A convolutional neural network‐based full‐field response reconstruction framework with multitype inputs and outputs

Summary Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy‐measuring responses to the target one is a p...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 7
Main Authors Li, Yixian, Ni, Peng, Sun, Limin, Zhu, Wang
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.07.2022
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.2961

Cover

Abstract Summary Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy‐measuring responses to the target one is a popular way. Relative approaches are separated into data‐driven and model‐driven ones. This paper proposes a deep learning‐based framework to reconstruct multitypes of full‐field responses. The adopted architecture is a convolutional neural network (CNN) with an autoencoder structure and skip connections. Varied from other data‐driven approaches, the training set in this paper is the responses computed by a finite element model (FEM), with which the CNN can learn the full‐field mapping relationships among varied response types. Therefore, the proposed framework is data‐model‐co‐driven. In the numerical simulation section, a simply‐supported beam and a continuous beam bridge have been adopted to discuss the influence of hyperparameters (training epoch, kernel size, skip connection, and bottleneck size), sensor arrangement, modeling error, and measurement noise, which indicates that the framework applies to the in‐field structures. Furtherly, a laboratory experiment has been conducted to validate the framework using a two‐span continuous bridge with obvious FEM error. All results have shown that the deep‐learning‐based response reconstruction algorithms can obtain the training set from not only in‐field measurements, but also numerical models to improve the diversity of training data.
AbstractList Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy‐measuring responses to the target one is a popular way. Relative approaches are separated into data‐driven and model‐driven ones. This paper proposes a deep learning‐based framework to reconstruct multitypes of full‐field responses. The adopted architecture is a convolutional neural network (CNN) with an autoencoder structure and skip connections. Varied from other data‐driven approaches, the training set in this paper is the responses computed by a finite element model (FEM), with which the CNN can learn the full‐field mapping relationships among varied response types. Therefore, the proposed framework is data‐model‐co‐driven. In the numerical simulation section, a simply‐supported beam and a continuous beam bridge have been adopted to discuss the influence of hyperparameters (training epoch, kernel size, skip connection, and bottleneck size), sensor arrangement, modeling error, and measurement noise, which indicates that the framework applies to the in‐field structures. Furtherly, a laboratory experiment has been conducted to validate the framework using a two‐span continuous bridge with obvious FEM error. All results have shown that the deep‐learning‐based response reconstruction algorithms can obtain the training set from not only in‐field measurements, but also numerical models to improve the diversity of training data.
Summary Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is difficult to accomplish due to technical or economic limitations, converting other easy‐measuring responses to the target one is a popular way. Relative approaches are separated into data‐driven and model‐driven ones. This paper proposes a deep learning‐based framework to reconstruct multitypes of full‐field responses. The adopted architecture is a convolutional neural network (CNN) with an autoencoder structure and skip connections. Varied from other data‐driven approaches, the training set in this paper is the responses computed by a finite element model (FEM), with which the CNN can learn the full‐field mapping relationships among varied response types. Therefore, the proposed framework is data‐model‐co‐driven. In the numerical simulation section, a simply‐supported beam and a continuous beam bridge have been adopted to discuss the influence of hyperparameters (training epoch, kernel size, skip connection, and bottleneck size), sensor arrangement, modeling error, and measurement noise, which indicates that the framework applies to the in‐field structures. Furtherly, a laboratory experiment has been conducted to validate the framework using a two‐span continuous bridge with obvious FEM error. All results have shown that the deep‐learning‐based response reconstruction algorithms can obtain the training set from not only in‐field measurements, but also numerical models to improve the diversity of training data.
Author Sun, Limin
Ni, Peng
Zhu, Wang
Li, Yixian
Author_xml – sequence: 1
  givenname: Yixian
  orcidid: 0000-0001-6815-4768
  surname: Li
  fullname: Li, Yixian
  organization: Tongji University
– sequence: 2
  givenname: Peng
  surname: Ni
  fullname: Ni, Peng
  organization: Tongji University
– sequence: 3
  givenname: Limin
  surname: Sun
  fullname: Sun, Limin
  email: lmsun@tongji.edu.cn
  organization: Tongji University, Shanghai Qizhi Institute
– sequence: 4
  givenname: Wang
  surname: Zhu
  fullname: Zhu, Wang
  organization: Sichuan Highway Planning, Survey, Design, and Research Institute Ltd
BookMark eNp1kMtKAzEUhoNUsK2CjxBw42bqJDOTySxL8QYFF9b1kEkymJomYy6W7nwEn9EncaYVF6Kr8x_4vgPnn4CRsUYCcI7SGUpTfOUDn-GKoCMwRkVeJBiTbPSTi-IETLxf9yTBtBiD7Rxya96sjkFZwzQ0Mrr9CFvrXj7fPxrmpYBt1LpfWiW1gE76zhov-9DLPrjIBxu2jm3koMGtCs9wE3VQYddJqEwXg4fMCGhjGPIpOG6Z9vLse07B0831anGXLB9u7xfzZcJxlaGkKdOyopQ0bU5FQ3JKSsRLhphAlDeUYlkVSGCcMpEJwmnZolS0eSFLRBCuimwKLg53O2dfo_ShXtvo-kd9jUmJc1JmJO-pywPFnfXeybbunNowt6tRWg-11n2t9VBrj85-oVwFNrwfHFP6LyE5CFul5e7fw_XjarHnvwC-u492
CitedBy_id crossref_primary_10_3390_s22103697
crossref_primary_10_1016_j_ymssp_2024_112097
crossref_primary_10_1016_j_istruc_2025_108693
crossref_primary_10_1088_1361_6501_ad0610
crossref_primary_10_1111_mice_13282
crossref_primary_10_1088_1361_665X_ad3d17
crossref_primary_10_3390_app142310927
crossref_primary_10_1016_j_istruc_2024_106602
crossref_primary_10_1016_j_measurement_2024_114528
crossref_primary_10_1155_2024_7481513
crossref_primary_10_1177_13694332251321196
crossref_primary_10_1080_15732479_2025_2469122
crossref_primary_10_1016_j_ymssp_2024_111451
crossref_primary_10_1088_1361_6501_ad2ad8
crossref_primary_10_1177_14759217241307575
crossref_primary_10_1177_14759217251321760
crossref_primary_10_1016_j_engstruct_2023_117329
crossref_primary_10_1016_j_engstruct_2024_118928
crossref_primary_10_1016_j_istruc_2024_107602
crossref_primary_10_3390_buildings14092995
crossref_primary_10_1016_j_sna_2025_116430
crossref_primary_10_1016_j_istruc_2024_106496
crossref_primary_10_1016_j_ymssp_2024_111783
crossref_primary_10_1177_14759217241313438
crossref_primary_10_1016_j_ymssp_2025_112597
crossref_primary_10_1016_j_ymssp_2023_110892
crossref_primary_10_1016_j_knosys_2025_113088
Cites_doi 10.1016/j.engstruct.2012.03.035
10.1088/1361‐6501/ab825d
10.1016/j.engstruct.2020.110484
10.1177/1475921720924601
10.1061/9780784413821.002
10.1016/j.engstruct.2016.08.006
10.1007/s00521‐017‐3284‐1
10.4028/www.scientific.net/KEM.347.57
10.12989/sem.2016.58.6.1077
10.1007/978?3?319?68646?2_13
10.1016/j.engstruct.2018.05.084
10.1016/j.eng.2018.11.027
10.1002/stc.1953
10.1016/j.jsv.2015.04.026
10.2514/6.2015-1427
10.1002/stc.2119
10.1088/0964‐1726/23/4/045027
10.1016/j.engstruct.2020.111347
10.1111/mice.12528
10.1177/1475921720952333
10.1260/1369‐4332.16.1.165
10.1155/2017/1326309
10.1177/1475921720942836
10.1016/j.ymssp.2017.03.029
10.1115/1.4005552
10.1177/1475921720934051
10.1016/j.jsv.2010.05.016
10.1016/j.conbuildmat.2018.07.087
10.1061/(ASCE)BE.1943‐5592.0001543
10.1002/stc.2433
10.1016/j.anucene.2020.107410
10.1016/j.jsv.2012.05.031
10.1177/1475921716659787
10.1177/1475921710361326
10.1177/1475921719897571
10.1111/mice.12263
10.1177/1475921712462936
10.1177/1475921718757405
10.1177/1475921720916881
10.1177/1475921720959226
10.1016/j.ymssp.2021.108204
10.1155/2016/3791856
10.1061/(ASCE)ST.1943‐541X.0002535
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2961
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2961
STC2961
Genre article
GrantInformation_xml – fundername: Hong Kong Scholars Program
  funderid: XJ2021036
– fundername: National Natural Science Foundation of China
  funderid: 51878482
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
ABJCF
ADMLS
AEUYN
AFKRA
AGQPQ
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2931-b7079886bf48db648671c7a1ad18cb882e951d220ad3d6c87f10df45e71612953
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Sat Aug 23 13:12:44 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 04:05:46 EDT 2025
Wed Jan 22 16:23:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2931-b7079886bf48db648671c7a1ad18cb882e951d220ad3d6c87f10df45e71612953
Notes Funding information
Hong Kong Scholars Program, Grant/Award Number: XJ2021036; National Natural Science Foundation of China, Grant/Award Number: 51878482
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6815-4768
PQID 2672467364
PQPubID 2034347
PageCount 23
ParticipantIDs proquest_journals_2672467364
crossref_primary_10_1002_stc_2961
crossref_citationtrail_10_1002_stc_2961
wiley_primary_10_1002_stc_2961_STC2961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 185
2021; 20
2007; 347
2010; 329
2019; 5
2017; 2017
2020; 20
2021; 226
2017; 24
2019; 18
2016; 2016
2020; 35
2021; 142
2016; 126
2020; 146
2012; 79
2012; 12
2016; 15
2014; 23
2016; 58
2018; 25
2020; 19
2017; 95
2022; 164
2018; 171
2012; 331
2013; 16
2020; 31
2020
2017; 32
2015; 352
2019; 26
2018
2020; 25
2018; 30
2016
2014
2020; 212
2012; 41
2010; 9
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Goodfellow I (e_1_2_8_32_1) 2016
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 15
  start-page: 715
  issue: 6
  year: 2016
  end-page: 729
  article-title: Structural damage identification via multi‐type sensors and response reconstruction
  publication-title: Structural Health Monitoring: An International Journal.
– volume: 142
  year: 2021
  article-title: Development of a generative‐adversarial‐network‐based signal reconstruction method for nuclear power plants
  publication-title: Annals of Nuclear Energy
– volume: 31
  issue: 7
  year: 2020
  article-title: A two‐step method for beam bridge damage identification based on strain response reconstruction and statistical theory
  publication-title: Measurement Science and Technology
– start-page: 13
  year: 2014
  end-page: 22
– volume: 126
  start-page: 571
  year: 2016
  end-page: 585
  article-title: A bridge safety monitoring system for prestressed composite box‐girder bridges with corrugated steel webs based on in‐situ loading experiments and a long‐term monitoring database
  publication-title: Eng Struct
– volume: 18
  start-page: 401
  issue: 2
  year: 2019
  end-page: 421
  article-title: Computer vision and deep learning‐based data anomaly detection method for structural health monitoring
  publication-title: Structural Health Monitoring: An International Journal
– volume: 20
  start-page: 1373
  issue: 4
  year: 2020
  end-page: 1391
  article-title: Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks
  publication-title: Structural Health Monitoring.
– volume: 19
  start-page: 1821
  issue: 6
  year: 2020
  end-page: 1838
  article-title: Convolutional neural network‐based data recovery method for structural health monitoring
  publication-title: Structural Health Monitoring: An International Journal
– volume: 20
  start-page: 406
  issue: 1
  year: 2021
  end-page: 425
  article-title: Unsupervised deep learning approach using a deep auto‐encoder with an one‐class support vector machine to detect structural damage
  publication-title: Structural Health Monitoring
– volume: 212
  year: 2020
  article-title: Structural response reconstruction in physical coordinate from deficient measurements
  publication-title: Eng Struct
– volume: 95
  start-page: 42
  year: 2017
  end-page: 57
  article-title: Multi‐level damage identification with response reconstruction
  publication-title: Mechanical Systems and Signal Processing
– start-page: 295
  year: 2018
  end-page: 305
– volume: 20
  start-page: 2069
  issue: 4
  year: 2021
  end-page: 2087
  article-title: Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks
  publication-title: Structural Health Monitoring.
– volume: 347
  start-page: 57
  year: 2007
  end-page: 66
  article-title: Structural analysis methods for structural health management of future aerospace vehicles
  publication-title: Key Engineering Materials
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Reference‐free displacement estimation of bridges using Kalman filter‐based multimetric data fusion
  publication-title: Journal of Sensors
– year: 2020
  article-title: Structural deformation reconstruction by the Penrose–Moore pseudo‐inverse and singular value decomposition‐estimated equivalent force
  publication-title: Structural Health Monitoring: An International Journal
– volume: 146
  issue: 5
  year: 2020
  article-title: Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection
  publication-title: Journal of Structural Engineering
– volume: 41
  start-page: 270
  year: 2012
  end-page: 284
  article-title: Substructure damage identification based on response reconstruction in frequency domain and model updating
  publication-title: Eng Struct
– year: 2016
– volume: 16
  start-page: 165
  issue: 1
  year: 2013
  end-page: 176
  article-title: Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors
  publication-title: Adv Struct Eng
– volume: 331
  start-page: 4713
  issue: 21
  year: 2012
  end-page: 4728
  article-title: Dynamic displacement field reconstruction through a limited set of measurements: application to plates
  publication-title: J Sound Vib
– volume: 26
  issue: 10
  year: 2019
  article-title: Lost data recovery for structural health monitoring based on convolutional neural networks
  publication-title: Struct Control Health Monit
– volume: 9
  start-page: 361
  issue: 4
  year: 2010
  end-page: 378
  article-title: An improved conjugated beam method for deformation monitoring with a distributed sensitive fiber optic sensor
  publication-title: Structural Health Monitoring
– volume: 20
  start-page: 1609
  issue: 4
  year: 2020
  end-page: 1626
  article-title: Toward data anomaly detection for automated structural health monitoring: exploiting generative adversarial nets and autoencoders
  publication-title: Structural Health Monitoring: An International Journal
– volume: 329
  start-page: 4980
  issue: 23
  year: 2010
  end-page: 5003
  article-title: Reconstruction of dynamic displacement and velocity from measured accelerations using the variational statement of an inverse problem
  publication-title: J Sound Vib
– volume: 79
  issue: 4
  year: 2012
  article-title: Substructural damage detection with incomplete information of the structure
  publication-title: Journal of Applied Mechanics‐Transactions of the Asme
– volume: 226
  year: 2021
  article-title: A systematic review of convolutional neural network‐based structural condition assessment techniques
  publication-title: Eng Struct
– volume: 171
  start-page: 170
  year: 2018
  end-page: 189
  article-title: Emerging artificial intelligence methods in structural engineering
  publication-title: Eng Struct
– volume: 30
  start-page: 389
  issue: 2
  year: 2018
  end-page: 411
  article-title: Structural damage detection using finite element model updating with evolutionary algorithms: a survey
  publication-title: Neural Comput Applic
– volume: 25
  issue: 5
  year: 2020
  article-title: Experimental study on continuous bridge‐deflection estimation through inclination and strain
  publication-title: Journal of Bridge Engineering
– volume: 25
  issue: 3
  year: 2018
  article-title: Deflection distribution estimation of tied‐arch bridges using long‐gauge strain measurements
  publication-title: Struct Control Health Monit
– volume: 12
  start-page: 78
  year: 2012
  end-page: 95
  article-title: Compressive sampling–based data loss recovery for wireless sensor networks used in civil structural health monitoring
  publication-title: Structural Health Monitoring: An International Journal
– volume: 5
  start-page: 234
  issue: 2
  year: 2019
  end-page: 242
  article-title: The state of the art of data science and engineering in structural health monitoring
  publication-title: Engineering
– volume: 35
  start-page: 685
  issue: 7
  year: 2020
  end-page: 700
  article-title: Deep learning for data anomaly detection and data compression of a long‐span suspension bridge
  publication-title: Comput Aided Civ Inf Eng
– volume: 352
  start-page: 16
  year: 2015
  end-page: 29
  article-title: Extracting full‐field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique
  publication-title: J Sound Vib
– volume: 164
  year: 2022
  article-title: Bayesian model updating of civil structures with likelihood‐free inference approach and response reconstruction technique
  publication-title: Mechanical Systems and Signal Processing
– volume: 24
  issue: 8
  year: 2017
  article-title: Structural damage identification via response reconstruction under unknown excitation
  publication-title: Structural Control & Health Monitoring
– volume: 23
  issue: 4
  year: 2014
  article-title: An inverse finite element method for beam shape sensing: theoretical framework and experimental validation
  publication-title: Smart Materials and Structures
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Comput Aided Civ Inf Eng
– volume: 185
  start-page: 453
  year: 2018
  end-page: 467
  article-title: Monitoring interstory drift in buildings under seismic loading using MEMS inclinometers
  publication-title: Construct Build Mater
– volume: 58
  start-page: 1077
  issue: 6
  year: 2016
  end-page: 1085
  article-title: Usability of inclinometers as a complementary measurement tool in structural monitoring
  publication-title: Structural Engineering and Mechanics
– volume: 20
  start-page: 1880
  issue: 4
  year: 2021
  end-page: 1903
  article-title: Vibration‐based damage detection for bridges by deep convolutional denoising autoencoder
  publication-title: Structural Health Monitoring: An International Journal
– volume: 2017
  year: 2017
  article-title: The application research of inverse finite element method for frame deformation Estimation
  publication-title: International Journal of Aerospace Engineering
– ident: e_1_2_8_14_1
  doi: 10.1016/j.engstruct.2012.03.035
– ident: e_1_2_8_19_1
  doi: 10.1088/1361‐6501/ab825d
– ident: e_1_2_8_13_1
  doi: 10.1016/j.engstruct.2020.110484
– ident: e_1_2_8_38_1
  doi: 10.1177/1475921720924601
– ident: e_1_2_8_29_1
  doi: 10.1061/9780784413821.002
– ident: e_1_2_8_25_1
  doi: 10.1016/j.engstruct.2016.08.006
– ident: e_1_2_8_2_1
  doi: 10.1007/s00521‐017‐3284‐1
– ident: e_1_2_8_8_1
  doi: 10.4028/www.scientific.net/KEM.347.57
– ident: e_1_2_8_27_1
  doi: 10.12989/sem.2016.58.6.1077
– ident: e_1_2_8_3_1
  doi: 10.1007/978?3?319?68646?2_13
– ident: e_1_2_8_6_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.engstruct.2018.05.084
– ident: e_1_2_8_33_1
  doi: 10.1016/j.eng.2018.11.027
– ident: e_1_2_8_20_1
  doi: 10.1002/stc.1953
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jsv.2015.04.026
– ident: e_1_2_8_9_1
  doi: 10.2514/6.2015-1427
– ident: e_1_2_8_23_1
  doi: 10.1002/stc.2119
– ident: e_1_2_8_4_1
  doi: 10.1088/0964‐1726/23/4/045027
– ident: e_1_2_8_35_1
  doi: 10.1016/j.engstruct.2020.111347
– ident: e_1_2_8_36_1
  doi: 10.1111/mice.12528
– ident: e_1_2_8_12_1
  doi: 10.1177/1475921720952333
– ident: e_1_2_8_28_1
  doi: 10.1260/1369‐4332.16.1.165
– ident: e_1_2_8_7_1
  doi: 10.1155/2017/1326309
– ident: e_1_2_8_39_1
  doi: 10.1177/1475921720942836
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ymssp.2017.03.029
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_8_32_1
– ident: e_1_2_8_15_1
  doi: 10.1115/1.4005552
– ident: e_1_2_8_46_1
  doi: 10.1177/1475921720934051
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jsv.2010.05.016
– ident: e_1_2_8_26_1
  doi: 10.1016/j.conbuildmat.2018.07.087
– ident: e_1_2_8_11_1
  doi: 10.1061/(ASCE)BE.1943‐5592.0001543
– ident: e_1_2_8_41_1
  doi: 10.1002/stc.2433
– ident: e_1_2_8_44_1
  doi: 10.1016/j.anucene.2020.107410
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jsv.2012.05.031
– ident: e_1_2_8_18_1
  doi: 10.1177/1475921716659787
– ident: e_1_2_8_24_1
  doi: 10.1177/1475921710361326
– ident: e_1_2_8_43_1
  doi: 10.1177/1475921719897571
– ident: e_1_2_8_34_1
  doi: 10.1111/mice.12263
– ident: e_1_2_8_40_1
  doi: 10.1177/1475921712462936
– ident: e_1_2_8_37_1
  doi: 10.1177/1475921718757405
– ident: e_1_2_8_42_1
  doi: 10.1177/1475921720916881
– ident: e_1_2_8_45_1
  doi: 10.1177/1475921720959226
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ymssp.2021.108204
– ident: e_1_2_8_22_1
  doi: 10.1155/2016/3791856
– ident: e_1_2_8_31_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0002535
SSID ssj0026285
Score 2.4456089
Snippet Summary Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target...
Structural health monitoring (SHM) systems evaluate the state of the infrastructures by analyzing the monitored responses. As measuring all target responses is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
autoencoder
Continuous beams
Continuous bridges
convolutional neural network
data fusion and conversion
Deep learning
FEM‐calculated training set
Finite element method
full‐field response reconstruction
Machine learning
mapping relationship
Mathematical models
Neural networks
Noise measurement
Numerical models
Reconstruction
Structural health monitoring
Systems analysis
Training
Title A convolutional neural network‐based full‐field response reconstruction framework with multitype inputs and outputs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2961
https://www.proquest.com/docview/2672467364
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD6EUP_hanc0QQPXVr0_THjmNzDFEPboOBh9I0CYjSDbshePJP8G_0L_G9tN2mKIintPACbd9L8l745lNCzpR0Qt30uRU6WltccAnzoISax2UCCjlfMWlon7d-b8ivRt6oUFXiWZicDzHfcMORYeZrHOCxyBoLaGiGBMKmqXwc10dsfuduTo5ieDLQoFK5Z0HIeiV31maNsuPXlWiRXi4nqWaV6W6R-_L5cnHJY302FfXk9Ru68X8vsE02i-STtvJo2SErKt0lG0tIwj3y0qIoRC8CEowReGkaIxf_eHvHdU9S3LaHGyOAo8-50FZRU17PkbRUl8ovitu91IgXcc-XPqST2TSjcSrpeDbF630y7F4O2j2r-DmDlUCG4FgC0Xph6AvNQyl8BPc5SRA7MTg_EZC3K8jdJGN2LF3pJ2GgHVtq7iko0CDH8NwDspqOU3VIqIvQO6442EGsNKFHIIV2tB3b2tOerJCL0lFRUpDL8QcaT1HOXGYRfMoIP2WFnM4tJzmt4webaunrqBivWcT8gHGUuPEKOTdO-7V_1B-0sT36q-ExWWd4ZsJofKtkFZygTiCTmYoaWWt1bq77NRO7n1XU93w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB2KHtSD32K16gqip9Rku0lTPJWq1K8etEIPQshmd0GUKLZF8ORP8Df6S5zZJK2KgnhKArMk2ZndfTO8fQuwo5UXmkYgnNAzxhFSKJwHFeY8NS4xkQs0V1btsxO0r8Vpz--V4KDYC5PpQ4wKbjQy7HxNA5wK0vtj1dA-SRA2KPWZFIgzKPM6vBxpR3HaG2jFUoXvYND6hfKsy_eLll_XojHA_AxT7TpzPAc3xRdm9JK76nAgq8nLN_HGf_7CPMzm-JM1s4BZgJJOF2HmkyrhEjw3GXHR85hEY9K8tBfLGH9_faOlTzF6Cz5YDhx7yri2mtkMe6RKy0xB_mJU8WWWv0hlX3abPg4HfRanij0MB3S_DNfHR91W28nPZ3ASBAmeI0ldLwwDaUSoZEDafV5Sj70Y_Z9IhO4a4Zvi3I1VTQVJWDeeq4zwNeZoCDP82gpMpA-pXgVWI907oQXaYbg0sEVdSeMZN3aNb3xVhr3CU1GSi5fTGRr3USa7zCPsyoi6sgzbI8vHTLDjB5tK4ewoH7L9iAd1LojlJsqwa732a_voqtui69pfDbdgqt29OI_OTzpn6zDNaQuFpfxWYAIdojcQ2Azkpg3gD-vs-gc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1dS8MwFIaDTBC98FucTo0getWtTdOuuxzT4RdDdIOBF6VpEhClG25D8Mqf4G_0l3hO-rEpCuJVNziBreekeU9485SQIyWdQDd8bgWO1hYXXMJzUELP4zIBjZyvmDS0z45_3uOXfa-fuSrxLEzKhyg23HBmmOc1TvCh1LUpNHSEBMIGdj7z3AchgYLotkBHMTwaaFip3LOgZr0cPGuzWj7y61I01ZezKtUsM-0Vcp__wNRd8lidjEU1fv3GbvzfP1gly5n6pM20XNbInErWydIMk3CDvDQpOtGzioRgJF6ai_GLf7y948InKe7bwxfjgKPPqdNWUdNfF0xaqnPrF8X9Xmrci7jpSx-S4WQ8olEi6WAyxs-bpNc-67bOreztDFYMEsGxBLL1gsAXmgdS-Ejuc-J65ESQ_ViAcFcg3iRjdiRd6cdBXTu21NxT0KGByPDcLVJKBonaJtRF6h1XHOKgWBowoi6FdrQd2drTniyTkzxRYZyhy_ENGk9hCl1mIdzKEG9lmRwWkcMU1_FDTCXPdZhN2FHI_Drj6HHjZXJskvbr-PCu28Lrzl8DD8jCzWk7vL7oXO2SRYbnJ4zft0JKkA-1B6pmLPZN-X4CGmT4tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network%E2%80%90based+full%E2%80%90field+response+reconstruction+framework+with+multitype+inputs+and+outputs&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Li%2C+Yixian&rft.au=Ni%2C+Peng&rft.au=Sun%2C+Limin&rft.au=Wang%2C+Zhu&rft.date=2022-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=29&rft.issue=7&rft_id=info:doi/10.1002%2Fstc.2961&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon