An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator

In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniq...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 8; pp. 17448 - 17469
Main Authors Paul, Supriya Kumar, Mishra, Lakshmi Narayan, Mishra, Vishnu Narayan, Baleanu, Dumitru
Format Journal Article
LanguageEnglish
Published AIMS Press 2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023891

Cover

Loading…
Abstract In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space $ C([0, \beta], \mathbb{R}) $. Also, we propose an effective and efficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method.
AbstractList In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space $ C([0, \beta], \mathbb{R}) $. Also, we propose an effective and efficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method.
Author Baleanu, Dumitru
Mishra, Vishnu Narayan
Paul, Supriya Kumar
Mishra, Lakshmi Narayan
Author_xml – sequence: 1
  givenname: Supriya Kumar
  surname: Paul
  fullname: Paul, Supriya Kumar
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
– sequence: 2
  givenname: Lakshmi Narayan
  surname: Mishra
  fullname: Mishra, Lakshmi Narayan
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
– sequence: 3
  givenname: Vishnu Narayan
  surname: Mishra
  fullname: Mishra, Vishnu Narayan
  organization: Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, 484 887, Madhya Pradesh, India
– sequence: 4
  givenname: Dumitru
  surname: Baleanu
  fullname: Baleanu, Dumitru
  organization: Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Ankara, 09790, Turkey, Institute of Space Sciences, 077125 Magurele, Ilfov, Romania, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 11022801, Lebanon
BookMark eNptkNtKAzEQhoMoWLV3PkAewNWcttm9LMVDoSCIXi_TZNKmbJOaTQu-vdsDIuLVDMP3fwP_FTkPMSAht5zdy1qqhzXk5b1gQlY1PyMDobQsRnVVnf_aL8mw61aMMcGFEloNyGYcKDqHJvsd0jXmZbTUxUS72O58WND-S-sDQqI-ZFwkaCl-biH7GLr-tDtheYn0zeMaQihmPm53vm2RugRmT_ahuMEEOaYbcuGg7XB4mtfk4-nxffJSzF6fp5PxrDCilrxQuiqNtQwcs8i0A6ewQiZBl6CEs2XNFC-lUZaNrHUW7ZyjKA2fG6NHQshrMj16bYRVs0l-DemrieCbwyGmRQMpe9Ni40pZGjeqQfVSo0VtnRB6rh3n4EDx3nV3dJkUuy6h-_Fx1uzLb_blN6fye1z8wY3Ph8ZyAt_-H_oGXOqOEg
CitedBy_id crossref_primary_10_1007_s00009_024_02746_6
crossref_primary_10_1007_s40314_023_02431_6
crossref_primary_10_1016_j_matcom_2024_01_007
crossref_primary_10_47352_jmans_2774_3047_191
crossref_primary_10_1108_HFF_09_2023_0553
crossref_primary_10_1016_j_jksus_2024_103352
crossref_primary_10_3934_math_2024377
crossref_primary_10_1216_jie_2023_35_443
crossref_primary_10_1108_HFF_06_2024_0459
crossref_primary_10_1016_j_jksus_2023_102949
crossref_primary_10_1007_s12346_024_01017_9
crossref_primary_10_3934_math_2024094
crossref_primary_10_1016_j_aej_2024_08_017
Cites_doi 10.7153/dea-2018-10-27
10.1002/mma.9322
10.1016/j.proeng.2012.06.319
10.3390/math10142400
10.3390/fractalfract6120744
10.1016/j.aej.2020.10.003
10.1016/j.camwa.2008.10.085
10.14510/lm-ns.v33i2
10.15672/HJMS.2018.575
10.3934/math.2022964
10.1016/j.cam.2017.12.006
10.1134/S1061920814010038
10.1155/2019/1705651
10.1016/j.amc.2014.10.070
10.5890/DNC.2023.09.015
10.1002/mma.4437
10.15672/HJMS.2015449096
10.55579/jaec.202153.340
10.3390/math11010147
10.3390/math10122064
10.1186/s13662-021-03270-7
10.1007/s40096-018-0258-0
10.3390/fractalfract6050266
10.14456/scitechasia.2020.9
10.1155/2019/5678103
10.3390/sym14122600
10.21608/ejmaa.2021.313100
10.1016/j.amc.2011.01.112
10.1186/s13662-016-0896-1
10.3934/mbe.2023303
10.22436/jnsa.010.06.13
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023891
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 17469
ExternalDocumentID oai_doaj_org_article_f535cf69a4904c729df227b7f11afa41
10_3934_math_2023891
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c2931-4785cdd0af0de07faf4e8e03a75a42fd5904153c4d06ddfdedb1e25c1bcc76223
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:26:12 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Tue Jul 01 03:57:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2931-4785cdd0af0de07faf4e8e03a75a42fd5904153c4d06ddfdedb1e25c1bcc76223
OpenAccessLink https://doaj.org/article/f535cf69a4904c729df227b7f11afa41
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_f535cf69a4904c729df227b7f11afa41
crossref_primary_10_3934_math_2023891
crossref_citationtrail_10_3934_math_2023891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023891-1
key-10.3934/math.2023891-2
key-10.3934/math.2023891-7
key-10.3934/math.2023891-24
key-10.3934/math.2023891-8
key-10.3934/math.2023891-23
key-10.3934/math.2023891-9
key-10.3934/math.2023891-26
key-10.3934/math.2023891-25
key-10.3934/math.2023891-3
key-10.3934/math.2023891-20
key-10.3934/math.2023891-4
key-10.3934/math.2023891-5
key-10.3934/math.2023891-22
key-10.3934/math.2023891-6
key-10.3934/math.2023891-21
key-10.3934/math.2023891-17
key-10.3934/math.2023891-16
key-10.3934/math.2023891-19
key-10.3934/math.2023891-18
key-10.3934/math.2023891-13
key-10.3934/math.2023891-35
key-10.3934/math.2023891-12
key-10.3934/math.2023891-34
key-10.3934/math.2023891-15
key-10.3934/math.2023891-14
key-10.3934/math.2023891-31
key-10.3934/math.2023891-30
key-10.3934/math.2023891-11
key-10.3934/math.2023891-33
key-10.3934/math.2023891-10
key-10.3934/math.2023891-32
key-10.3934/math.2023891-28
key-10.3934/math.2023891-27
key-10.3934/math.2023891-29
References_xml – ident: key-10.3934/math.2023891-22
  doi: 10.7153/dea-2018-10-27
– ident: key-10.3934/math.2023891-25
– ident: key-10.3934/math.2023891-18
  doi: 10.1002/mma.9322
– ident: key-10.3934/math.2023891-29
– ident: key-10.3934/math.2023891-35
  doi: 10.1016/j.proeng.2012.06.319
– ident: key-10.3934/math.2023891-16
  doi: 10.3390/math10142400
– ident: key-10.3934/math.2023891-19
  doi: 10.3390/fractalfract6120744
– ident: key-10.3934/math.2023891-12
  doi: 10.1016/j.aej.2020.10.003
– ident: key-10.3934/math.2023891-34
  doi: 10.1016/j.camwa.2008.10.085
– ident: key-10.3934/math.2023891-28
  doi: 10.14510/lm-ns.v33i2
– ident: key-10.3934/math.2023891-21
  doi: 10.15672/HJMS.2018.575
– ident: key-10.3934/math.2023891-15
  doi: 10.3934/math.2022964
– ident: key-10.3934/math.2023891-5
  doi: 10.1016/j.cam.2017.12.006
– ident: key-10.3934/math.2023891-32
  doi: 10.1134/S1061920814010038
– ident: key-10.3934/math.2023891-7
  doi: 10.1155/2019/1705651
– ident: key-10.3934/math.2023891-13
  doi: 10.1016/j.amc.2014.10.070
– ident: key-10.3934/math.2023891-17
  doi: 10.5890/DNC.2023.09.015
– ident: key-10.3934/math.2023891-11
  doi: 10.1002/mma.4437
– ident: key-10.3934/math.2023891-14
  doi: 10.15672/HJMS.2015449096
– ident: key-10.3934/math.2023891-4
  doi: 10.55579/jaec.202153.340
– ident: key-10.3934/math.2023891-20
  doi: 10.3390/math11010147
– ident: key-10.3934/math.2023891-3
  doi: 10.3390/math10122064
– ident: key-10.3934/math.2023891-1
  doi: 10.1186/s13662-021-03270-7
– ident: key-10.3934/math.2023891-24
– ident: key-10.3934/math.2023891-30
  doi: 10.1007/s40096-018-0258-0
– ident: key-10.3934/math.2023891-26
  doi: 10.3390/fractalfract6050266
– ident: key-10.3934/math.2023891-8
  doi: 10.14456/scitechasia.2020.9
– ident: key-10.3934/math.2023891-10
  doi: 10.1155/2019/5678103
– ident: key-10.3934/math.2023891-9
  doi: 10.3390/sym14122600
– ident: key-10.3934/math.2023891-6
  doi: 10.21608/ejmaa.2021.313100
– ident: key-10.3934/math.2023891-31
  doi: 10.1016/j.amc.2011.01.112
– ident: key-10.3934/math.2023891-33
  doi: 10.1186/s13662-016-0896-1
– ident: key-10.3934/math.2023891-27
  doi: 10.3934/mbe.2023303
– ident: key-10.3934/math.2023891-2
– ident: key-10.3934/math.2023891-23
  doi: 10.22436/jnsa.010.06.13
SSID ssj0002124274
Score 2.2063193
Snippet In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 17448
SubjectTerms fixed point theorem
hyers-ulam stability
hyers-ulam-rassias stability
laguerre polynomials
riemann-liouville fractional integral
Title An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator
URI https://doaj.org/article/f535cf69a4904c729df227b7f11afa41
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xV2YOeJHSzj2xzrGIpoh7EQm9hs7sDhZLWvn6_s9lY6kG8CLkkTIZlMpnH7sw3hNw6i15ClQKV10EiM8iSkjOVaOmlw6uX2rrK9y0bjuTzWI13Rn2FmrAIDxwF1wUllIUsNzJn0mIo6IBzXWpIUwOmblnn6PN2kqlgg9EgS8y3YqW7yIXsYvwXzh54OJf74YN2oPprnzI4IodNMEj7cRHHZM9XJ-TgdYukujwl835FY80FmiUa5z1TDDQp6kzYC6BVxLowC9ogP0yp_4z43Ut8tGnIkCV9nyDbqkpeJrP1JvQAUljEvgZ8aTb39Yn7GRkNnj4eh0kzJSGx6KoxAdQ9ZZ1jBpjzTIMB6XueCaOVkRycykMXvrDSscw5cN6VqefKpqW1aAm5OCctXKq_IBT_XeCZRz7CSMysTI43zErDjAYM9drk_ltuhW0gxMMki2mBqUSQchGkXDRSbpO7LfU8Qmf8QvcQPsGWJgBe1w9QDYpGDYq_1ODyP5h0yH5YU9xhuSKt1WLtrzHmWJU3tXp9AQVv2Ig
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+method+for+solving+nonlinear+integral+equations+involving+the+Riemann-Liouville+fractional+operator&rft.jtitle=AIMS+mathematics&rft.au=Supriya+Kumar+Paul&rft.au=Lakshmi+Narayan+Mishra&rft.au=Vishnu+Narayan+Mishra&rft.au=Dumitru+Baleanu&rft.date=2023&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=8&rft.spage=17448&rft.epage=17469&rft_id=info:doi/10.3934%2Fmath.2023891&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f535cf69a4904c729df227b7f11afa41
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon