Complex image background segmentation for cable force estimation of urban bridges with drone‐captured video and deep learning

Summary Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper propos...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 4
Main Authors Zhang, Cheng, Tian, Yongding, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.04.2022
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.2910

Cover

Abstract Summary Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper proposed a deep learning‐based complex background segmentation approach for cable force estimation of urban bridges from the drone‐captured video. The main contribution of this article includes two aspects: (1) A pre‐trained fully convolutional network (FCN) model was first adopted to identify bridge cables from drone‐captured video and further to extract sub‐pixel‐level displacement using line segment detection (LSD) algorithm, and (2) an empirical mode decomposition algorithm was employed for extracting the vibration signal of bridge cables by eliminating the effect of drone motion on measured dynamic displacement. Finally, natural frequencies of bridge cables were obtained by performing Fourier analysis on extracted cable vibration and further adopted for cable force estimation. The effectiveness and robustness of the proposed method have been successfully verified by field testing of an urban cable‐stayed footbridge. Estimated cable forces using the proposed method are consistent with the traditional contact‐type measurements and design values, demonstrating the potential of this method for applying into rapid cable force estimation of numerous urban bridges.
AbstractList Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper proposed a deep learning‐based complex background segmentation approach for cable force estimation of urban bridges from the drone‐captured video. The main contribution of this article includes two aspects: (1) A pre‐trained fully convolutional network (FCN) model was first adopted to identify bridge cables from drone‐captured video and further to extract sub‐pixel‐level displacement using line segment detection (LSD) algorithm, and (2) an empirical mode decomposition algorithm was employed for extracting the vibration signal of bridge cables by eliminating the effect of drone motion on measured dynamic displacement. Finally, natural frequencies of bridge cables were obtained by performing Fourier analysis on extracted cable vibration and further adopted for cable force estimation. The effectiveness and robustness of the proposed method have been successfully verified by field testing of an urban cable‐stayed footbridge. Estimated cable forces using the proposed method are consistent with the traditional contact‐type measurements and design values, demonstrating the potential of this method for applying into rapid cable force estimation of numerous urban bridges.
Summary Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper proposed a deep learning‐based complex background segmentation approach for cable force estimation of urban bridges from the drone‐captured video. The main contribution of this article includes two aspects: (1) A pre‐trained fully convolutional network (FCN) model was first adopted to identify bridge cables from drone‐captured video and further to extract sub‐pixel‐level displacement using line segment detection (LSD) algorithm, and (2) an empirical mode decomposition algorithm was employed for extracting the vibration signal of bridge cables by eliminating the effect of drone motion on measured dynamic displacement. Finally, natural frequencies of bridge cables were obtained by performing Fourier analysis on extracted cable vibration and further adopted for cable force estimation. The effectiveness and robustness of the proposed method have been successfully verified by field testing of an urban cable‐stayed footbridge. Estimated cable forces using the proposed method are consistent with the traditional contact‐type measurements and design values, demonstrating the potential of this method for applying into rapid cable force estimation of numerous urban bridges.
Author Zhang, Jian
Tian, Yongding
Zhang, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0001-9646-937X
  surname: Zhang
  fullname: Zhang, Cheng
  organization: Southeast University
– sequence: 2
  givenname: Yongding
  orcidid: 0000-0002-6320-3388
  surname: Tian
  fullname: Tian, Yongding
  organization: Southwest Jiaotong University
– sequence: 3
  givenname: Jian
  orcidid: 0000-0002-9129-255X
  surname: Zhang
  fullname: Zhang, Jian
  email: jian@seu.edu.cn
  organization: Southeast University
BookMark eNp1kMtKxDAUhoOM4IwKPkLAjZuOuTSdupTBGwgu1HVJk5Ma7SQ1aR1d6SP4jD6JGUdciK5yIN__5-SboJHzDhDao2RKCWGHsVdTdkTJBhpTkYuMsYKPfmYhttAkxvtEFqwUY_Q694uuhWdsF7IBXEv10AQ_OI0jNAtwveytd9j4gJWsW1hNCjDEPgW-rrzBQ6ilw3WwuoGIl7a_wzqktT7e3pXs-iGAxk9Wg8cyFWuADrcgg7Ou2UGbRrYRdr_PbXR7enIzP88ur84u5seXmWJHnGRGS805q_Nils9yUqja6FrltSFKi0KVkgrO8sKUTGgoKeVmxgVTKteSSEE530b7694u-MchrV_d-yG49GSVBJVlaqWzRB2sKRV8jAFM1YX0z_BSUVKt9FZJb7XSm9DpL1TZtaw-SNv-FcjWgaVt4eXf4ur6Zv7FfwLnB5CC
CitedBy_id crossref_primary_10_1111_mice_13288
crossref_primary_10_1088_1361_6501_ad3bd6
crossref_primary_10_1007_s13349_024_00798_6
crossref_primary_10_21541_apjess_1349856
crossref_primary_10_1016_j_autcon_2024_105767
crossref_primary_10_1109_JPHOT_2024_3453943
crossref_primary_10_1016_j_engstruct_2023_116938
crossref_primary_10_1016_j_engstruct_2022_114962
crossref_primary_10_1155_2024_1630928
crossref_primary_10_1088_1361_665X_ad6658
crossref_primary_10_2174_0126662558276323231129053808
crossref_primary_10_1016_j_isprsjprs_2024_03_012
crossref_primary_10_1007_s11801_025_4026_8
crossref_primary_10_1016_j_engstruct_2022_115572
crossref_primary_10_1155_2024_1866665
crossref_primary_10_1016_j_measurement_2025_116892
crossref_primary_10_1007_s13349_024_00893_8
crossref_primary_10_1016_j_autcon_2024_105791
crossref_primary_10_1155_2023_4752072
crossref_primary_10_1016_j_measurement_2024_114498
crossref_primary_10_1155_2023_8940008
crossref_primary_10_1016_j_ymssp_2023_110617
crossref_primary_10_1080_15732479_2024_2363832
crossref_primary_10_3390_s23187863
crossref_primary_10_1109_JSEN_2024_3374449
crossref_primary_10_1155_2024_5512085
crossref_primary_10_1016_j_autcon_2023_104957
crossref_primary_10_1109_TIM_2023_3338720
crossref_primary_10_1007_s13349_023_00673_w
crossref_primary_10_1016_j_ymssp_2023_110575
crossref_primary_10_1016_j_engstruct_2024_118390
Cites_doi 10.1016/j.cviu.2019.05.003
10.1016/j.neunet.2019.04.024
10.1142/S1793536909000047
10.1002/stc.1889
10.1109/ACCESS.2020.2994287
10.1016/j.measurement.2016.12.020
10.1016/j.engstruct.2020.110727
10.1098/rspa.1998.0193
10.1109/ICASSP.2011.5947265
10.1155/2017/5625396
10.1002/stc.2286
10.5201/ipol.2012.gjmr-lsd
10.1111/mice.12567
10.1016/j.ymssp.2020.106847
10.1016/j.measurement.2020.107769
10.1016/j.biosystemseng.2020.03.021
10.1111/mice.12497
10.1061/(ASCE)ST.1943-541X.0002321
10.1016/j.isprsjprs.2020.06.021
10.1061/(ASCE)ST.1943-541X.0002511
10.1177/1475921713500513
10.1061/(ASCE)1084-0702(2008)13:1(34)
10.1002/stc.2276
10.1109/CVPR.2015.7298965
10.1016/j.engstruct.2019.04.069
10.1111/mice.12390
10.1111/mice.12338
10.3390/s20216299
10.1002/stc.2713
10.1016/j.robot.2020.103563
10.1016/j.measurement.2019.107211
10.1007/978-3-319-74476-6_7
10.1109/JSEN.2020.2971854
10.3390/s17092075
10.1016/j.euromechsol.2016.09.009
10.1111/mice.12528
10.1016/j.jsv.2020.115657
10.1109/TIE.2019.2945265
10.1016/j.enggeo.2018.08.010
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2910
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2910
STC2910
Genre article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 51778134
– fundername: Key R&D Program of Jiangsu Province
  funderid: BE2020094
– fundername: National Key Research and Development Program of China
  funderid: 2019YFC1511105
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUYN
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PHGZM
PHGZT
PTHSS
Q.N
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
CITATION
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2930-fdad332b46747406cbfdbc4bf0cd56c8a153246f825de8113f7352cc4da0a5133
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Tue Sep 09 12:40:34 EDT 2025
Tue Jul 01 04:05:46 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed Jun 18 06:50:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-fdad332b46747406cbfdbc4bf0cd56c8a153246f825de8113f7352cc4da0a5133
Notes Funding information
Key R&D Program of Jiangsu Province, Grant/Award Number: BE2020094; National Science Foundation of China, Grant/Award Number: 51778134; National Key Research and Development Program of China, Grant/Award Number: 2019YFC1511105
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9646-937X
0000-0002-9129-255X
0000-0002-6320-3388
PQID 2638847417
PQPubID 2034347
PageCount 17
ParticipantIDs proquest_journals_2638847417
crossref_primary_10_1002_stc_2910
crossref_citationtrail_10_1002_stc_2910
wiley_primary_10_1002_stc_2910_STC2910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 61
2019; 191
2019; 6
2017; 2017
2020; 20
2011
2018; 245
2021; 28
2019; 34
2017; 24
2020; 489
2008; 13
2020; 36
2020; 144
2020; 35
2020; 166
2008; 6
2020; 146
1998; 454
2019; 145
2019; 186
2020; 8
2012; 2
2020; 151
2020; 131
2017; 17
2013; 12
2020
2017; 99
2019; 67
2019; 26
2019; 25
2020; 194
2015
2019; 117
2018; 33
2009; 1
2020; 218
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
Greenwood WW (e_1_2_7_11_1) 2019; 25
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
Shao‐ping ME (e_1_2_7_40_1) 2008; 6
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 2017
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Experimental verification for cable force estimation using handheld shooting of smartphones
  publication-title: J Sens
– volume: 20
  issue: 21
  year: 2020
  article-title: Vision and deep learning‐based algorithms to detect and quantify cracks on concrete surfaces from UAV videos
  publication-title: Sensors
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  end-page: 41
  article-title: Ensemble empirical mode decomposition: a noise‐assisted data analysis method
  publication-title: Adv Adapt Data Anal
– volume: 33
  start-page: 183
  issue: 3
  year: 2018
  end-page: 192
  article-title: Structural displacement measurement using an unmanned aerial system
  publication-title: Comput Aided Civ Inf Eng
– volume: 131
  year: 2020
  article-title: Robust image completion and masking with application to robotic bin picking
  publication-title: Robot Auton Syst
– volume: 8
  start-page: 91661
  year: 2020
  end-page: 91675
  article-title: Research on license plate recognition algorithms based on deep learning in complex environment
  publication-title: IEEE Access
– volume: 2
  start-page: 35
  year: 2012
  end-page: 55
  article-title: LSD: a line segment detector
  publication-title: Image Process Line
– start-page: 4144
  year: 2011
  end-page: 4147
– volume: 99
  start-page: 44
  year: 2017
  end-page: 52
  article-title: Cable tension force estimate using novel noncontact vision‐based sensor
  publication-title: Measurement
– year: 2020
  article-title: Swaying displacement measurement for structural monitoring using computer vision and an unmanned aerial vehicle
  publication-title: Measurement
– volume: 61
  start-page: 151
  year: 2017
  end-page: 163
  article-title: Application of empirical mode decomposition to drive‐by bridge damage detection
  publication-title: Eur J Mech A‐Solids
– volume: 218
  year: 2020
  article-title: Application of the DAD method for damage localization on an existing bridge structure using close‐range UAV photogrammetry
  publication-title: Eng Struct
– volume: 24
  issue: 3
  year: 2017
  article-title: Identification of time‐varying cable tension forces based on adaptive sparse time‐frequency analysis of cable vibrations
  publication-title: Struct Control Health Monit
– volume: 20
  start-page: 5480
  issue: 10
  year: 2020
  end-page: 5491
  article-title: An improved method for pipeline leakage localization with a single sensor based on modal acoustic emission and empirical mode decomposition with Hilbert transform
  publication-title: IEEE Sens J
– volume: 194
  start-page: 138
  year: 2020
  end-page: 151
  article-title: Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier
  publication-title: Biosyst Eng
– volume: 67
  start-page: 8016
  issue: 9
  year: 2019
  end-page: 8025
  article-title: SDDNet: real‐time crack segmentation
  publication-title: IEEE Trans Ind Electron
– volume: 26
  issue: 1
  year: 2019
  article-title: Pixel‐level crack delineation in images with convolutional feature fusion
  publication-title: Struct Control Health Monit
– volume: 186
  start-page: 48
  year: 2019
  end-page: 57
  article-title: Single image rain removal via a deep decomposition–composition network
  publication-title: Comput vis Image Underst
– volume: 166
  start-page: 373
  year: 2020
  end-page: 389
  article-title: Thin cloud removal in optical remote sensing images based on generative adversarial networks and physical model of cloud distortion
  publication-title: ISPRS‐J Photogramm Remote Sens
– start-page: 3431
  year: 2015
  end-page: 3440
– volume: 144
  year: 2020
  article-title: Measurement of full‐field displacement time history of a vibrating continuous edge from video
  publication-title: Mech Syst Signal Proc
– volume: 28
  issue: 5
  year: 2021
  article-title: Computer vision‐based real‐time cable tension estimation in Dubrovnik cable‐stayed bridge using moving handheld video camera
  publication-title: Struct Control Health Monit
– volume: 25
  issue: 2
  year: 2019
  article-title: Applications of UAVs in civil infrastructure
  publication-title: Australas J Inf Syst
– volume: 191
  start-page: 658
  year: 2019
  end-page: 673
  article-title: On the form of the Musmeci's bridge over the Basento river
  publication-title: Eng Struct
– volume: 26
  issue: 1
  year: 2019
  article-title: An evaluation of image‐based structural health monitoring using integrated unmanned aerial vehicle platform
  publication-title: Struct Control Health Monit
– volume: 6
  start-page: 49
  year: 2019
  end-page: 57
– volume: 35
  start-page: 373
  issue: 4
  year: 2020
  end-page: 388
  article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network
  publication-title: Comput Aided Civ Inf Eng
– volume: 12
  start-page: 440
  issue: 5–6
  year: 2013
  end-page: 456
  article-title: Vision‐based monitoring system for evaluating cable tensile forces on a cable‐stayed bridge
  publication-title: Struct Health Monit
– volume: 245
  start-page: 141
  year: 2018
  end-page: 152
  article-title: Mapping an earthquake‐induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece
  publication-title: Eng Geol
– volume: 489
  year: 2020
  article-title: Identification of full‐field dynamic modes using continuous displacement response estimated from vibrating edge video
  publication-title: J Sound Vib
– volume: 35
  start-page: 685
  issue: 7
  year: 2020
  end-page: 700
  article-title: Deep learning for data anomaly detection and data compression of a long‐span suspension bridge
  publication-title: Comput Aided Civ Inf Eng
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  end-page: 995
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‐stationary time series analysis
  publication-title: Proc R Soc A: Math Phys Eng Sci
– volume: 145
  issue: 7
  year: 2019
  article-title: Vision‐based modal survey of civil infrastructure using unmanned aerial vehicles
  publication-title: J Struct Eng
– volume: 36
  start-page: 73
  issue: 1
  year: 2020
  end-page: 88
  article-title: Noncontact cable force estimation with unmanned aerial vehicle and computer vision
  publication-title: Comput Aided Civ Inf Eng
– volume: 151
  year: 2020
  article-title: Dynamic measurement of stay‐cable force using digital image techniques
  publication-title: Measurement
– volume: 117
  start-page: 8
  year: 2019
  end-page: 66
  article-title: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation
  publication-title: Neural Netw
– volume: 6
  start-page: 87
  year: 2008
  end-page: 98
  article-title: Novel formula of tension measurement for tied arch bridges in precise consideration of flexural rigidity
  publication-title: J Highway Transp Res Dev
– volume: 17
  issue: 9
  year: 2017
  article-title: Cross‐correlation‐based structural system identification using unmanned aerial vehicles
  publication-title: Sensors
– volume: 13
  start-page: 34
  issue: 1
  year: 2008
  end-page: 42
  article-title: Nontarget image‐based technique for small cable vibration measurement
  publication-title: J Bridge Eng
– volume: 146
  issue: 4
  year: 2020
  article-title: Investigation of structural response under human‐induced excitations using noise‐assisted and adaptively transformed multivariate empirical mode decomposition
  publication-title: J Struct Eng
– volume: 34
  start-page: 130
  issue: 2
  year: 2019
  end-page: 145
  article-title: Rapid impact testing and system identification of footbridges using particle image velocimetry
  publication-title: Comput Aided Civ Inf Eng
– ident: e_1_2_7_32_1
  doi: 10.1016/j.cviu.2019.05.003
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neunet.2019.04.024
– ident: e_1_2_7_38_1
  doi: 10.1142/S1793536909000047
– ident: e_1_2_7_2_1
  doi: 10.1002/stc.1889
– ident: e_1_2_7_30_1
  doi: 10.1109/ACCESS.2020.2994287
– ident: e_1_2_7_9_1
  doi: 10.1016/j.measurement.2016.12.020
– ident: e_1_2_7_15_1
  doi: 10.1016/j.engstruct.2020.110727
– ident: e_1_2_7_37_1
  doi: 10.1098/rspa.1998.0193
– ident: e_1_2_7_39_1
  doi: 10.1109/ICASSP.2011.5947265
– ident: e_1_2_7_4_1
  doi: 10.1155/2017/5625396
– ident: e_1_2_7_26_1
  doi: 10.1002/stc.2286
– ident: e_1_2_7_36_1
  doi: 10.5201/ipol.2012.gjmr-lsd
– ident: e_1_2_7_21_1
  doi: 10.1111/mice.12567
– volume: 6
  start-page: 87
  year: 2008
  ident: e_1_2_7_40_1
  article-title: Novel formula of tension measurement for tied arch bridges in precise consideration of flexural rigidity
  publication-title: J Highway Transp Res Dev
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ymssp.2020.106847
– ident: e_1_2_7_20_1
  doi: 10.1016/j.measurement.2020.107769
– ident: e_1_2_7_34_1
  doi: 10.1016/j.biosystemseng.2020.03.021
– ident: e_1_2_7_28_1
  doi: 10.1111/mice.12497
– ident: e_1_2_7_17_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002321
– ident: e_1_2_7_33_1
  doi: 10.1016/j.isprsjprs.2020.06.021
– volume: 25
  start-page: 04019002
  issue: 2
  year: 2019
  ident: e_1_2_7_11_1
  article-title: Applications of UAVs in civil infrastructure
  publication-title: Australas J Inf Syst
– ident: e_1_2_7_23_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002511
– ident: e_1_2_7_8_1
  doi: 10.1177/1475921713500513
– ident: e_1_2_7_3_1
  doi: 10.1061/(ASCE)1084-0702(2008)13:1(34)
– ident: e_1_2_7_12_1
  doi: 10.1002/stc.2276
– ident: e_1_2_7_35_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_7_18_1
  doi: 10.1016/j.engstruct.2019.04.069
– ident: e_1_2_7_41_1
  doi: 10.1111/mice.12390
– ident: e_1_2_7_19_1
  doi: 10.1111/mice.12338
– ident: e_1_2_7_14_1
  doi: 10.3390/s20216299
– ident: e_1_2_7_7_1
  doi: 10.1002/stc.2713
– ident: e_1_2_7_31_1
  doi: 10.1016/j.robot.2020.103563
– ident: e_1_2_7_10_1
  doi: 10.1016/j.measurement.2019.107211
– ident: e_1_2_7_16_1
  doi: 10.1007/978-3-319-74476-6_7
– ident: e_1_2_7_24_1
  doi: 10.1109/JSEN.2020.2971854
– ident: e_1_2_7_42_1
  doi: 10.3390/s17092075
– ident: e_1_2_7_22_1
  doi: 10.1016/j.euromechsol.2016.09.009
– ident: e_1_2_7_27_1
  doi: 10.1111/mice.12528
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jsv.2020.115657
– ident: e_1_2_7_29_1
  doi: 10.1109/TIE.2019.2945265
– ident: e_1_2_7_13_1
  doi: 10.1016/j.enggeo.2018.08.010
SSID ssj0026285
Score 2.444402
Snippet Summary Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex...
Drone‐assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
cable force
Cable-stayed bridges
Cables
computer vision
convolutional network
Deep learning
drone
Empirical analysis
Force measurement
Fourier analysis
Image processing
Image segmentation
Machine learning
noncontact measurement methods
Pedestrian bridges
Resonant frequencies
Structural health monitoring
Vibration analysis
Title Complex image background segmentation for cable force estimation of urban bridges with drone‐captured video and deep learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2910
https://www.proquest.com/docview/2638847417
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA3SlS58i_VFBNHV6Ewm81pKtYigC7UguBjyFGmdlk4L4kY_wW_0S7x3HrWKgriaWSQhk9zce5LJOZeQvSAwCXMT7TBlQodHVjsJRC3HD11lhccAoePRwMVleNbh57fBbXWrErkwpT7E5MANV0bhr3GBC5kffYqG5qhAmBTsKs8PUTb_5GqiHMWQGVhIpfLAAZMNat1Zlx3VFb9Gok94OQ1SiyjTXiB3df_KyyXdw_FIHqrnb9KN__uARTJfgU96XFrLEpkx2TKZm5IkXCEv6CB65ok-PIKnoVKoLhI_Mk1zc_9YEZUyClCXKmRd4ZsyFLU6ShIk7Vs6HkqR0UpBguJRL9XDfmbeX9-UGOA_C02R_9enAhrWxgxolb3ifpV02qc3rTOnStLgKEAKrmO10L7PJGYtiQAdKGm1VFxaV-kgVLEAl8p4aGEnqk3seb6NAPMpxbVwBSaXWSONDHqwTqjQNrChMEksYg4bTfDD3NNgSFECTbKkSQ7qCUtVpWCOiTR6aam9zFIY0hSHtEl2JyUHpWrHD2W26jlPq3WbpwzcEcRr7kVNsl9M3q_10-ubFj43_lpwk8wy5E4U1362SGM0HJttQDQjuVPY7gf_MvXK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH6IHtSDuziuEURP1TaTtlM8iQvjetARPAglzSKidoZZQLzoT_A3-kt8r8u4oCCe2kMS0uTl5ctrvu8BrPm-ibgbaYcrEzgitNqJcNdyqoGrrPQ4InQKDZyeBfVLcXTlXw3AdsmFyfUh-gE3WhmZv6YFTgHprQ_V0A5JEEZErxoSiDPo5LV33teO4sQNzMRShe-g0fql8qzLt8qaX_eiD4D5GaZm-8zBOFyXPcyvl9xt9rrJpnr6Jt74z0-YgLECf7Kd3GAmYcCkUzD6SZVwGp7JR9ybR3b7gM6GJVLdEfcj1axjbh4KrlLKEO0yRcQrelOGkVxHzoNkTct67USmrBCRYBTtZbrdTM3by6uSLfptoRlRAJtMYsPamBYrEljczMDlwX5jt-4UeRochWDBdayWulrlCSUuCREgqMTqRInEukr7gapJ9KpcBBYPo9rUPK9qQ4R9SgktXUn5ZWZhMMUezAGT2vo2kCaqyZrAsya6YuFptKUwwiZ5VIGNcsZiVYiYUy6N-ziXX-YxDmlMQ1qB1X7JVi7c8UOZxXLS42LpdmKOHgm3bOGFFVjPZu_X-vFFY5ee838tuALD9cbpSXxyeHa8ACOcqBTZLaBFGOy2e2YJAU43Wc4M-R1Shfnp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yQfTBuzivEUSfOts0bddHmY55RXSC4ENJcxmidmMXEF_0J_gb_SWe08umoiA-tQ9JSJOTc76k-b5DyLbn6ZDZobKY1L7FA6OsEKKW5fq2NMJhgNDxaODs3G9c8-Mb7ya_VYlcmEwfYnjghisj9de4wDvK7I1EQ3uoQBgiu2qc-wAkEBBdDqWjGFIDU61U7llgs14hPGuzvaLm11A0wpefUWoaZuoz5LboYHa75L4y6McV-fxNu_F_XzBLpnP0Sfczc5kjYzqZJ1OfNAkXyAt6iAf9RO8ewdXQWMh7ZH4kivZ06zFnKiUUsC6VSLvCN6kpinVkLEjaNnTQjUVCcwkJime9VHXbiX5_fZOigz8tFEUCYJsKaFhp3aF5-orWIrmuHzZrDSvP0mBJgAq2ZZRQrstiTFsSADyQsVGx5LGxpfJ8WRXgUxn3DWxFla46jmsCAH1SciVsgdlllkgpgR4sEyqU8YwvdFgVVQ47TXDE3FFgSUEITbKwTHaLCYtkLmGOmTQeokx8mUUwpBEOaZlsDUt2MtmOH8qsFXMe5Qu3FzHwRxCwuROUyU46eb_Wj66aNXyu_LXgJpm4OKhHp0fnJ6tkkiGPIr0CtEZK_e5ArwO66ccbqRl_AHrv-Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+image+background+segmentation+for+cable+force+estimation+of+urban+bridges+with+drone%E2%80%90captured+video+and+deep+learning&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Zhang%2C+Cheng&rft.au=Tian%2C+Yongding&rft.au=Zhang%2C+Jian&rft.date=2022-04-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=4&rft_id=info:doi/10.1002%2Fstc.2910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_2910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon