deep‐learning‐based response reconstruction algorithms can obtain the training set from not only in‐field measurements, but also numerical models to improve the diversity of training data. |
Author | Sun, Limin Ni, Peng Zhu, Wang Li, Yixian |
Author_xml | – sequence: 1 givenname: Yixian orcidid: 0000-0001-6815-4768 surname: Li fullname: Li, Yixian organization: Tongji University – sequence: 2 givenname: Peng surname: Ni fullname: Ni, Peng organization: Tongji University – sequence: 3 givenname: Limin surname: Sun fullname: Sun, Limin email: lmsun@tongji.edu.cn organization: Tongji University, Shanghai Qizhi Institute – sequence: 4 givenname: Wang surname: Zhu fullname: Zhu, Wang organization: Sichuan Highway Planning, Survey, Design, and Research Institute Ltd |
BookMark | eNp1kMtKAzEUhoNUsK2CjxBw42bqJDOTySxL8QYFF9b1kEkymJomYy6W7nwEn9EncaYVF6Kr8x_4vgPnn4CRsUYCcI7SGUpTfOUDn-GKoCMwRkVeJBiTbPSTi-IETLxf9yTBtBiD7Rxya96sjkFZwzQ0Mrr9CFvrXj7fPxrmpYBt1LpfWiW1gE76zhov-9DLPrjIBxu2jm3koMGtCs9wE3VQYddJqEwXg4fMCGhjGPIpOG6Z9vLse07B0831anGXLB9u7xfzZcJxlaGkKdOyopQ0bU5FQ3JKSsRLhphAlDeUYlkVSGCcMpEJwmnZolS0eSFLRBCuimwKLg53O2dfo_ShXtvo-kd9jUmJc1JmJO-pywPFnfXeybbunNowt6tRWg-11n2t9VBrj85-oVwFNrwfHFP6LyE5CFul5e7fw_XjarHnvwC-u492 |
CitedBy_id | crossref_primary_10_3390_s22103697 crossref_primary_10_1016_j_ymssp_2024_112097 crossref_primary_10_1016_j_istruc_2025_108693 crossref_primary_10_1088_1361_6501_ad0610 crossref_primary_10_1111_mice_13282 crossref_primary_10_1088_1361_665X_ad3d17 crossref_primary_10_3390_app142310927 crossref_primary_10_1016_j_istruc_2024_106602 crossref_primary_10_1016_j_measurement_2024_114528 crossref_primary_10_1155_2024_7481513 crossref_primary_10_1177_13694332251321196 crossref_primary_10_1080_15732479_2025_2469122 crossref_primary_10_1016_j_ymssp_2024_111451 crossref_primary_10_1088_1361_6501_ad2ad8 crossref_primary_10_1177_14759217241307575 crossref_primary_10_1177_14759217251321760 crossref_primary_10_1016_j_engstruct_2023_117329 crossref_primary_10_1016_j_engstruct_2024_118928 crossref_primary_10_1016_j_istruc_2024_107602 crossref_primary_10_3390_buildings14092995 crossref_primary_10_1016_j_sna_2025_116430 crossref_primary_10_1016_j_istruc_2024_106496 crossref_primary_10_1016_j_ymssp_2024_111783 crossref_primary_10_1177_14759217241313438 crossref_primary_10_1016_j_ymssp_2025_112597 crossref_primary_10_1016_j_ymssp_2023_110892 crossref_primary_10_1016_j_knosys_2025_113088 |
Cites_doi | 10.1016/j.engstruct.2012.03.035 10.1088/1361‐6501/ab825d 10.1016/j.engstruct.2020.110484 10.1177/1475921720924601 10.1061/9780784413821.002 10.1016/j.engstruct.2016.08.006 10.1007/s00521‐017‐3284‐1 10.4028/www.scientific.net/KEM.347.57 10.12989/sem.2016.58.6.1077 10.1007/978?3?319?68646?2_13 10.1016/j.engstruct.2018.05.084 10.1016/j.eng.2018.11.027 10.1002/stc.1953 10.1016/j.jsv.2015.04.026 10.2514/6.2015-1427 10.1002/stc.2119 10.1088/0964‐1726/23/4/045027 10.1016/j.engstruct.2020.111347 10.1111/mice.12528 10.1177/1475921720952333 10.1260/1369‐4332.16.1.165 10.1155/2017/1326309 10.1177/1475921720942836 10.1016/j.ymssp.2017.03.029 10.1115/1.4005552 10.1177/1475921720934051 10.1016/j.jsv.2010.05.016 10.1016/j.conbuildmat.2018.07.087 10.1061/(ASCE)BE.1943‐5592.0001543 10.1002/stc.2433 10.1016/j.anucene.2020.107410 10.1016/j.jsv.2012.05.031 10.1177/1475921716659787 10.1177/1475921710361326 10.1177/1475921719897571 10.1111/mice.12263 10.1177/1475921712462936 10.1177/1475921718757405 10.1177/1475921720916881 10.1177/1475921720959226 10.1016/j.ymssp.2021.108204 10.1155/2016/3791856 10.1061/(ASCE)ST.1943‐541X.0002535 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.2961 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_2961 STC2961 |
Genre | article |
GrantInformation_xml | – fundername: Hong Kong Scholars Program funderid: XJ2021036 – fundername: National Natural Science Foundation of China funderid: 51878482 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2931-b7079886bf48db648671c7a1ad18cb882e951d220ad3d6c87f10df45e71612953 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Sat Aug 23 13:12:44 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 04:05:46 EDT 2025 Wed Jan 22 16:23:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2931-b7079886bf48db648671c7a1ad18cb882e951d220ad3d6c87f10df45e71612953 |
Notes | Funding information Hong Kong Scholars Program, Grant/Award Number: XJ2021036; National Natural Science Foundation of China, Grant/Award Number: 51878482 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6815-4768 |
PQID | 2672467364 |
PQPubID | 2034347 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2672467364 crossref_primary_10_1002_stc_2961 crossref_citationtrail_10_1002_stc_2961 wiley_primary_10_1002_stc_2961_STC2961 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2018; 185 2021; 20 2007; 347 2010; 329 2019; 5 2017; 2017 2020; 20 2021; 226 2017; 24 2019; 18 2016; 2016 2020; 35 2021; 142 2016; 126 2020; 146 2012; 79 2012; 12 2016; 15 2014; 23 2016; 58 2018; 25 2020; 19 2017; 95 2022; 164 2018; 171 2012; 331 2013; 16 2020; 31 2020 2017; 32 2015; 352 2019; 26 2018 2020; 25 2018; 30 2016 2014 2020; 212 2012; 41 2010; 9 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Goodfellow I (e_1_2_8_32_1) 2016 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 15 start-page: 715 issue: 6 year: 2016 end-page: 729 article-title: Structural damage identification via multi‐type sensors and response reconstruction publication-title: Structural Health Monitoring: An International Journal. – volume: 142 year: 2021 article-title: Development of a generative‐adversarial‐network‐based signal reconstruction method for nuclear power plants publication-title: Annals of Nuclear Energy – volume: 31 issue: 7 year: 2020 article-title: A two‐step method for beam bridge damage identification based on strain response reconstruction and statistical theory publication-title: Measurement Science and Technology – start-page: 13 year: 2014 end-page: 22 – volume: 126 start-page: 571 year: 2016 end-page: 585 article-title: A bridge safety monitoring system for prestressed composite box‐girder bridges with corrugated steel webs based on in‐situ loading experiments and a long‐term monitoring database publication-title: Eng Struct – volume: 18 start-page: 401 issue: 2 year: 2019 end-page: 421 article-title: Computer vision and deep learning‐based data anomaly detection method for structural health monitoring publication-title: Structural Health Monitoring: An International Journal – volume: 20 start-page: 1373 issue: 4 year: 2020 end-page: 1391 article-title: Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks publication-title: Structural Health Monitoring. – volume: 19 start-page: 1821 issue: 6 year: 2020 end-page: 1838 article-title: Convolutional neural network‐based data recovery method for structural health monitoring publication-title: Structural Health Monitoring: An International Journal – volume: 20 start-page: 406 issue: 1 year: 2021 end-page: 425 article-title: Unsupervised deep learning approach using a deep auto‐encoder with an one‐class support vector machine to detect structural damage publication-title: Structural Health Monitoring – volume: 212 year: 2020 article-title: Structural response reconstruction in physical coordinate from deficient measurements publication-title: Eng Struct – volume: 95 start-page: 42 year: 2017 end-page: 57 article-title: Multi‐level damage identification with response reconstruction publication-title: Mechanical Systems and Signal Processing – start-page: 295 year: 2018 end-page: 305 – volume: 20 start-page: 2069 issue: 4 year: 2021 end-page: 2087 article-title: Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks publication-title: Structural Health Monitoring. – volume: 347 start-page: 57 year: 2007 end-page: 66 article-title: Structural analysis methods for structural health management of future aerospace vehicles publication-title: Key Engineering Materials – volume: 2016 start-page: 1 year: 2016 end-page: 9 article-title: Reference‐free displacement estimation of bridges using Kalman filter‐based multimetric data fusion publication-title: Journal of Sensors – year: 2020 article-title: Structural deformation reconstruction by the Penrose–Moore pseudo‐inverse and singular value decomposition‐estimated equivalent force publication-title: Structural Health Monitoring: An International Journal – volume: 146 issue: 5 year: 2020 article-title: Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection publication-title: Journal of Structural Engineering – volume: 41 start-page: 270 year: 2012 end-page: 284 article-title: Substructure damage identification based on response reconstruction in frequency domain and model updating publication-title: Eng Struct – year: 2016 – volume: 16 start-page: 165 issue: 1 year: 2013 end-page: 176 article-title: Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors publication-title: Adv Struct Eng – volume: 331 start-page: 4713 issue: 21 year: 2012 end-page: 4728 article-title: Dynamic displacement field reconstruction through a limited set of measurements: application to plates publication-title: J Sound Vib – volume: 26 issue: 10 year: 2019 article-title: Lost data recovery for structural health monitoring based on convolutional neural networks publication-title: Struct Control Health Monit – volume: 9 start-page: 361 issue: 4 year: 2010 end-page: 378 article-title: An improved conjugated beam method for deformation monitoring with a distributed sensitive fiber optic sensor publication-title: Structural Health Monitoring – volume: 20 start-page: 1609 issue: 4 year: 2020 end-page: 1626 article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders publication-title: Structural Health Monitoring: An International Journal – volume: 329 start-page: 4980 issue: 23 year: 2010 end-page: 5003 article-title: Reconstruction of dynamic displacement and velocity from measured accelerations using the variational statement of an inverse problem publication-title: J Sound Vib – volume: 79 issue: 4 year: 2012 article-title: Substructural damage detection with incomplete information of the structure publication-title: Journal of Applied Mechanics‐Transactions of the Asme – volume: 226 year: 2021 article-title: A systematic review of convolutional neural network‐based structural condition assessment techniques publication-title: Eng Struct – volume: 171 start-page: 170 year: 2018 end-page: 189 article-title: Emerging artificial intelligence methods in structural engineering publication-title: Eng Struct – volume: 30 start-page: 389 issue: 2 year: 2018 end-page: 411 article-title: Structural damage detection using finite element model updating with evolutionary algorithms: a survey publication-title: Neural Comput Applic – volume: 25 issue: 5 year: 2020 article-title: Experimental study on continuous bridge‐deflection estimation through inclination and strain publication-title: Journal of Bridge Engineering – volume: 25 issue: 3 year: 2018 article-title: Deflection distribution estimation of tied‐arch bridges using long‐gauge strain measurements publication-title: Struct Control Health Monit – volume: 12 start-page: 78 year: 2012 end-page: 95 article-title: Compressive sampling–based data loss recovery for wireless sensor networks used in civil structural health monitoring publication-title: Structural Health Monitoring: An International Journal – volume: 5 start-page: 234 issue: 2 year: 2019 end-page: 242 article-title: The state of the art of data science and engineering in structural health monitoring publication-title: Engineering – volume: 35 start-page: 685 issue: 7 year: 2020 end-page: 700 article-title: Deep learning for data anomaly detection and data compression of a long‐span suspension bridge publication-title: Comput Aided Civ Inf Eng – volume: 352 start-page: 16 year: 2015 end-page: 29 article-title: Extracting full‐field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique publication-title: J Sound Vib – volume: 164 year: 2022 article-title: Bayesian model updating of civil structures with likelihood‐free inference approach and response reconstruction technique publication-title: Mechanical Systems and Signal Processing – volume: 24 issue: 8 year: 2017 article-title: Structural damage identification via response reconstruction under unknown excitation publication-title: Structural Control & Health Monitoring – volume: 23 issue: 4 year: 2014 article-title: An inverse finite element method for beam shape sensing: theoretical framework and experimental validation publication-title: Smart Materials and Structures – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep learning‐based crack damage detection using convolutional neural networks publication-title: Comput Aided Civ Inf Eng – volume: 185 start-page: 453 year: 2018 end-page: 467 article-title: Monitoring interstory drift in buildings under seismic loading using MEMS inclinometers publication-title: Construct Build Mater – volume: 58 start-page: 1077 issue: 6 year: 2016 end-page: 1085 article-title: Usability of inclinometers as a complementary measurement tool in structural monitoring publication-title: Structural Engineering and Mechanics – volume: 20 start-page: 1880 issue: 4 year: 2021 end-page: 1903 article-title: Vibration‐based damage detection for bridges by deep convolutional denoising autoencoder publication-title: Structural Health Monitoring: An International Journal – volume: 2017 year: 2017 article-title: The application research of inverse finite element method for frame deformation Estimation publication-title: International Journal of Aerospace Engineering – ident: e_1_2_8_14_1 doi: 10.1016/j.engstruct.2012.03.035 – ident: e_1_2_8_19_1 doi: 10.1088/1361‐6501/ab825d – ident: e_1_2_8_13_1 doi: 10.1016/j.engstruct.2020.110484 – ident: e_1_2_8_38_1 doi: 10.1177/1475921720924601 – ident: e_1_2_8_29_1 doi: 10.1061/9780784413821.002 – ident: e_1_2_8_25_1 doi: 10.1016/j.engstruct.2016.08.006 – ident: e_1_2_8_2_1 doi: 10.1007/s00521‐017‐3284‐1 – ident: e_1_2_8_8_1 doi: 10.4028/www.scientific.net/KEM.347.57 – ident: e_1_2_8_27_1 doi: 10.12989/sem.2016.58.6.1077 – ident: e_1_2_8_3_1 doi: 10.1007/978?3?319?68646?2_13 – ident: e_1_2_8_6_1 – ident: e_1_2_8_30_1 doi: 10.1016/j.engstruct.2018.05.084 – ident: e_1_2_8_33_1 doi: 10.1016/j.eng.2018.11.027 – ident: e_1_2_8_20_1 doi: 10.1002/stc.1953 – ident: e_1_2_8_5_1 doi: 10.1016/j.jsv.2015.04.026 – ident: e_1_2_8_9_1 doi: 10.2514/6.2015-1427 – ident: e_1_2_8_23_1 doi: 10.1002/stc.2119 – ident: e_1_2_8_4_1 doi: 10.1088/0964‐1726/23/4/045027 – ident: e_1_2_8_35_1 doi: 10.1016/j.engstruct.2020.111347 – ident: e_1_2_8_36_1 doi: 10.1111/mice.12528 – ident: e_1_2_8_12_1 doi: 10.1177/1475921720952333 – ident: e_1_2_8_28_1 doi: 10.1260/1369‐4332.16.1.165 – ident: e_1_2_8_7_1 doi: 10.1155/2017/1326309 – ident: e_1_2_8_39_1 doi: 10.1177/1475921720942836 – ident: e_1_2_8_16_1 doi: 10.1016/j.ymssp.2017.03.029 – volume-title: Deep Learning year: 2016 ident: e_1_2_8_32_1 – ident: e_1_2_8_15_1 doi: 10.1115/1.4005552 – ident: e_1_2_8_46_1 doi: 10.1177/1475921720934051 – ident: e_1_2_8_21_1 doi: 10.1016/j.jsv.2010.05.016 – ident: e_1_2_8_26_1 doi: 10.1016/j.conbuildmat.2018.07.087 – ident: e_1_2_8_11_1 doi: 10.1061/(ASCE)BE.1943‐5592.0001543 – ident: e_1_2_8_41_1 doi: 10.1002/stc.2433 – ident: e_1_2_8_44_1 doi: 10.1016/j.anucene.2020.107410 – ident: e_1_2_8_10_1 doi: 10.1016/j.jsv.2012.05.031 – ident: e_1_2_8_18_1 doi: 10.1177/1475921716659787 – ident: e_1_2_8_24_1 doi: 10.1177/1475921710361326 – ident: e_1_2_8_43_1 doi: 10.1177/1475921719897571 – ident: e_1_2_8_34_1 doi: 10.1111/mice.12263 – ident: e_1_2_8_40_1 doi: 10.1177/1475921712462936 – ident: e_1_2_8_37_1 doi: 10.1177/1475921718757405 – ident: e_1_2_8_42_1 doi: 10.1177/1475921720916881 – ident: e_1_2_8_45_1 doi: 10.1177/1475921720959226 – ident: e_1_2_8_17_1 doi: 10.1016/j.ymssp.2021.108204 – ident: e_1_2_8_22_1 doi: 10.1155/2016/3791856 – ident: e_1_2_8_31_1 doi: 10.1061/(ASCE)ST.1943‐541X.0002535 |
SSID | ssj0026285 |
Score | 2.4456089 |
Snippet | Summary
Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target... Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Artificial neural networks autoencoder Continuous beams Continuous bridges convolutional neural network data fusion and conversion Deep learning FEM‐calculated training set Finite element method full‐field response reconstruction Machine learning mapping relationship Mathematical models Neural networks Noise measurement Numerical models Reconstruction Structural health monitoring Systems analysis Training |
Title | A convolutional neural network‐based full‐field response reconstruction framework with multitype inputs and outputs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2961 https://www.proquest.com/docview/2672467364 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD6EUP_hanc0QQPXVr0_THjmNzDFEPboOBh9I0CYjSDbshePJP8G_0L_G9tN2mKIintPACbd9L8l745lNCzpR0Qt30uRU6WltccAnzoISax2UCCjlfMWlon7d-b8ivRt6oUFXiWZicDzHfcMORYeZrHOCxyBoLaGiGBMKmqXwc10dsfuduTo5ieDLQoFK5Z0HIeiV31maNsuPXlWiRXi4nqWaV6W6R-_L5cnHJY302FfXk9Ru68X8vsE02i-STtvJo2SErKt0lG0tIwj3y0qIoRC8CEowReGkaIxf_eHvHdU9S3LaHGyOAo8-50FZRU17PkbRUl8ovitu91IgXcc-XPqST2TSjcSrpeDbF630y7F4O2j2r-DmDlUCG4FgC0Xph6AvNQyl8BPc5SRA7MTg_EZC3K8jdJGN2LF3pJ2GgHVtq7iko0CDH8NwDspqOU3VIqIvQO6442EGsNKFHIIV2tB3b2tOerJCL0lFRUpDL8QcaT1HOXGYRfMoIP2WFnM4tJzmt4webaunrqBivWcT8gHGUuPEKOTdO-7V_1B-0sT36q-ExWWd4ZsJofKtkFZygTiCTmYoaWWt1bq77NRO7n1XU93w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB2KHtSD32K16gqip9Rku0lTPJWq1K8etEIPQshmd0GUKLZF8ORP8Df6S5zZJK2KgnhKArMk2ZndfTO8fQuwo5UXmkYgnNAzxhFSKJwHFeY8NS4xkQs0V1btsxO0r8Vpz--V4KDYC5PpQ4wKbjQy7HxNA5wK0vtj1dA-SRA2KPWZFIgzKPM6vBxpR3HaG2jFUoXvYND6hfKsy_eLll_XojHA_AxT7TpzPAc3xRdm9JK76nAgq8nLN_HGf_7CPMzm-JM1s4BZgJJOF2HmkyrhEjw3GXHR85hEY9K8tBfLGH9_faOlTzF6Cz5YDhx7yri2mtkMe6RKy0xB_mJU8WWWv0hlX3abPg4HfRanij0MB3S_DNfHR91W28nPZ3ASBAmeI0ldLwwDaUSoZEDafV5Sj70Y_Z9IhO4a4Zvi3I1VTQVJWDeeq4zwNeZoCDP82gpMpA-pXgVWI907oQXaYbg0sEVdSeMZN3aNb3xVhr3CU1GSi5fTGRr3USa7zCPsyoi6sgzbI8vHTLDjB5tK4ewoH7L9iAd1LojlJsqwa732a_voqtui69pfDbdgqt29OI_OTzpn6zDNaQuFpfxWYAIdojcQ2Azkpg3gD-vs-gc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1dS8MwFIaDTBC98FucTo0getWtTdOuuxzT4RdDdIOBF6VpEhClG25D8Mqf4G_0l3hO-rEpCuJVNziBreekeU9485SQIyWdQDd8bgWO1hYXXMJzUELP4zIBjZyvmDS0z45_3uOXfa-fuSrxLEzKhyg23HBmmOc1TvCh1LUpNHSEBMIGdj7z3AchgYLotkBHMTwaaFip3LOgZr0cPGuzWj7y61I01ZezKtUsM-0Vcp__wNRd8lidjEU1fv3GbvzfP1gly5n6pM20XNbInErWydIMk3CDvDQpOtGzioRgJF6ai_GLf7y948InKe7bwxfjgKPPqdNWUdNfF0xaqnPrF8X9Xmrci7jpSx-S4WQ8olEi6WAyxs-bpNc-67bOreztDFYMEsGxBLL1gsAXmgdS-Ejuc-J65ESQ_ViAcFcg3iRjdiRd6cdBXTu21NxT0KGByPDcLVJKBonaJtRF6h1XHOKgWBowoi6FdrQd2drTniyTkzxRYZyhy_ENGk9hCl1mIdzKEG9lmRwWkcMU1_FDTCXPdZhN2FHI_Drj6HHjZXJskvbr-PCu28Lrzl8DD8jCzWk7vL7oXO2SRYbnJ4zft0JKkA-1B6pmLPZN-X4CGmT4tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network%E2%80%90based+full%E2%80%90field+response+reconstruction+framework+with+multitype+inputs+and+outputs&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Li%2C+Yixian&rft.au=Ni%2C+Peng&rft.au=Sun%2C+Limin&rft.au=Wang%2C+Zhu&rft.date=2022-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=29&rft.issue=7&rft_id=info:doi/10.1002%2Fstc.2961&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |