A roadside unit deployment framework for enhancing transportation services in Maghrebian cities
Summary Roadside units (RSUs) have a crucial role in maintaining vehicular ad hoc networks (VANETs) connectivity and coverage, especially, for applications gathering or disseminating nonsafety information. In big cities with complex road network topology, a huge number of costly RSUs must be deploye...
Saved in:
Published in | Concurrency and computation Vol. 33; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
10.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1532-0626 1532-0634 |
DOI | 10.1002/cpe.5611 |
Cover
Abstract | Summary
Roadside units (RSUs) have a crucial role in maintaining vehicular ad hoc networks (VANETs) connectivity and coverage, especially, for applications gathering or disseminating nonsafety information. In big cities with complex road network topology, a huge number of costly RSUs must be deployed to collect data gathered by all moving vehicles. In this respect, several research works focusing on RSUs deployment have been proposed. The thriving challenge would be to (1) reduce the deployment cost by minimizing as far as possible the number of used RSUs and (2) to maximize the coverage ratio. In this paper, we introduce a spatiotemporal RSU deployment framework including three methods, namely, SPaCov, SPaCov+, and HeSPic. SPaCov starts by mining frequent mobility patterns of moving vehicles from their trajectories; then, it computes the best RSU locations that cover the extracted patterns. Nonetheless, SPaCov+ extracts the frequent mobility patterns as well as the rare ones to enhance the coverage ratio. HeSPiC is a budget‐constrained spatiotemporal coverage method that aims to maximize the coverage ratio subject to a budget constraint, which is defined in terms of RSU number. Performed simulations highlight the efficiency and the effectiveness of the proposed RSU deployment framework in terms of coverage ratio, deployment cost, network latency and overhead. |
---|---|
AbstractList | Roadside units (RSUs) have a crucial role in maintaining vehicular ad hoc networks (VANETs) connectivity and coverage, especially, for applications gathering or disseminating nonsafety information. In big cities with complex road network topology, a huge number of costly RSUs must be deployed to collect data gathered by all moving vehicles. In this respect, several research works focusing on RSUs deployment have been proposed. The thriving challenge would be to (1) reduce the deployment cost by minimizing as far as possible the number of used RSUs and (2) to maximize the coverage ratio. In this paper, we introduce a spatiotemporal RSU deployment framework including three methods, namely, SPaCov, SPaCov+, and HeSPic. SPaCov starts by mining frequent mobility patterns of moving vehicles from their trajectories; then, it computes the best RSU locations that cover the extracted patterns. Nonetheless, SPaCov+ extracts the frequent mobility patterns as well as the rare ones to enhance the coverage ratio. HeSPiC is a budget‐constrained spatiotemporal coverage method that aims to maximize the coverage ratio subject to a budget constraint, which is defined in terms of RSU number. Performed simulations highlight the efficiency and the effectiveness of the proposed RSU deployment framework in terms of coverage ratio, deployment cost, network latency and overhead. Summary Roadside units (RSUs) have a crucial role in maintaining vehicular ad hoc networks (VANETs) connectivity and coverage, especially, for applications gathering or disseminating nonsafety information. In big cities with complex road network topology, a huge number of costly RSUs must be deployed to collect data gathered by all moving vehicles. In this respect, several research works focusing on RSUs deployment have been proposed. The thriving challenge would be to (1) reduce the deployment cost by minimizing as far as possible the number of used RSUs and (2) to maximize the coverage ratio. In this paper, we introduce a spatiotemporal RSU deployment framework including three methods, namely, SPaCov, SPaCov+, and HeSPic. SPaCov starts by mining frequent mobility patterns of moving vehicles from their trajectories; then, it computes the best RSU locations that cover the extracted patterns. Nonetheless, SPaCov+ extracts the frequent mobility patterns as well as the rare ones to enhance the coverage ratio. HeSPiC is a budget‐constrained spatiotemporal coverage method that aims to maximize the coverage ratio subject to a budget constraint, which is defined in terms of RSU number. Performed simulations highlight the efficiency and the effectiveness of the proposed RSU deployment framework in terms of coverage ratio, deployment cost, network latency and overhead. |
Author | Yeferny, Taoufik Ben Yahia, Sadok Ben Chaabene, Seif |
Author_xml | – sequence: 1 givenname: Seif orcidid: 0000-0002-4098-6420 surname: Ben Chaabene fullname: Ben Chaabene, Seif email: seifbch@gmail.com organization: University of Tunis El Manar – sequence: 2 givenname: Taoufik surname: Yeferny fullname: Yeferny, Taoufik organization: Northern Border University – sequence: 3 givenname: Sadok surname: Ben Yahia fullname: Ben Yahia, Sadok organization: Tallinn University of Technology |
BookMark | eNp1kEtPwzAQhC0EEm1B4idY4sIlxWvneayq8pCK4ABny0nWrUtqBzul6r8nbREHBKfdwzezOzMkp9ZZJOQK2BgY47dVi-MkBTghA0gEj1gq4tOfnafnZBjCijEAJmBA5IR6p-pgaqQbazpaY9u43RptR7VXa9w6_0618xTtUtnK2AXtvLKhdb5TnXGWBvSfpsJAjaVParH0WBplaWU6g-GCnGnVBLz8niPydjd7nT5E8-f7x-lkHlW8EBBlKmEqxzLXsdBYMcFVrbHOc86zIheQ6jqDXJTIdJGWLNOMQ1KoGBRAwZkQI3J99G29-9hg6OTKbbztT0oeZyzuoRx6anykKu9C8Khl_-UhRZ_JNBKY3Jco-xLlvsRecPNL0HqzVn73Fxod0a1pcPcvJ6cvswP_BXthguM |
CitedBy_id | crossref_primary_10_1111_exsy_12815 crossref_primary_10_1016_j_trc_2021_103238 crossref_primary_10_1016_j_trc_2022_103625 crossref_primary_10_3390_s22093190 |
Cites_doi | 10.1109/ICC.2010.5502183 10.1109/TMC.2011.100 10.1007/978-3-642-12331-3_3 10.1109/TVT.2008.923689 10.1002/bimj.19700120118 10.1155/2013/690974 10.1002/dac.3712 10.1007/978-3-319-13329-4_2 10.1109/TKDE.2004.77 10.1016/j.dam.2014.01.012 10.1109/RAECS.2014.6799625 10.1007/978-3-642-13577-4_17 10.1007/978-3-642-29667-3_9 10.1142/S0218202502002343 10.1109/JSAC.2012.120514 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cpe.5611 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1532-0634 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cpe_5611 CPE5611 |
Genre | article |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2931-7a50a8eb8f43fec032adfed8822798316fd7183be0f96b07f02159a41a1192033 |
IEDL.DBID | DR2 |
ISSN | 1532-0626 |
IngestDate | Wed Aug 13 11:16:12 EDT 2025 Tue Jul 01 00:34:02 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Wed Jan 22 16:32:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2931-7a50a8eb8f43fec032adfed8822798316fd7183be0f96b07f02159a41a1192033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4098-6420 |
PQID | 2470492081 |
PQPubID | 2045170 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2470492081 crossref_citationtrail_10_1002_cpe_5611 crossref_primary_10_1002_cpe_5611 wiley_primary_10_1002_cpe_5611_CPE5611 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 January 2021 |
PublicationDateYYYYMMDD | 2021-01-10 |
PublicationDate_xml | – month: 01 year: 2021 text: 10 January 2021 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Concurrency and computation |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 58 2013; 3 2012 2010 2004; 16 2002; 12 2008 2016 2014; 140 2014 2014; 170 1970 2012; 7266 2010; 6059 2018; 31 2012; 30 2013; 9 e_1_2_6_10_1 e_1_2_6_9_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 Kaur R (e_1_2_6_8_1) 2013; 3 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 58 start-page: 420 issue: 1 year: 2009 end-page: 431 article-title: Spatial propagation of information in vehicular networks publication-title: IEEE Trans Veh Technol – volume: 12 start-page: 1801 issue: 12 year: 2002 end-page: 1843 article-title: On the mathematical theory of vehicular traffic flow: fluid dynamic and kinetic modelling publication-title: Math Model Methods Appl Sci – volume: 170 start-page: 83 year: 2014 end-page: 94 article-title: Efficient algorithms for dualizing large‐scale hypergraphs publication-title: Discret Appl Math – volume: 31 start-page: 107 issue: 12 year: 2018 end-page: 128 article-title: MPC: A RSUs deployment strategy for VANET publication-title: Int J Commun Syst – start-page: 66 year: 1970 end-page: 67 article-title: Haiqht, fraxk a.: Handbook of the poisson distribution publication-title: Biom Z – volume: 7266 start-page: 103 year: 2012 end-page: 112 – volume: 30 start-page: 801 issue: 4 year: 2012 end-page: 817 article-title: On maximizing delay‐constrained coverage of urban vehicular networks publication-title: IEEE J Sel Area Commun – year: 2008 – volume: 6059 year: 2010 – volume: 16 start-page: 1424 issue: 11 year: 2004 end-page: 1440 article-title: Mining sequential patterns by pattern‐growth: the prefixspan approach publication-title: IEEE Trans Knowl Data Eng – volume: 140 year: 2014 – volume: 9 start-page: 801 issue: 3 year: 2013 end-page: 843 article-title: Roadgate: Mobility‐centric roadside units deployment for vehicular networks publication-title: Int J Distrib Sens Netw – start-page: 663 year: 2012 end-page: 678 article-title: Cooperative download in vehicular environments publication-title: IEEE Trans Mob Comput – year: 2016 – start-page: 35 year: 2010 end-page: 59 – year: 2014 – volume: 3 start-page: 1025 issue: 4 year: 2013 end-page: 1032 article-title: Scalable TDB based RSUs deployment in VANETs publication-title: Int J Innov Appl Stud – year: 2010 – ident: e_1_2_6_7_1 doi: 10.1109/ICC.2010.5502183 – ident: e_1_2_6_13_1 doi: 10.1109/TMC.2011.100 – ident: e_1_2_6_18_1 doi: 10.1007/978-3-642-12331-3_3 – ident: e_1_2_6_6_1 doi: 10.1109/TVT.2008.923689 – ident: e_1_2_6_17_1 doi: 10.1002/bimj.19700120118 – ident: e_1_2_6_11_1 doi: 10.1155/2013/690974 – ident: e_1_2_6_12_1 doi: 10.1002/dac.3712 – ident: e_1_2_6_5_1 doi: 10.1007/978-3-319-13329-4_2 – ident: e_1_2_6_15_1 doi: 10.1109/TKDE.2004.77 – volume: 3 start-page: 1025 issue: 4 year: 2013 ident: e_1_2_6_8_1 article-title: Scalable TDB based RSUs deployment in VANETs publication-title: Int J Innov Appl Stud – ident: e_1_2_6_3_1 – ident: e_1_2_6_14_1 – ident: e_1_2_6_16_1 doi: 10.1016/j.dam.2014.01.012 – ident: e_1_2_6_2_1 doi: 10.1109/RAECS.2014.6799625 – ident: e_1_2_6_4_1 doi: 10.1007/978-3-642-13577-4_17 – ident: e_1_2_6_19_1 doi: 10.1007/978-3-642-29667-3_9 – ident: e_1_2_6_9_1 doi: 10.1142/S0218202502002343 – ident: e_1_2_6_10_1 doi: 10.1109/JSAC.2012.120514 |
SSID | ssj0011031 |
Score | 2.2808118 |
Snippet | Summary
Roadside units (RSUs) have a crucial role in maintaining vehicular ad hoc networks (VANETs) connectivity and coverage, especially, for applications... Roadside units (RSUs) have a crucial role in maintaining vehicular ad hoc networks (VANETs) connectivity and coverage, especially, for applications gathering... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Budgets Constraints coverage hypergraph minimal transversal Mobile ad hoc networks Network latency Network topologies Roads & highways Roadsides RSU placement sequential patterns Transportation networks Transportation services VANET |
Title | A roadside unit deployment framework for enhancing transportation services in Maghrebian cities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5611 https://www.proquest.com/docview/2470492081 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7OTF-ROnUyKInrqlSZY2xzE3hjARcTDwUNI0maJ0Y-su_vXm9cemoiCeekkgzcvL-ya8fB5ClyLm0gaB8LTixON-wj2pE-ZZGmgZaiJVzuke3YnhmN9OOpMyqxLewhR8iPWFG3hGvl-Dg6t42d5AQ_XctFzwh5OPzwRg828e1uQoH6oXFKhU6hEn2ivuLKHtquPXSLSRl59Fah5lBnX0VI2vSC55ba2yuKXfv6Eb__cDu2inFJ-4W6yWPbRl0n1Urwo74NLPD1DUxYuZSqCSJ145n8eJgbrAcJGIbZXNhZ3cxSZ9BmBHOsVZRUnPTY2X5R6EX1I8UlO3YgBujnUOcD1E40H_sTf0ykoMnnZywPcC1SEqNHFoObNGE0ZVYk3i1DkNZMh8YRMX41hsiJUiJoEFJSEV95XvFCRh7AjV0llqjhFmjEulY2mEME4MARzc5g_yrdBG-7SBriurRLrElEO1jLeoACzTyM1bBPPWQBfrlvMCzfFDm2Zl2Kh0zmVEeeDORdSJoQa6yi30a_-od9-H78lfG56ibQpZLwQSBZuoli1W5szJliw-zxfoBzn36jo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcH0YNefIvrM4LoqWuaxHaDJ_HB-lgRUfAghDRNVJQq-7j46c20zfpAQTz1kkCayWT-CZPfAGwmmZAuTZPIaEEjEecikibnkWOpkS1DpS453Z2LpH0jTm93b0dgL7yFqfgQwws39Ixyv0YHxwvpnQ9qqHm1TR_9_dFnTHidgSevw6shOyrG-gUVLJVF1Mv2QJ6lbCf0_BqLPgTmZ5laxpnjKbgLI6zSS56ag37WNG_f4I3__IVpmKz1J9mvFswMjNhiFqZCbQdSu_ocqH3SfdE5FvMkA-_2JLdYGhjvEokLCV3EK15iiwdkdhT3pB9A6aW1Sa_ehshjQTr63i8a5JsTUzJc5-Hm-Oj6oB3VxRgi4xVBHKV6l-qWzVpOcGcN5UznzuZeoLNUtnicuNyHOZ5Z6mSS0dShmJBaxDr2IpJyvgCjxUthF4FwLqQ2mbRJYr0eQj64K9_ku8RYE7MGbAezKFOTyrFgxrOqGMtM-XlTOG8N2Bi2fK3oHD-0WQmWVbV_9hQTqT8aMa-HGrBVmujX_urg8gi_S39tuA7j7evOuTo_uThbhgmGSTAU8wZXYLTfHdhVr2L62Vq5Wt8B4vjuWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JSwMxFMeDVBAv7mJdI4ieps0kMdMcRVvqUhGxUPAQMpmkijItXS5-evNmqQsK4mkuCWTy8vL-CS-_h9CRiLl0USQCozkJeJjwQJqEBY5GRjYMkTrjdHduRbvLr3qnvSKrEt7C5HyI2YUbeEa2X4ODDxNX_4CGmqGt-eDvTz7zXHghAYLofoaOCqF8Qc5KpQHxqr0EzxJaL3t-DUUf-vKzSs3CTGsZPZYDzLNLXmrTSVwzb9_Yjf_7gxW0VKhPfJYvl1U0Z9M1tFxWdsCFo68jdYZHA51AKU889U6PEwuFgeEmEbsynQt7vYtt-gTEjrSPJyUmPbM1HhebEH5OcUf3_ZIBujk2GcF1A3VbzYfzdlCUYgiM1wNhEOlTohs2bjjOnDWEUZ04m3h5TiPZYKFwiQ9yLLbESRGTyIGUkJqHOvQSkjC2iSrpILVbCDPGpTaxtEJYr4aADu6yF_lOGGtCWkUnpVWUKTjlUC7jVeWEZar8vCmYtyo6nLUc5myOH9rsloZVhXeOFeWRPxhRr4aq6Diz0K_91fldE77bf214gBbuLlrq5vL2egctUsiAIZA0uIsqk9HU7nkJM4n3s7X6DjA57Qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+roadside+unit+deployment+framework+for+enhancing+transportation+services+in+Maghrebian+cities&rft.jtitle=Concurrency+and+computation&rft.au=Ben+Chaabene%2C+Seif&rft.au=Yeferny%2C+Taoufik&rft.au=Ben+Yahia%2C+Sadok&rft.date=2021-01-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.5611&rft.externalDBID=10.1002%252Fcpe.5611&rft.externalDocID=CPE5611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |