An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator
In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniq...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 8; pp. 17448 - 17469 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023891 |
Cover
Loading…
Abstract | In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space $ C([0, \beta], \mathbb{R}) $. Also, we propose an effective and efficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method. |
---|---|
AbstractList | In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space $ C([0, \beta], \mathbb{R}) $. Also, we propose an effective and efficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method. |
Author | Baleanu, Dumitru Mishra, Vishnu Narayan Paul, Supriya Kumar Mishra, Lakshmi Narayan |
Author_xml | – sequence: 1 givenname: Supriya Kumar surname: Paul fullname: Paul, Supriya Kumar organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India – sequence: 2 givenname: Lakshmi Narayan surname: Mishra fullname: Mishra, Lakshmi Narayan organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India – sequence: 3 givenname: Vishnu Narayan surname: Mishra fullname: Mishra, Vishnu Narayan organization: Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, 484 887, Madhya Pradesh, India – sequence: 4 givenname: Dumitru surname: Baleanu fullname: Baleanu, Dumitru organization: Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Ankara, 09790, Turkey, Institute of Space Sciences, 077125 Magurele, Ilfov, Romania, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 11022801, Lebanon |
BookMark | eNptkNtKAzEQhoMoWLV3PkAewNWcttm9LMVDoSCIXi_TZNKmbJOaTQu-vdsDIuLVDMP3fwP_FTkPMSAht5zdy1qqhzXk5b1gQlY1PyMDobQsRnVVnf_aL8mw61aMMcGFEloNyGYcKDqHJvsd0jXmZbTUxUS72O58WND-S-sDQqI-ZFwkaCl-biH7GLr-tDtheYn0zeMaQihmPm53vm2RugRmT_ahuMEEOaYbcuGg7XB4mtfk4-nxffJSzF6fp5PxrDCilrxQuiqNtQwcs8i0A6ewQiZBl6CEs2XNFC-lUZaNrHUW7ZyjKA2fG6NHQshrMj16bYRVs0l-DemrieCbwyGmRQMpe9Ni40pZGjeqQfVSo0VtnRB6rh3n4EDx3nV3dJkUuy6h-_Fx1uzLb_blN6fye1z8wY3Ph8ZyAt_-H_oGXOqOEg |
CitedBy_id | crossref_primary_10_1007_s00009_024_02746_6 crossref_primary_10_1007_s40314_023_02431_6 crossref_primary_10_1016_j_matcom_2024_01_007 crossref_primary_10_47352_jmans_2774_3047_191 crossref_primary_10_1108_HFF_09_2023_0553 crossref_primary_10_1016_j_jksus_2024_103352 crossref_primary_10_3934_math_2024377 crossref_primary_10_1216_jie_2023_35_443 crossref_primary_10_1108_HFF_06_2024_0459 crossref_primary_10_1016_j_jksus_2023_102949 crossref_primary_10_1007_s12346_024_01017_9 crossref_primary_10_3934_math_2024094 crossref_primary_10_1016_j_aej_2024_08_017 |
Cites_doi | 10.7153/dea-2018-10-27 10.1002/mma.9322 10.1016/j.proeng.2012.06.319 10.3390/math10142400 10.3390/fractalfract6120744 10.1016/j.aej.2020.10.003 10.1016/j.camwa.2008.10.085 10.14510/lm-ns.v33i2 10.15672/HJMS.2018.575 10.3934/math.2022964 10.1016/j.cam.2017.12.006 10.1134/S1061920814010038 10.1155/2019/1705651 10.1016/j.amc.2014.10.070 10.5890/DNC.2023.09.015 10.1002/mma.4437 10.15672/HJMS.2015449096 10.55579/jaec.202153.340 10.3390/math11010147 10.3390/math10122064 10.1186/s13662-021-03270-7 10.1007/s40096-018-0258-0 10.3390/fractalfract6050266 10.14456/scitechasia.2020.9 10.1155/2019/5678103 10.3390/sym14122600 10.21608/ejmaa.2021.313100 10.1016/j.amc.2011.01.112 10.1186/s13662-016-0896-1 10.3934/mbe.2023303 10.22436/jnsa.010.06.13 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023891 |
DatabaseName | CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 17469 |
ExternalDocumentID | oai_doaj_org_article_f535cf69a4904c729df227b7f11afa41 10_3934_math_2023891 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c2931-4785cdd0af0de07faf4e8e03a75a42fd5904153c4d06ddfdedb1e25c1bcc76223 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:26:12 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Tue Jul 01 03:57:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2931-4785cdd0af0de07faf4e8e03a75a42fd5904153c4d06ddfdedb1e25c1bcc76223 |
OpenAccessLink | https://doaj.org/article/f535cf69a4904c729df227b7f11afa41 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f535cf69a4904c729df227b7f11afa41 crossref_primary_10_3934_math_2023891 crossref_citationtrail_10_3934_math_2023891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023891-1 key-10.3934/math.2023891-2 key-10.3934/math.2023891-7 key-10.3934/math.2023891-24 key-10.3934/math.2023891-8 key-10.3934/math.2023891-23 key-10.3934/math.2023891-9 key-10.3934/math.2023891-26 key-10.3934/math.2023891-25 key-10.3934/math.2023891-3 key-10.3934/math.2023891-20 key-10.3934/math.2023891-4 key-10.3934/math.2023891-5 key-10.3934/math.2023891-22 key-10.3934/math.2023891-6 key-10.3934/math.2023891-21 key-10.3934/math.2023891-17 key-10.3934/math.2023891-16 key-10.3934/math.2023891-19 key-10.3934/math.2023891-18 key-10.3934/math.2023891-13 key-10.3934/math.2023891-35 key-10.3934/math.2023891-12 key-10.3934/math.2023891-34 key-10.3934/math.2023891-15 key-10.3934/math.2023891-14 key-10.3934/math.2023891-31 key-10.3934/math.2023891-30 key-10.3934/math.2023891-11 key-10.3934/math.2023891-33 key-10.3934/math.2023891-10 key-10.3934/math.2023891-32 key-10.3934/math.2023891-28 key-10.3934/math.2023891-27 key-10.3934/math.2023891-29 |
References_xml | – ident: key-10.3934/math.2023891-22 doi: 10.7153/dea-2018-10-27 – ident: key-10.3934/math.2023891-25 – ident: key-10.3934/math.2023891-18 doi: 10.1002/mma.9322 – ident: key-10.3934/math.2023891-29 – ident: key-10.3934/math.2023891-35 doi: 10.1016/j.proeng.2012.06.319 – ident: key-10.3934/math.2023891-16 doi: 10.3390/math10142400 – ident: key-10.3934/math.2023891-19 doi: 10.3390/fractalfract6120744 – ident: key-10.3934/math.2023891-12 doi: 10.1016/j.aej.2020.10.003 – ident: key-10.3934/math.2023891-34 doi: 10.1016/j.camwa.2008.10.085 – ident: key-10.3934/math.2023891-28 doi: 10.14510/lm-ns.v33i2 – ident: key-10.3934/math.2023891-21 doi: 10.15672/HJMS.2018.575 – ident: key-10.3934/math.2023891-15 doi: 10.3934/math.2022964 – ident: key-10.3934/math.2023891-5 doi: 10.1016/j.cam.2017.12.006 – ident: key-10.3934/math.2023891-32 doi: 10.1134/S1061920814010038 – ident: key-10.3934/math.2023891-7 doi: 10.1155/2019/1705651 – ident: key-10.3934/math.2023891-13 doi: 10.1016/j.amc.2014.10.070 – ident: key-10.3934/math.2023891-17 doi: 10.5890/DNC.2023.09.015 – ident: key-10.3934/math.2023891-11 doi: 10.1002/mma.4437 – ident: key-10.3934/math.2023891-14 doi: 10.15672/HJMS.2015449096 – ident: key-10.3934/math.2023891-4 doi: 10.55579/jaec.202153.340 – ident: key-10.3934/math.2023891-20 doi: 10.3390/math11010147 – ident: key-10.3934/math.2023891-3 doi: 10.3390/math10122064 – ident: key-10.3934/math.2023891-1 doi: 10.1186/s13662-021-03270-7 – ident: key-10.3934/math.2023891-24 – ident: key-10.3934/math.2023891-30 doi: 10.1007/s40096-018-0258-0 – ident: key-10.3934/math.2023891-26 doi: 10.3390/fractalfract6050266 – ident: key-10.3934/math.2023891-8 doi: 10.14456/scitechasia.2020.9 – ident: key-10.3934/math.2023891-10 doi: 10.1155/2019/5678103 – ident: key-10.3934/math.2023891-9 doi: 10.3390/sym14122600 – ident: key-10.3934/math.2023891-6 doi: 10.21608/ejmaa.2021.313100 – ident: key-10.3934/math.2023891-31 doi: 10.1016/j.amc.2011.01.112 – ident: key-10.3934/math.2023891-33 doi: 10.1186/s13662-016-0896-1 – ident: key-10.3934/math.2023891-27 doi: 10.3934/mbe.2023303 – ident: key-10.3934/math.2023891-2 – ident: key-10.3934/math.2023891-23 doi: 10.22436/jnsa.010.06.13 |
SSID | ssj0002124274 |
Score | 2.2063193 |
Snippet | In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 17448 |
SubjectTerms | fixed point theorem hyers-ulam stability hyers-ulam-rassias stability laguerre polynomials riemann-liouville fractional integral |
Title | An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator |
URI | https://doaj.org/article/f535cf69a4904c729df227b7f11afa41 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xV2YOeJHSzj2xzrGIpoh7EQm9hs7sDhZLWvn6_s9lY6kG8CLkkTIZlMpnH7sw3hNw6i15ClQKV10EiM8iSkjOVaOmlw6uX2rrK9y0bjuTzWI13Rn2FmrAIDxwF1wUllIUsNzJn0mIo6IBzXWpIUwOmblnn6PN2kqlgg9EgS8y3YqW7yIXsYvwXzh54OJf74YN2oPprnzI4IodNMEj7cRHHZM9XJ-TgdYukujwl835FY80FmiUa5z1TDDQp6kzYC6BVxLowC9ogP0yp_4z43Ut8tGnIkCV9nyDbqkpeJrP1JvQAUljEvgZ8aTb39Yn7GRkNnj4eh0kzJSGx6KoxAdQ9ZZ1jBpjzTIMB6XueCaOVkRycykMXvrDSscw5cN6VqefKpqW1aAm5OCctXKq_IBT_XeCZRz7CSMysTI43zErDjAYM9drk_ltuhW0gxMMki2mBqUSQchGkXDRSbpO7LfU8Qmf8QvcQPsGWJgBe1w9QDYpGDYq_1ODyP5h0yH5YU9xhuSKt1WLtrzHmWJU3tXp9AQVv2Ig |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+method+for+solving+nonlinear+integral+equations+involving+the+Riemann-Liouville+fractional+operator&rft.jtitle=AIMS+mathematics&rft.au=Supriya+Kumar+Paul&rft.au=Lakshmi+Narayan+Mishra&rft.au=Vishnu+Narayan+Mishra&rft.au=Dumitru+Baleanu&rft.date=2023&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=8&rft.spage=17448&rft.epage=17469&rft_id=info:doi/10.3934%2Fmath.2023891&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f535cf69a4904c729df227b7f11afa41 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |