Multi‐temporal scale aggregation refinement graph convolutional network for skeleton‐based action recognition

Skeleton‐based human action recognition is gaining significant attention and finding widespread application in various fields, such as virtual reality and human‐computer interaction systems. Recent studies have highlighted the effectiveness of graph convolutional network (GCN) based methods in this...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 1
Main Authors Li, Xuanfeng, Lu, Jian, Zhou, Jian, Liu, Wei, Zhang, Kaibing
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Skeleton‐based human action recognition is gaining significant attention and finding widespread application in various fields, such as virtual reality and human‐computer interaction systems. Recent studies have highlighted the effectiveness of graph convolutional network (GCN) based methods in this task, leading to a remarkable improvement in prediction accuracy. However, most GCN‐based methods overlook the varying contributions of self, centripetal and centrifugal subsets. Besides, only a single‐scale temporal feature is adopted, and the multi‐temporal scale information is ignored. To this end, firstly, in order to differentiate the importance of different skeleton subsets, we develop a refinement graph convolution, which can adaptively learn a weight for each subset feature. Secondly, a multi‐temporal scale aggregation module is proposed to extract more discriminative temporal dynamic information. Furthermore, a multi‐temporal scale aggregation refinement graph convolutional network (MTSA‐RGCN) is proposed, and four‐stream structure is also adopted in this paper, which can comprehensively model complementary features and eventually achieves a significant performance boost. In the empirical experiments, the performance of our approach has been greatly improved on both NTU‐RGB+D 60 and NTU‐RGB+D 120 datasets, compared to other state‐of‐the‐art methods. The overall pipeline of our proposed method. The skeleton data is first input into RGCN to obtain basic feature expressions. RGCN can learn more spatial motion information of actions. Features with different temporal resolutions are then modulated in the temporal and spatial dimensions and aggregated into features with rich discriminative temporal information for final classification.
AbstractList Skeleton‐based human action recognition is gaining significant attention and finding widespread application in various fields, such as virtual reality and human‐computer interaction systems. Recent studies have highlighted the effectiveness of graph convolutional network (GCN) based methods in this task, leading to a remarkable improvement in prediction accuracy. However, most GCN‐based methods overlook the varying contributions of self, centripetal and centrifugal subsets. Besides, only a single‐scale temporal feature is adopted, and the multi‐temporal scale information is ignored. To this end, firstly, in order to differentiate the importance of different skeleton subsets, we develop a refinement graph convolution, which can adaptively learn a weight for each subset feature. Secondly, a multi‐temporal scale aggregation module is proposed to extract more discriminative temporal dynamic information. Furthermore, a multi‐temporal scale aggregation refinement graph convolutional network (MTSA‐RGCN) is proposed, and four‐stream structure is also adopted in this paper, which can comprehensively model complementary features and eventually achieves a significant performance boost. In the empirical experiments, the performance of our approach has been greatly improved on both NTU‐RGB+D 60 and NTU‐RGB+D 120 datasets, compared to other state‐of‐the‐art methods.
Skeleton‐based human action recognition is gaining significant attention and finding widespread application in various fields, such as virtual reality and human‐computer interaction systems. Recent studies have highlighted the effectiveness of graph convolutional network (GCN) based methods in this task, leading to a remarkable improvement in prediction accuracy. However, most GCN‐based methods overlook the varying contributions of self, centripetal and centrifugal subsets. Besides, only a single‐scale temporal feature is adopted, and the multi‐temporal scale information is ignored. To this end, firstly, in order to differentiate the importance of different skeleton subsets, we develop a refinement graph convolution, which can adaptively learn a weight for each subset feature. Secondly, a multi‐temporal scale aggregation module is proposed to extract more discriminative temporal dynamic information. Furthermore, a multi‐temporal scale aggregation refinement graph convolutional network (MTSA‐RGCN) is proposed, and four‐stream structure is also adopted in this paper, which can comprehensively model complementary features and eventually achieves a significant performance boost. In the empirical experiments, the performance of our approach has been greatly improved on both NTU‐RGB+D 60 and NTU‐RGB+D 120 datasets, compared to other state‐of‐the‐art methods. The overall pipeline of our proposed method. The skeleton data is first input into RGCN to obtain basic feature expressions. RGCN can learn more spatial motion information of actions. Features with different temporal resolutions are then modulated in the temporal and spatial dimensions and aggregated into features with rich discriminative temporal information for final classification.
Author Zhou, Jian
Lu, Jian
Liu, Wei
Li, Xuanfeng
Zhang, Kaibing
Author_xml – sequence: 1
  givenname: Xuanfeng
  surname: Li
  fullname: Li, Xuanfeng
  organization: Xi'an Polytechnic University
– sequence: 2
  givenname: Jian
  surname: Lu
  fullname: Lu, Jian
  email: lujian_studio@163.com
  organization: Xi'an Polytechnic University
– sequence: 3
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: Xi'an Polytechnic University
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Xi'an Polytechnic University
– sequence: 5
  givenname: Kaibing
  surname: Zhang
  fullname: Zhang, Kaibing
  organization: Xi'an Polytechnic University
BookMark eNp1kMtOAjEYhRuDiYAmPsIkbtwM9jLT4pIQbwnGjRp3k07pjIXSDm2BsPMRfEafxA4QF0ZX_dN-5_w9pwc6xhoJwDmCAwQhvhJ8PcAYoyPQRXlG0wyzt87PTNEJ6Hk_iyTFCHbB8nGlg_r6-Axy0VjHdeIF1zLhde1kzYOyJnGyUkYupAlJ7Xjznghr1lav2scoMDJsrJsnlXWJn0stgzXRsOReThMuDhbC1ka18yk4rrj28uxw9sHL7c3z-D6dPN09jEeTVOBrgtKMCCIooTAGIIxVRJQoXmDMaCa45DSnGcWEEcryIS0pHzKCSAkrOSUQDTnpg4u9b-PsciV9KGZ25eKHfREXwCynJGeRGuwp4az3MWkhVNjFDo4rXSBYtLUWsdairTUKLn8JGqcW3G3_QtM9ulFabv_livHodcd_A6sXi5E
CitedBy_id crossref_primary_10_1007_s00371_024_03601_1
Cites_doi 10.1145/3394171.3413802
10.1109/TPAMI.2019.2916873
10.1109/CVPR.2018.00572
10.1109/TCSVT.2020.3015051
10.1109/LSP.2017.2678539
10.1109/LRA.2021.3056361
10.1109/JSEN.2021.3075722
10.1109/ICCV.2017.233
10.1109/LSP.2022.3142675
10.1145/3474085.3475574
10.1109/TCSVT.2021.3124562
10.1145/3123266.3123277
10.1109/CVPR.2016.115
10.1109/CVPR.2014.82
10.1109/TIP.2020.3028207
10.1016/j.cviu.2010.10.002
10.1016/j.neucom.2021.02.001
10.1145/3394171.3413910
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2221
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2221
CAV2221
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61971339; 62101419
– fundername: Applied Technology Research and Development Project in Beilin District, Xi'an City
  funderid: GX2007
– fundername: Natural Science Project of Shaanxi Provincial Department of Science and Technology
  funderid: 2022JM‐146
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2931-43c3c6360427377f3cb13c622764caea65646237367586b6a87313b0fed3018a3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Tue Aug 12 12:50:37 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
Wed Jan 22 16:14:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2931-43c3c6360427377f3cb13c622764caea65646237367586b6a87313b0fed3018a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2930456357
PQPubID 2034909
PageCount 14
ParticipantIDs proquest_journals_2930456357
crossref_citationtrail_10_1002_cav_2221
crossref_primary_10_1002_cav_2221
wiley_primary_10_1002_cav_2221_CAV2221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January/February 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2021; 6
2021; 21
2021; 31
2020; 42
2021
2020
2020; 12663
2017; 24
2019
2018
2017
2016
2015
2014
2022; 32
2021; 440
2022; 29
2020; 29
e_1_2_8_28_1
Yan S (e_1_2_8_10_1) 2018
e_1_2_8_29_1
Shi L (e_1_2_8_11_1) 2019
Shi L (e_1_2_8_12_1) 2019
Papadopoulos K (e_1_2_8_22_1) 2020
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_7_1
Kipf TN (e_1_2_8_9_1) 2017
Cheng K (e_1_2_8_26_1) 2020
e_1_2_8_20_1
e_1_2_8_21_1
Li C (e_1_2_8_6_1) 2017
Simonyan K (e_1_2_8_24_1) 2014
Thakkar KC (e_1_2_8_23_1) 2018
Si C (e_1_2_8_13_1) 2019
Li C (e_1_2_8_5_1) 2018
e_1_2_8_17_1
Liu Z (e_1_2_8_14_1) 2020
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_15_1
Plizzari C (e_1_2_8_34_1) 2020
Liang D (e_1_2_8_8_1) 2019
e_1_2_8_16_1
Du Y (e_1_2_8_4_1) 2015
Li M (e_1_2_8_25_1) 2019
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – start-page: 140
  year: 2020
  end-page: 149
– start-page: 180
  year: 2020
  end-page: 189
– start-page: 4334
  year: 2021
  end-page: 4342
– start-page: 1625
  year: 2020
  end-page: 1633
– start-page: 2136
  year: 2017
  end-page: 2145
– volume: 32
  start-page: 4893
  issue: 7
  year: 2022
  end-page: 4899
  article-title: A central difference graph convolutional operator for skeleton‐based action recognition
  publication-title: IEEE Trans Circuits Syst Video Technol
– start-page: 786
  year: 2018
  end-page: 792
– start-page: 7444
  year: 2018
  end-page: 7452
– start-page: 452
  year: 2020
  end-page: 458
– volume: 31
  start-page: 1915
  issue: 5
  year: 2021
  end-page: 1925
  article-title: Richly activated graph convolutional network for robust skeleton‐based action recognition
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 440
  start-page: 230
  year: 2021
  end-page: 239
  article-title: Attention adjacency matrix based graph convolutional networks for skeleton‐based action recognition
  publication-title: Neurocomputing
– volume: 6
  start-page: 1028
  issue: 2
  year: 2021
  end-page: 1035
  article-title: Pose refinement graph convolutional network for skeleton‐based action recognition
  publication-title: IEEE Robotics Autom Lett
– volume: 29
  start-page: 9532
  year: 2020
  end-page: 9545
  article-title: Skeleton‐based action recognition with multi‐stream adaptive graph convolutional networks
  publication-title: IEEE Trans Image Process
– start-page: 1110
  year: 2015
  end-page: 1118
– start-page: 1227
  year: 2019
  end-page: 1236
– start-page: 588
  year: 2014
  end-page: 595
– volume: 42
  start-page: 2684
  issue: 10
  year: 2020
  end-page: 2701
  article-title: NTU RGB+D 120: A Large‐Scale Benchmark for 3D Human Activity Understanding
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 24
  start-page: 624
  issue: 5
  year: 2017
  end-page: 628
  article-title: Joint distance maps based action recognition with convolutional neural networks
  publication-title: IEEE Signal Process Lett
– start-page: 934
  year: 2019
  end-page: 940
– start-page: 270
  year: 2018
– volume: 12663
  start-page: 694
  year: 2020
  end-page: 701
– start-page: 597
  year: 2017
  end-page: 600
– start-page: 568
  year: 2014
  end-page: 576
– start-page: 199
  year: 2017
  end-page: 207
– start-page: 5457
  year: 2018
  end-page: 5466
– start-page: 1010
  year: 2016
  end-page: 1019
– start-page: 3595
  year: 2019
  end-page: 3603
– year: 2017
– start-page: 12026
  year: 2019
  end-page: 12035
– start-page: 7912
  year: 2019
  end-page: 7921
– volume: 29
  start-page: 528
  year: 2022
  end-page: 532
  article-title: MTT: Multi‐scale temporal transformer for skeleton‐based action recognition
  publication-title: IEEE Signal Processing Lett
– start-page: 1432
  year: 2020
  end-page: 1440
– volume: 115
  start-page: 224
  issue: 2
  year: 2011
  end-page: 241
  article-title: A survey of vision‐based methods for action representation, segmentation and recognition
  publication-title: Comput Vis Image Underst
– volume: 21
  start-page: 16183
  issue: 14
  year: 2021
  end-page: 16191
  article-title: Pyramidal graph convolutional network for skeleton‐based human action recognition
  publication-title: IEEE Sensors J
– ident: e_1_2_8_27_1
  doi: 10.1145/3394171.3413802
– start-page: 7444
  volume-title: Proceedings of the Thirty‐Second AAAI Conference on Artificial Intelligence, (AAAI‐18), the 30th innovative Applications of Artificial Intelligence (IAAI‐18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI‐18)
  year: 2018
  ident: e_1_2_8_10_1
– start-page: 270
  volume-title: British Machine Vision Conference 2018, BMVC 2018
  year: 2018
  ident: e_1_2_8_23_1
– start-page: 1227
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019
  year: 2019
  ident: e_1_2_8_13_1
– ident: e_1_2_8_30_1
  doi: 10.1109/TPAMI.2019.2916873
– ident: e_1_2_8_31_1
  doi: 10.1109/CVPR.2018.00572
– ident: e_1_2_8_21_1
  doi: 10.1109/TCSVT.2020.3015051
– ident: e_1_2_8_17_1
  doi: 10.1109/LSP.2017.2678539
– ident: e_1_2_8_20_1
  doi: 10.1109/LRA.2021.3056361
– ident: e_1_2_8_15_1
  doi: 10.1109/JSEN.2021.3075722
– start-page: 786
  volume-title: International Joint Conference on Artificial Intelligence, IJCAI 2018
  year: 2018
  ident: e_1_2_8_5_1
– ident: e_1_2_8_19_1
  doi: 10.1109/ICCV.2017.233
– ident: e_1_2_8_16_1
  doi: 10.1109/LSP.2022.3142675
– volume-title: International Conference on Learning Representations, ICLR 2017
  year: 2017
  ident: e_1_2_8_9_1
– start-page: 140
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2020
  year: 2020
  ident: e_1_2_8_14_1
– start-page: 1110
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
  year: 2015
  ident: e_1_2_8_4_1
– ident: e_1_2_8_7_1
– start-page: 3595
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019
  year: 2019
  ident: e_1_2_8_25_1
– start-page: 597
  volume-title: 2017 IEEE International Conference on Multimedia & Expo Workshops, ICME Workshops
  year: 2017
  ident: e_1_2_8_6_1
– start-page: 568
  volume-title: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014
  year: 2014
  ident: e_1_2_8_24_1
– start-page: 452
  volume-title: 25th International Conference on Pattern Recognition, ICPR 2020
  year: 2020
  ident: e_1_2_8_22_1
– start-page: 180
  volume-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020
  year: 2020
  ident: e_1_2_8_26_1
– ident: e_1_2_8_28_1
  doi: 10.1145/3474085.3475574
– ident: e_1_2_8_36_1
  doi: 10.1109/TCSVT.2021.3124562
– ident: e_1_2_8_3_1
  doi: 10.1145/3123266.3123277
– start-page: 12026
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019
  year: 2019
  ident: e_1_2_8_12_1
– ident: e_1_2_8_29_1
  doi: 10.1109/CVPR.2016.115
– ident: e_1_2_8_18_1
  doi: 10.1109/CVPR.2014.82
– ident: e_1_2_8_33_1
  doi: 10.1109/TIP.2020.3028207
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cviu.2010.10.002
– start-page: 694
  volume-title: Pattern Recognition. ICPR International Workshops and Challenges—Virtual Event, January 10‐15, 2021, Proceedings, Part III
  year: 2020
  ident: e_1_2_8_34_1
– start-page: 934
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019
  year: 2019
  ident: e_1_2_8_8_1
– start-page: 7912
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019
  year: 2019
  ident: e_1_2_8_11_1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.neucom.2021.02.001
– ident: e_1_2_8_32_1
  doi: 10.1145/3394171.3413910
SSID ssj0026210
Score 2.3648586
Snippet Skeleton‐based human action recognition is gaining significant attention and finding widespread application in various fields, such as virtual reality and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms action recognition
Artificial neural networks
graph convolution
Human activity recognition
skeleton data
System effectiveness
temporal information
Virtual reality
Title Multi‐temporal scale aggregation refinement graph convolutional network for skeleton‐based action recognition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2221
https://www.proquest.com/docview/2930456357
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF6kJz34L1arrCB6Sn-yye72WIqlCHoQWwoewiTZFmlJ1bQePPkIPqNP4kw2aVUUxFNg2U2yO7M73wwz3zJ2SjorfA2OBqkdD0TshA2IneawCQLdCVCKaoevrmW3510O_EGeVUm1MJYfYhFwo52Rnde0wSFMa0vS0Aieq2jcyPOhVC3CQzcL5ihXupaIwPekQ15CwTtbd2vFwK-WaAkvP4PUzMp0Nthd8X82uWRcnc_CavTyjbrxfxPYZOs5-OQtqy1bbMUk22ytf5_ObWu6wx6zitz317ecs2rCU5Si4TBCx3yUiZHjVPDjFFbkGd81p9T1XIVxQGIzyznCYZ6O0awhvMQXkr2Mua2j4Iu8pWmyy3qdi9t218mvZXAixAbocYpIREQz5iH0UWooorCBDa6rpBeBAUSIHoIqJcgXkaEErURDhPWhifE00SD2WCmZJmafcRmLUPuu8aCuiXsMTFMZjYhGNkHXQZbZeSGiIMo5y-nqjElg2ZbdABcxoEUss5NFzwfL0_FDn0oh5SDfqWmAUyJUK3xVZmeZuH4dH7RbfXoe_LXjIVt1EQPZiE2FlWZPc3OEGGYWHmfa-gH9Zu_r
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQHIADb8R4BgnBqWNr2iQTp2liGs8DAsQBqUrbbEKbyqMbB078BH4jvwS7aTdAICFOlaKkbWIn_mzZXwB2SGe5r7SjtFCOp3nshFUdO7V2TXN0J7SUVDt8di5aV97xjX8zBgdFLYzlhxgG3GhnZOc1bXAKSO-PWEMj_VxG64auzwRd6J35UxdD7ihXuJaKwPeEQ35CwTxbcfeLkV9t0QhgfoapmZ1pzsJt8Yc2vaRbHvTDcvTyjbzxn1OYg5kcf7K6VZh5GDPJAkxf36UD25ouwmNWlPv--pbTVvVYioI0THfQN-9kkmQ4F_w6RRZZRnnNKHs912IckNjkcoaImKVdtGyIMPGFZDJjZksp2DB16T5Zgqvm4WWj5eQ3MzgRwgN0OnnEI2Ia8xD9SNnmUVjFBteVwou00QgSPcRVkpM7IkKhleRVHlbaJsYDRWm-DOPJfWJWgImYh8p3jacriujHtKlJoxDUiJpWFS1KsFfIKIhy2nK6PaMXWMJlN8BFDGgRS7A97PlgqTp-6LNeiDnIN2sa4JQI2HJflmA3k9ev44NG_Zqeq3_tuAWTrcuz0-D06PxkDaZchEQ2gLMO4_2ngdlASNMPNzPV_QDvLvQG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwEA-iIPrgf3E6NYLoU2fXtEn2ODbH_DdE3BB8KGmbiTi6aTcffPIj-Bn9JN417aaiID4VQtI2uUvud8fdL4Tso84yTypLKi4tV7HICsoqsirdimLgTighsHb4osWbbff0xrvJsiqxFsbwQ4wDbrgz0vMaN_gg6h5NSEND9VwC4waez4zLbYkaXb8aU0c53DFMBJ7LLXQTcuJZ2znKR341RRN8-RmlpmamsUhu8x802SUPpdEwKIUv37gb_zeDJbKQoU9aNeqyTKZ0vELmO_fJyLQmq-QxLcl9f33LSKt6NAExaqruwDO_S-VIYSrwcYwr0pTwmmLueqbDMCA2qeUU8DBNHsCuAb6EF6LBjKgppKDjxKV-vEbajePrWtPK7mWwQgAH4HKykIXIM-YC9hGiy8KgDA2OI7gbKq0AIrqAqgRDZ4QHXEnByiywuzqC40Qqtk6m436sNwjlEQuk52hX2RLJx5SuCC0B0vCKkrbiBXKYi8gPM9JyvDuj5xu6ZceHRfRxEQtkb9xzYIg6fuhTzKXsZ1s18WFKCGuZJwrkIBXXr-P9WrWDz82_dtwls5f1hn9-0jrbInMO4CETvSmS6eHTSG8DnhkGO6nifgBDJfK-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90temporal+scale+aggregation+refinement+graph+convolutional+network+for+skeleton%E2%80%90based+action+recognition&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Li%2C+Xuanfeng&rft.au=Lu%2C+Jian&rft.au=Zhou%2C+Jian&rft.au=Liu%2C+Wei&rft.date=2024-01-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2221&rft.externalDBID=10.1002%252Fcav.2221&rft.externalDocID=CAV2221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon