Complex image background segmentation for cable force estimation of urban bridges with drone‐captured video and deep learning
Summary Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper propos...
Saved in:
Published in | Structural control and health monitoring Vol. 29; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1545-2255 1545-2263 |
DOI | 10.1002/stc.2910 |
Cover
Abstract | Summary
Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper proposed a deep learning‐based complex background segmentation approach for cable force estimation of urban bridges from the drone‐captured video. The main contribution of this article includes two aspects: (1) A pre‐trained fully convolutional network (FCN) model was first adopted to identify bridge cables from drone‐captured video and further to extract sub‐pixel‐level displacement using line segment detection (LSD) algorithm, and (2) an empirical mode decomposition algorithm was employed for extracting the vibration signal of bridge cables by eliminating the effect of drone motion on measured dynamic displacement. Finally, natural frequencies of bridge cables were obtained by performing Fourier analysis on extracted cable vibration and further adopted for cable force estimation. The effectiveness and robustness of the proposed method have been successfully verified by field testing of an urban cable‐stayed footbridge. Estimated cable forces using the proposed method are consistent with the traditional contact‐type measurements and design values, demonstrating the potential of this method for applying into rapid cable force estimation of numerous urban bridges. |
---|---|
AbstractList | Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper proposed a deep learning‐based complex background segmentation approach for cable force estimation of urban bridges from the drone‐captured video. The main contribution of this article includes two aspects: (1) A pre‐trained fully convolutional network (FCN) model was first adopted to identify bridge cables from drone‐captured video and further to extract sub‐pixel‐level displacement using line segment detection (LSD) algorithm, and (2) an empirical mode decomposition algorithm was employed for extracting the vibration signal of bridge cables by eliminating the effect of drone motion on measured dynamic displacement. Finally, natural frequencies of bridge cables were obtained by performing Fourier analysis on extracted cable vibration and further adopted for cable force estimation. The effectiveness and robustness of the proposed method have been successfully verified by field testing of an urban cable‐stayed footbridge. Estimated cable forces using the proposed method are consistent with the traditional contact‐type measurements and design values, demonstrating the potential of this method for applying into rapid cable force estimation of numerous urban bridges. Summary Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper proposed a deep learning‐based complex background segmentation approach for cable force estimation of urban bridges from the drone‐captured video. The main contribution of this article includes two aspects: (1) A pre‐trained fully convolutional network (FCN) model was first adopted to identify bridge cables from drone‐captured video and further to extract sub‐pixel‐level displacement using line segment detection (LSD) algorithm, and (2) an empirical mode decomposition algorithm was employed for extracting the vibration signal of bridge cables by eliminating the effect of drone motion on measured dynamic displacement. Finally, natural frequencies of bridge cables were obtained by performing Fourier analysis on extracted cable vibration and further adopted for cable force estimation. The effectiveness and robustness of the proposed method have been successfully verified by field testing of an urban cable‐stayed footbridge. Estimated cable forces using the proposed method are consistent with the traditional contact‐type measurements and design values, demonstrating the potential of this method for applying into rapid cable force estimation of numerous urban bridges. |
Author | Zhang, Jian Tian, Yongding Zhang, Cheng |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0001-9646-937X surname: Zhang fullname: Zhang, Cheng organization: Southeast University – sequence: 2 givenname: Yongding orcidid: 0000-0002-6320-3388 surname: Tian fullname: Tian, Yongding organization: Southwest Jiaotong University – sequence: 3 givenname: Jian orcidid: 0000-0002-9129-255X surname: Zhang fullname: Zhang, Jian email: jian@seu.edu.cn organization: Southeast University |
BookMark | eNp1kMtKxDAUhoOM4IwKPkLAjZuOuTSdupTBGwgu1HVJk5Ma7SQ1aR1d6SP4jD6JGUdciK5yIN__5-SboJHzDhDao2RKCWGHsVdTdkTJBhpTkYuMsYKPfmYhttAkxvtEFqwUY_Q694uuhWdsF7IBXEv10AQ_OI0jNAtwveytd9j4gJWsW1hNCjDEPgW-rrzBQ6ilw3WwuoGIl7a_wzqktT7e3pXs-iGAxk9Wg8cyFWuADrcgg7Ou2UGbRrYRdr_PbXR7enIzP88ur84u5seXmWJHnGRGS805q_Nils9yUqja6FrltSFKi0KVkgrO8sKUTGgoKeVmxgVTKteSSEE530b7694u-MchrV_d-yG49GSVBJVlaqWzRB2sKRV8jAFM1YX0z_BSUVKt9FZJb7XSm9DpL1TZtaw-SNv-FcjWgaVt4eXf4ur6Zv7FfwLnB5CC |
CitedBy_id | crossref_primary_10_1111_mice_13288 crossref_primary_10_1088_1361_6501_ad3bd6 crossref_primary_10_1007_s13349_024_00798_6 crossref_primary_10_21541_apjess_1349856 crossref_primary_10_1016_j_autcon_2024_105767 crossref_primary_10_1109_JPHOT_2024_3453943 crossref_primary_10_1016_j_engstruct_2023_116938 crossref_primary_10_1016_j_engstruct_2022_114962 crossref_primary_10_1155_2024_1630928 crossref_primary_10_1088_1361_665X_ad6658 crossref_primary_10_2174_0126662558276323231129053808 crossref_primary_10_1016_j_isprsjprs_2024_03_012 crossref_primary_10_1007_s11801_025_4026_8 crossref_primary_10_1016_j_engstruct_2022_115572 crossref_primary_10_1155_2024_1866665 crossref_primary_10_1016_j_measurement_2025_116892 crossref_primary_10_1007_s13349_024_00893_8 crossref_primary_10_1016_j_autcon_2024_105791 crossref_primary_10_1155_2023_4752072 crossref_primary_10_1016_j_measurement_2024_114498 crossref_primary_10_1155_2023_8940008 crossref_primary_10_1016_j_ymssp_2023_110617 crossref_primary_10_1080_15732479_2024_2363832 crossref_primary_10_3390_s23187863 crossref_primary_10_1109_JSEN_2024_3374449 crossref_primary_10_1155_2024_5512085 crossref_primary_10_1016_j_autcon_2023_104957 crossref_primary_10_1109_TIM_2023_3338720 crossref_primary_10_1007_s13349_023_00673_w crossref_primary_10_1016_j_ymssp_2023_110575 crossref_primary_10_1016_j_engstruct_2024_118390 |
Cites_doi | 10.1016/j.cviu.2019.05.003 10.1016/j.neunet.2019.04.024 10.1142/S1793536909000047 10.1002/stc.1889 10.1109/ACCESS.2020.2994287 10.1016/j.measurement.2016.12.020 10.1016/j.engstruct.2020.110727 10.1098/rspa.1998.0193 10.1109/ICASSP.2011.5947265 10.1155/2017/5625396 10.1002/stc.2286 10.5201/ipol.2012.gjmr-lsd 10.1111/mice.12567 10.1016/j.ymssp.2020.106847 10.1016/j.measurement.2020.107769 10.1016/j.biosystemseng.2020.03.021 10.1111/mice.12497 10.1061/(ASCE)ST.1943-541X.0002321 10.1016/j.isprsjprs.2020.06.021 10.1061/(ASCE)ST.1943-541X.0002511 10.1177/1475921713500513 10.1061/(ASCE)1084-0702(2008)13:1(34) 10.1002/stc.2276 10.1109/CVPR.2015.7298965 10.1016/j.engstruct.2019.04.069 10.1111/mice.12390 10.1111/mice.12338 10.3390/s20216299 10.1002/stc.2713 10.1016/j.robot.2020.103563 10.1016/j.measurement.2019.107211 10.1007/978-3-319-74476-6_7 10.1109/JSEN.2020.2971854 10.3390/s17092075 10.1016/j.euromechsol.2016.09.009 10.1111/mice.12528 10.1016/j.jsv.2020.115657 10.1109/TIE.2019.2945265 10.1016/j.enggeo.2018.08.010 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.2910 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_2910 STC2910 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 51778134 – fundername: Key R&D Program of Jiangsu Province funderid: BE2020094 – fundername: National Key Research and Development Program of China funderid: 2019YFC1511105 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFZJQ AGQPQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PHGZM PHGZT PTHSS Q.N QB0 QRW R.K ROL RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX CITATION 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2930-fdad332b46747406cbfdbc4bf0cd56c8a153246f825de8113f7352cc4da0a5133 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Tue Sep 09 12:40:34 EDT 2025 Tue Jul 01 04:05:46 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed Jun 18 06:50:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-fdad332b46747406cbfdbc4bf0cd56c8a153246f825de8113f7352cc4da0a5133 |
Notes | Funding information Key R&D Program of Jiangsu Province, Grant/Award Number: BE2020094; National Science Foundation of China, Grant/Award Number: 51778134; National Key Research and Development Program of China, Grant/Award Number: 2019YFC1511105 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9646-937X 0000-0002-9129-255X 0000-0002-6320-3388 |
PQID | 2638847417 |
PQPubID | 2034347 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2638847417 crossref_primary_10_1002_stc_2910 crossref_citationtrail_10_1002_stc_2910 wiley_primary_10_1002_stc_2910_STC2910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 61 2019; 191 2019; 6 2017; 2017 2020; 20 2011 2018; 245 2021; 28 2019; 34 2017; 24 2020; 489 2008; 13 2020; 36 2020; 144 2020; 35 2020; 166 2008; 6 2020; 146 1998; 454 2019; 145 2019; 186 2020; 8 2012; 2 2020; 151 2020; 131 2017; 17 2013; 12 2020 2017; 99 2019; 67 2019; 26 2019; 25 2020; 194 2015 2019; 117 2018; 33 2009; 1 2020; 218 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_26_1 Greenwood WW (e_1_2_7_11_1) 2019; 25 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 Shao‐ping ME (e_1_2_7_40_1) 2008; 6 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 2017 start-page: 1 year: 2017 end-page: 13 article-title: Experimental verification for cable force estimation using handheld shooting of smartphones publication-title: J Sens – volume: 20 issue: 21 year: 2020 article-title: Vision and deep learning‐based algorithms to detect and quantify cracks on concrete surfaces from UAV videos publication-title: Sensors – volume: 1 start-page: 1 issue: 01 year: 2009 end-page: 41 article-title: Ensemble empirical mode decomposition: a noise‐assisted data analysis method publication-title: Adv Adapt Data Anal – volume: 33 start-page: 183 issue: 3 year: 2018 end-page: 192 article-title: Structural displacement measurement using an unmanned aerial system publication-title: Comput Aided Civ Inf Eng – volume: 131 year: 2020 article-title: Robust image completion and masking with application to robotic bin picking publication-title: Robot Auton Syst – volume: 8 start-page: 91661 year: 2020 end-page: 91675 article-title: Research on license plate recognition algorithms based on deep learning in complex environment publication-title: IEEE Access – volume: 2 start-page: 35 year: 2012 end-page: 55 article-title: LSD: a line segment detector publication-title: Image Process Line – start-page: 4144 year: 2011 end-page: 4147 – volume: 99 start-page: 44 year: 2017 end-page: 52 article-title: Cable tension force estimate using novel noncontact vision‐based sensor publication-title: Measurement – year: 2020 article-title: Swaying displacement measurement for structural monitoring using computer vision and an unmanned aerial vehicle publication-title: Measurement – volume: 61 start-page: 151 year: 2017 end-page: 163 article-title: Application of empirical mode decomposition to drive‐by bridge damage detection publication-title: Eur J Mech A‐Solids – volume: 218 year: 2020 article-title: Application of the DAD method for damage localization on an existing bridge structure using close‐range UAV photogrammetry publication-title: Eng Struct – volume: 24 issue: 3 year: 2017 article-title: Identification of time‐varying cable tension forces based on adaptive sparse time‐frequency analysis of cable vibrations publication-title: Struct Control Health Monit – volume: 20 start-page: 5480 issue: 10 year: 2020 end-page: 5491 article-title: An improved method for pipeline leakage localization with a single sensor based on modal acoustic emission and empirical mode decomposition with Hilbert transform publication-title: IEEE Sens J – volume: 194 start-page: 138 year: 2020 end-page: 151 article-title: Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier publication-title: Biosyst Eng – volume: 67 start-page: 8016 issue: 9 year: 2019 end-page: 8025 article-title: SDDNet: real‐time crack segmentation publication-title: IEEE Trans Ind Electron – volume: 26 issue: 1 year: 2019 article-title: Pixel‐level crack delineation in images with convolutional feature fusion publication-title: Struct Control Health Monit – volume: 186 start-page: 48 year: 2019 end-page: 57 article-title: Single image rain removal via a deep decomposition–composition network publication-title: Comput vis Image Underst – volume: 166 start-page: 373 year: 2020 end-page: 389 article-title: Thin cloud removal in optical remote sensing images based on generative adversarial networks and physical model of cloud distortion publication-title: ISPRS‐J Photogramm Remote Sens – start-page: 3431 year: 2015 end-page: 3440 – volume: 144 year: 2020 article-title: Measurement of full‐field displacement time history of a vibrating continuous edge from video publication-title: Mech Syst Signal Proc – volume: 28 issue: 5 year: 2021 article-title: Computer vision‐based real‐time cable tension estimation in Dubrovnik cable‐stayed bridge using moving handheld video camera publication-title: Struct Control Health Monit – volume: 25 issue: 2 year: 2019 article-title: Applications of UAVs in civil infrastructure publication-title: Australas J Inf Syst – volume: 191 start-page: 658 year: 2019 end-page: 673 article-title: On the form of the Musmeci's bridge over the Basento river publication-title: Eng Struct – volume: 26 issue: 1 year: 2019 article-title: An evaluation of image‐based structural health monitoring using integrated unmanned aerial vehicle platform publication-title: Struct Control Health Monit – volume: 6 start-page: 49 year: 2019 end-page: 57 – volume: 35 start-page: 373 issue: 4 year: 2020 end-page: 388 article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network publication-title: Comput Aided Civ Inf Eng – volume: 12 start-page: 440 issue: 5–6 year: 2013 end-page: 456 article-title: Vision‐based monitoring system for evaluating cable tensile forces on a cable‐stayed bridge publication-title: Struct Health Monit – volume: 245 start-page: 141 year: 2018 end-page: 152 article-title: Mapping an earthquake‐induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece publication-title: Eng Geol – volume: 489 year: 2020 article-title: Identification of full‐field dynamic modes using continuous displacement response estimated from vibrating edge video publication-title: J Sound Vib – volume: 35 start-page: 685 issue: 7 year: 2020 end-page: 700 article-title: Deep learning for data anomaly detection and data compression of a long‐span suspension bridge publication-title: Comput Aided Civ Inf Eng – volume: 454 start-page: 903 issue: 1971 year: 1998 end-page: 995 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‐stationary time series analysis publication-title: Proc R Soc A: Math Phys Eng Sci – volume: 145 issue: 7 year: 2019 article-title: Vision‐based modal survey of civil infrastructure using unmanned aerial vehicles publication-title: J Struct Eng – volume: 36 start-page: 73 issue: 1 year: 2020 end-page: 88 article-title: Noncontact cable force estimation with unmanned aerial vehicle and computer vision publication-title: Comput Aided Civ Inf Eng – volume: 151 year: 2020 article-title: Dynamic measurement of stay‐cable force using digital image techniques publication-title: Measurement – volume: 117 start-page: 8 year: 2019 end-page: 66 article-title: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation publication-title: Neural Netw – volume: 6 start-page: 87 year: 2008 end-page: 98 article-title: Novel formula of tension measurement for tied arch bridges in precise consideration of flexural rigidity publication-title: J Highway Transp Res Dev – volume: 17 issue: 9 year: 2017 article-title: Cross‐correlation‐based structural system identification using unmanned aerial vehicles publication-title: Sensors – volume: 13 start-page: 34 issue: 1 year: 2008 end-page: 42 article-title: Nontarget image‐based technique for small cable vibration measurement publication-title: J Bridge Eng – volume: 146 issue: 4 year: 2020 article-title: Investigation of structural response under human‐induced excitations using noise‐assisted and adaptively transformed multivariate empirical mode decomposition publication-title: J Struct Eng – volume: 34 start-page: 130 issue: 2 year: 2019 end-page: 145 article-title: Rapid impact testing and system identification of footbridges using particle image velocimetry publication-title: Comput Aided Civ Inf Eng – ident: e_1_2_7_32_1 doi: 10.1016/j.cviu.2019.05.003 – ident: e_1_2_7_25_1 doi: 10.1016/j.neunet.2019.04.024 – ident: e_1_2_7_38_1 doi: 10.1142/S1793536909000047 – ident: e_1_2_7_2_1 doi: 10.1002/stc.1889 – ident: e_1_2_7_30_1 doi: 10.1109/ACCESS.2020.2994287 – ident: e_1_2_7_9_1 doi: 10.1016/j.measurement.2016.12.020 – ident: e_1_2_7_15_1 doi: 10.1016/j.engstruct.2020.110727 – ident: e_1_2_7_37_1 doi: 10.1098/rspa.1998.0193 – ident: e_1_2_7_39_1 doi: 10.1109/ICASSP.2011.5947265 – ident: e_1_2_7_4_1 doi: 10.1155/2017/5625396 – ident: e_1_2_7_26_1 doi: 10.1002/stc.2286 – ident: e_1_2_7_36_1 doi: 10.5201/ipol.2012.gjmr-lsd – ident: e_1_2_7_21_1 doi: 10.1111/mice.12567 – volume: 6 start-page: 87 year: 2008 ident: e_1_2_7_40_1 article-title: Novel formula of tension measurement for tied arch bridges in precise consideration of flexural rigidity publication-title: J Highway Transp Res Dev – ident: e_1_2_7_5_1 doi: 10.1016/j.ymssp.2020.106847 – ident: e_1_2_7_20_1 doi: 10.1016/j.measurement.2020.107769 – ident: e_1_2_7_34_1 doi: 10.1016/j.biosystemseng.2020.03.021 – ident: e_1_2_7_28_1 doi: 10.1111/mice.12497 – ident: e_1_2_7_17_1 doi: 10.1061/(ASCE)ST.1943-541X.0002321 – ident: e_1_2_7_33_1 doi: 10.1016/j.isprsjprs.2020.06.021 – volume: 25 start-page: 04019002 issue: 2 year: 2019 ident: e_1_2_7_11_1 article-title: Applications of UAVs in civil infrastructure publication-title: Australas J Inf Syst – ident: e_1_2_7_23_1 doi: 10.1061/(ASCE)ST.1943-541X.0002511 – ident: e_1_2_7_8_1 doi: 10.1177/1475921713500513 – ident: e_1_2_7_3_1 doi: 10.1061/(ASCE)1084-0702(2008)13:1(34) – ident: e_1_2_7_12_1 doi: 10.1002/stc.2276 – ident: e_1_2_7_35_1 doi: 10.1109/CVPR.2015.7298965 – ident: e_1_2_7_18_1 doi: 10.1016/j.engstruct.2019.04.069 – ident: e_1_2_7_41_1 doi: 10.1111/mice.12390 – ident: e_1_2_7_19_1 doi: 10.1111/mice.12338 – ident: e_1_2_7_14_1 doi: 10.3390/s20216299 – ident: e_1_2_7_7_1 doi: 10.1002/stc.2713 – ident: e_1_2_7_31_1 doi: 10.1016/j.robot.2020.103563 – ident: e_1_2_7_10_1 doi: 10.1016/j.measurement.2019.107211 – ident: e_1_2_7_16_1 doi: 10.1007/978-3-319-74476-6_7 – ident: e_1_2_7_24_1 doi: 10.1109/JSEN.2020.2971854 – ident: e_1_2_7_42_1 doi: 10.3390/s17092075 – ident: e_1_2_7_22_1 doi: 10.1016/j.euromechsol.2016.09.009 – ident: e_1_2_7_27_1 doi: 10.1111/mice.12528 – ident: e_1_2_7_6_1 doi: 10.1016/j.jsv.2020.115657 – ident: e_1_2_7_29_1 doi: 10.1109/TIE.2019.2945265 – ident: e_1_2_7_13_1 doi: 10.1016/j.enggeo.2018.08.010 |
SSID | ssj0026285 |
Score | 2.444402 |
Snippet | Summary
Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex... Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms cable force Cable-stayed bridges Cables computer vision convolutional network Deep learning drone Empirical analysis Force measurement Fourier analysis Image processing Image segmentation Machine learning noncontact measurement methods Pedestrian bridges Resonant frequencies Structural health monitoring Vibration analysis |
Title | Complex image background segmentation for cable force estimation of urban bridges with drone‐captured video and deep learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2910 https://www.proquest.com/docview/2638847417 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA3SlS58i_VFBNHV6Ewm81pKtYigC7UguBjyFGmdlk4L4kY_wW_0S7x3HrWKgriaWSQhk9zce5LJOZeQvSAwCXMT7TBlQodHVjsJRC3HD11lhccAoePRwMVleNbh57fBbXWrErkwpT7E5MANV0bhr3GBC5kffYqG5qhAmBTsKs8PUTb_5GqiHMWQGVhIpfLAAZMNat1Zlx3VFb9Gok94OQ1SiyjTXiB3df_KyyXdw_FIHqrnb9KN__uARTJfgU96XFrLEpkx2TKZm5IkXCEv6CB65ok-PIKnoVKoLhI_Mk1zc_9YEZUyClCXKmRd4ZsyFLU6ShIk7Vs6HkqR0UpBguJRL9XDfmbeX9-UGOA_C02R_9enAhrWxgxolb3ifpV02qc3rTOnStLgKEAKrmO10L7PJGYtiQAdKGm1VFxaV-kgVLEAl8p4aGEnqk3seb6NAPMpxbVwBSaXWSONDHqwTqjQNrChMEksYg4bTfDD3NNgSFECTbKkSQ7qCUtVpWCOiTR6aam9zFIY0hSHtEl2JyUHpWrHD2W26jlPq3WbpwzcEcRr7kVNsl9M3q_10-ubFj43_lpwk8wy5E4U1362SGM0HJttQDQjuVPY7gf_MvXK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IHtSDuziuEURP1TaTtlM8iQvjetARPAglzSKidoZZQLzoT_A3-kt8r8u4oCCe2kMS0uTl5ctrvu8BrPm-ibgbaYcrEzgitNqJcNdyqoGrrPQ4InQKDZyeBfVLcXTlXw3AdsmFyfUh-gE3WhmZv6YFTgHprQ_V0A5JEEZErxoSiDPo5LV33teO4sQNzMRShe-g0fql8qzLt8qaX_eiD4D5GaZm-8zBOFyXPcyvl9xt9rrJpnr6Jt74z0-YgLECf7Kd3GAmYcCkUzD6SZVwGp7JR9ybR3b7gM6GJVLdEfcj1axjbh4KrlLKEO0yRcQrelOGkVxHzoNkTct67USmrBCRYBTtZbrdTM3by6uSLfptoRlRAJtMYsPamBYrEljczMDlwX5jt-4UeRochWDBdayWulrlCSUuCREgqMTqRInEukr7gapJ9KpcBBYPo9rUPK9qQ4R9SgktXUn5ZWZhMMUezAGT2vo2kCaqyZrAsya6YuFptKUwwiZ5VIGNcsZiVYiYUy6N-ziXX-YxDmlMQ1qB1X7JVi7c8UOZxXLS42LpdmKOHgm3bOGFFVjPZu_X-vFFY5ee838tuALD9cbpSXxyeHa8ACOcqBTZLaBFGOy2e2YJAU43Wc4M-R1Shfnp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yQfTBuzivEUSfOts0bddHmY55RXSC4ENJcxmidmMXEF_0J_gb_SWe08umoiA-tQ9JSJOTc76k-b5DyLbn6ZDZobKY1L7FA6OsEKKW5fq2NMJhgNDxaODs3G9c8-Mb7ya_VYlcmEwfYnjghisj9de4wDvK7I1EQ3uoQBgiu2qc-wAkEBBdDqWjGFIDU61U7llgs14hPGuzvaLm11A0wpefUWoaZuoz5LboYHa75L4y6McV-fxNu_F_XzBLpnP0Sfczc5kjYzqZJ1OfNAkXyAt6iAf9RO8ewdXQWMh7ZH4kivZ06zFnKiUUsC6VSLvCN6kpinVkLEjaNnTQjUVCcwkJime9VHXbiX5_fZOigz8tFEUCYJsKaFhp3aF5-orWIrmuHzZrDSvP0mBJgAq2ZZRQrstiTFsSADyQsVGx5LGxpfJ8WRXgUxn3DWxFla46jmsCAH1SciVsgdlllkgpgR4sEyqU8YwvdFgVVQ47TXDE3FFgSUEITbKwTHaLCYtkLmGOmTQeokx8mUUwpBEOaZlsDUt2MtmOH8qsFXMe5Qu3FzHwRxCwuROUyU46eb_Wj66aNXyu_LXgJpm4OKhHp0fnJ6tkkiGPIr0CtEZK_e5ArwO66ccbqRl_AHrv-Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+image+background+segmentation+for+cable+force+estimation+of+urban+bridges+with+drone%E2%80%90captured+video+and+deep+learning&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Zhang%2C+Cheng&rft.au=Tian%2C+Yongding&rft.au=Zhang%2C+Jian&rft.date=2022-04-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=4&rft_id=info:doi/10.1002%2Fstc.2910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |