A novel four‐tier software‐defined network architecture for scalable secure routing and load balancing
Summary Software‐defined networking is an emerging paradigm for supporting flexible network management. In the traditional architecture for a software‐defined network (SDN), the controller commonly uses a general routing algorithm such as Open Shortest Path First (OSPF), which chooses the shortest p...
Saved in:
Published in | International journal of communication systems Vol. 35; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
10.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Software‐defined networking is an emerging paradigm for supporting flexible network management. In the traditional architecture for a software‐defined network (SDN), the controller commonly uses a general routing algorithm such as Open Shortest Path First (OSPF), which chooses the shortest path for communication. This may cause the largest amount of network traffic, especially in large‐scale environments. In this paper, we present the design for a novel SDN‐based four‐tier architecture for scalable secure routing and load balancing. In Tier 1, user authentication is conducted using elliptic curve cryptography (ECC); this avoids unnecessary loads from unauthorized users. In Tier 2, packet classification is performed based on the packet characteristics using the fuzzy analytical hierarchy process (fuzzy AHP), and packets are placed into three individual queues. In Tier 3, scalable secure routing is achieved by selecting the optimal path using the improved particle swarm optimization and ant colony optimization algorithms. With these optimization algorithms, we can adaptively change the number of users, the number of switches, and other parameters. In Tier 4, the recommended secure cluster (multicontroller) management is accomplished using an algorithm that employs modified k‐means clustering and a recurrent neural network. Deep reinforcement learning (DRL) is also proposed for updating the controller information. Experimental results are analyzed using the OMNeT++ network simulator, and the evaluated performance displayed improvement over a variety of existing methods in terms of response time (50% to 60%), load (55%), execution time (3.2%), throughput (9.8%), packet loss rate (1.02%), end‐to‐end delay (50%), and bandwidth consumption (45%).
We proposed novel four‐tier architecture in which load balancing and security considered in each tier. First, all nodes (users) are authenticated using ECC, which balance the network by avoiding extra traffic from unauthorized users. Second, packets are classified into three classes by fuzzy AHP. Third, routing is established among switches in secure way by improved ACO and PSO algorithms. Finally, clustering is performed to avoid single failures by modified k‐means and RNN. DRL is proposed for controllers’ information updated. |
---|---|
AbstractList | Software‐defined networking is an emerging paradigm for supporting flexible network management. In the traditional architecture for a software‐defined network (SDN), the controller commonly uses a general routing algorithm such as Open Shortest Path First (OSPF), which chooses the shortest path for communication. This may cause the largest amount of network traffic, especially in large‐scale environments. In this paper, we present the design for a novel SDN‐based four‐tier architecture for scalable secure routing and load balancing. In Tier 1, user authentication is conducted using elliptic curve cryptography (ECC); this avoids unnecessary loads from unauthorized users. In Tier 2, packet classification is performed based on the packet characteristics using the fuzzy analytical hierarchy process (fuzzy AHP), and packets are placed into three individual queues. In Tier 3, scalable secure routing is achieved by selecting the optimal path using the improved particle swarm optimization and ant colony optimization algorithms. With these optimization algorithms, we can adaptively change the number of users, the number of switches, and other parameters. In Tier 4, the recommended secure cluster (multicontroller) management is accomplished using an algorithm that employs modified k‐means clustering and a recurrent neural network. Deep reinforcement learning (DRL) is also proposed for updating the controller information. Experimental results are analyzed using the OMNeT++ network simulator, and the evaluated performance displayed improvement over a variety of existing methods in terms of response time (50% to 60%), load (55%), execution time (3.2%), throughput (9.8%), packet loss rate (1.02%), end‐to‐end delay (50%), and bandwidth consumption (45%). Summary Software‐defined networking is an emerging paradigm for supporting flexible network management. In the traditional architecture for a software‐defined network (SDN), the controller commonly uses a general routing algorithm such as Open Shortest Path First (OSPF), which chooses the shortest path for communication. This may cause the largest amount of network traffic, especially in large‐scale environments. In this paper, we present the design for a novel SDN‐based four‐tier architecture for scalable secure routing and load balancing. In Tier 1, user authentication is conducted using elliptic curve cryptography (ECC); this avoids unnecessary loads from unauthorized users. In Tier 2, packet classification is performed based on the packet characteristics using the fuzzy analytical hierarchy process (fuzzy AHP), and packets are placed into three individual queues. In Tier 3, scalable secure routing is achieved by selecting the optimal path using the improved particle swarm optimization and ant colony optimization algorithms. With these optimization algorithms, we can adaptively change the number of users, the number of switches, and other parameters. In Tier 4, the recommended secure cluster (multicontroller) management is accomplished using an algorithm that employs modified k‐means clustering and a recurrent neural network. Deep reinforcement learning (DRL) is also proposed for updating the controller information. Experimental results are analyzed using the OMNeT++ network simulator, and the evaluated performance displayed improvement over a variety of existing methods in terms of response time (50% to 60%), load (55%), execution time (3.2%), throughput (9.8%), packet loss rate (1.02%), end‐to‐end delay (50%), and bandwidth consumption (45%). We proposed novel four‐tier architecture in which load balancing and security considered in each tier. First, all nodes (users) are authenticated using ECC, which balance the network by avoiding extra traffic from unauthorized users. Second, packets are classified into three classes by fuzzy AHP. Third, routing is established among switches in secure way by improved ACO and PSO algorithms. Finally, clustering is performed to avoid single failures by modified k‐means and RNN. DRL is proposed for controllers’ information updated. Software‐defined networking is an emerging paradigm for supporting flexible network management. In the traditional architecture for a software‐defined network (SDN), the controller commonly uses a general routing algorithm such as Open Shortest Path First (OSPF), which chooses the shortest path for communication. This may cause the largest amount of network traffic, especially in large‐scale environments. In this paper, we present the design for a novel SDN‐based four‐tier architecture for scalable secure routing and load balancing. In Tier 1, user authentication is conducted using elliptic curve cryptography (ECC) ; this avoids unnecessary loads from unauthorized users. In Tier 2, packet classification is performed based on the packet characteristics using the fuzzy analytical hierarchy process (fuzzy AHP) , and packets are placed into three individual queues. In Tier 3, scalable secure routing is achieved by selecting the optimal path using the improved particle swarm optimization and ant colony optimization algorithms. With these optimization algorithms, we can adaptively change the number of users, the number of switches, and other parameters. In Tier 4, the recommended secure cluster (multicontroller) management is accomplished using an algorithm that employs modified k‐means clustering and a recurrent neural network . Deep reinforcement learning (DRL) is also proposed for updating the controller information. Experimental results are analyzed using the OMNeT++ network simulator, and the evaluated performance displayed improvement over a variety of existing methods in terms of response time (50% to 60%), load (55%), execution time (3.2%), throughput (9.8%), packet loss rate (1.02%), end‐to‐end delay (50%), and bandwidth consumption (45%). |
Author | Hongvanthong, Sisamouth Chunlin, Li |
Author_xml | – sequence: 1 givenname: Sisamouth orcidid: 0000-0002-2346-8365 surname: Hongvanthong fullname: Hongvanthong, Sisamouth email: viet_24utd@windowslive.com organization: Wuhan University of Technology – sequence: 2 givenname: Li orcidid: 0000-0002-4150-0197 surname: Chunlin fullname: Chunlin, Li organization: Wuhan University of Technology |
BookMark | eNp1kEtOwzAQhi1UJEpB4giW2LBJsZ04qZdVeUqV2MDacpwxuAS7OA5VdxyBM3ISHMoKwWpe3z-j-Q_RyHkHCJ1QMqWEsPNG6SknjOyhMSVCZJTmdDTkVZHxnNMDdNh1K0LIjJV8jFZz7PwbtNj4Pny-f0QLAXfexI0KkOoGjHXQYAdx48MzVkE_2Qg69gGSJrFatapuAXegh17wfbTuESvX4NarBtdp7nRqHaF9o9oOjn_iBD1cXd4vbrLl3fXtYr7MNBM5yYwQUJaiEpypnFcNEyWHmQZiCk1yCuWMaWoMrwlUooCKMKhzASLXvIFC1fkEne72roN_7aGLcpV-c-mkZGV6u6IzUSVquqN08F0XwEhto4rWuxiUbSUlcvBTJj_l4GcSnP0SrIN9UWH7F5rt0I1tYfsvJy_mi2_-C7B6iMY |
CitedBy_id | crossref_primary_10_1002_tee_24026 |
Cites_doi | 10.1007/978-3-319-60033-8_9 10.1109/TII.2016.2635081 10.1002/dac.3530 10.1109/TII.2018.2816590 10.1007/s11432-017-9043-8 10.1007/s11276-017-1504-3 10.1109/ACCESS.2018.2814738 10.1109/TNSM.2018.2846294 10.1109/MCOM.2017.1600414CM 10.1109/ACCESS.2019.2941229 10.1016/j.comnet.2019.04.011 10.1016/j.phpro.2012.03.206 10.1049/el.2015.0334 10.1109/ACCESS.2018.2797214 10.1007/s11277-016-3790-y 10.1109/JIOT.2018.2812718 10.1109/JIOT.2018.2864782 10.1016/j.comnet.2018.05.012 10.1007/s12083-016-0537-1 10.3103/S0146411616070166 10.1371/journal.pone.0174715 10.1109/TNSM.2018.2799000 10.1007/978-3-642-37949-9_73 10.1109/COMST.2018.2882064 10.12988/ces.2016.66105 10.1109/ACCESS.2019.2953565 10.1109/TMM.2014.2325791 10.1145/3317572 10.1109/TNSM.2017.2758796 10.23919/TST.2017.7986943 10.1515/jee-2017-0079 10.1016/j.matpr.2018.02.334 10.1109/TNSM.2015.2454293 10.1109/TSC.2016.2602861 10.1007/s40012-017-0171-y 10.1002/dac.3391 10.1155/2018/4123736 10.1109/ACCESS.2018.2805842 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
DOI | 10.1002/dac.5020 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1131 |
EndPage | n/a |
ExternalDocumentID | 10_1002_dac_5020 DAC5020 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61771354 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M |
ID | FETCH-LOGICAL-c2930-f99e6697952a357d2965e8ce0f4c031e682c1ff5b0e794e702eb39e93c5de4ab3 |
IEDL.DBID | DR2 |
ISSN | 1074-5351 |
IngestDate | Fri Jul 25 12:20:59 EDT 2025 Tue Jul 01 02:36:17 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Wed Jan 22 16:28:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-f99e6697952a357d2965e8ce0f4c031e682c1ff5b0e794e702eb39e93c5de4ab3 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Number: 61771354 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4150-0197 0000-0002-2346-8365 |
PQID | 2608271897 |
PQPubID | 996367 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2608271897 crossref_citationtrail_10_1002_dac_5020 crossref_primary_10_1002_dac_5020 wiley_primary_10_1002_dac_5020_DAC5020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 January 2022 |
PublicationDateYYYYMMDD | 2022-01-10 |
PublicationDate_xml | – month: 01 year: 2022 text: 10 January 2022 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | International journal of communication systems |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 141 2015; 12 2019; 7 2017; 60 2015; 51 2018; 404 2019; 10 2017; 22 2017; 68 2016; 50 2013; 8271 2019; 182 2017; 9 2016; 12 2018; 24 2018; 6 2017; 94 2018; 2018 2018; 5 2017; 14 2019; 21 2017; 55 2017; 13 2017; 12 2014; 16 2019; 157 2017 2016 2015 2013 2012; 25 2018; 11 2018; 31 2018; 15 2016; 9 2018; 14 e_1_2_10_46_1 e_1_2_10_24_1 Di Stefano A (e_1_2_10_44_1) 2015 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 Spanjaard O (e_1_2_10_41_1) 2013; 8271 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 Kaur H (e_1_2_10_17_1) 2017; 9 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 Sherstinsky A (e_1_2_10_40_1) 2018; 404 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 Hamed MI (e_1_2_10_23_1) 2017 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Dang L (e_1_2_10_38_1) 2019; 182 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 Sun X (e_1_2_10_21_1) 2016 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 24 start-page: 2811 issue: 8 year: 2018 end-page: 2823 article-title: Two‐tier dynamic load balancing in SDN‐enabled Wi‐Fi networks publication-title: Wirel Netw – volume: 21 start-page: 1314 issue: 2 year: 2019 end-page: 1345 article-title: Privacy‐preserving content dissemination for vehicular social networks: challenges and solutions publication-title: IEEE Commun Surv Tutorials – volume: 9 start-page: 881 issue: 18 year: 2016 end-page: 888 article-title: Load balancing of software‐defined network controller using genetic algorithm publication-title: Contemp Eng Sci – volume: 5 start-page: 13406 issue: 5 year: 2018 end-page: 13412 article-title: Ranking of MUDA using AHP and Fuzzy AHP algorithm publication-title: Materials Today: Proceedings – volume: 5 start-page: 5281 issue: 6 year: 2018 end-page: 5295 article-title: A privacy‐preserving message forwarding framework for opportunistic cloud of things publication-title: IEEE Internet Things J – volume: 14 start-page: 1086 issue: 4 year: 2017 end-page: 1097 article-title: Mitigating the table‐overflow attack in software‐defined networking publication-title: IEEE Trans Netw Serv Manage – start-page: 344 year: 2015 end-page: 350 article-title: A4SDN—adaptive alienated ant algorithm for software‐defined networking publication-title: 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing – volume: 50 start-page: 520 issue: 7 year: 2016 end-page: 526 article-title: Development of an adaptive routing mechanism in software‐defined networks publication-title: Autom Control Comput Sci – volume: 6 start-page: 15980 year: 2018 end-page: 15996 article-title: Multi‐controller based software‐defined networking: a survey publication-title: IEEE Access – volume: 5 start-page: 375 issue: 4 year: 2017 end-page: 385 article-title: Application‐aware network: network route management using SDN based on application characteristics publication-title: CSI Trans ICT – volume: 22 start-page: 400 issue: 4 year: 2017 end-page: 412 article-title: RouteGuardian: constructing secure routing paths in software‐defined networking publication-title: Tsinghua Sci Technol – volume: 12 start-page: 435 issue: 3 year: 2015 end-page: 450 article-title: An analytical model to design and manage a green SDN/NFV CPE node publication-title: IEEE Trans Netw Serv Manag – volume: 6 start-page: 14159 year: 2018 end-page: 14178 article-title: Load balancing mechanisms in the software defined networks: a systematic and comprehensive review of the literature publication-title: IEEE Access – volume: 60 start-page: 1 issue: 4 year: 2017 end-page: 14 article-title: Energy consumption optimization‐based joint route selection and flow allocation algorithm for software‐defined networking publication-title: Sci China Inf Sci – start-page: 30 year: 2017 end-page: 35 article-title: A new approach for server‐based load balancing using software‐defined networking publication-title: 8th IEEE International Conference on Intelligent Computing and Information Systems (ICICIS 2017) – volume: 14 start-page: 4568 issue: 10 year: 2018 end-page: 4578 article-title: Offloading in Internet of Vehicles: a fog‐enabled real‐time traffic management system publication-title: IEEE Trans Ind Inf – volume: 16 start-page: 1597 issue: 6 year: 2014 end-page: 1609 article-title: Distributed QoS architectures for multimedia streaming over software defined networks publication-title: IEEE Trans Multimedia – volume: 9 start-page: 379 issue: 6 year: 2017 end-page: 384 article-title: Traffic based load balancing in software defined networking publication-title: Int J Comput Sci Eng – volume: 6 start-page: 8292 year: 2018 end-page: 8301 article-title: SecSDN‐Cloud: defeating vulnerable attacks through secure software‐defined networks publication-title: IEEE Access – volume: 7 start-page: 133653 year: 2019 end-page: 133667 article-title: Q‐learning algorithms: a comprehensive classification and applications publication-title: IEEE Access – volume: 404 start-page: 1 year: 2018 end-page: 28 article-title: Fundamentals of recurrent neural network (RNN) and long short‐term memory (LSTM) network publication-title: Physica D: Nonlinear Phenomena – volume: 12 start-page: 231 issue: 2 year: 2016 end-page: 246 article-title: Defending against flow table overloading attack in software‐defined networks publication-title: IEEE Trans Serv Comput – start-page: 93 year: 2016 end-page: 100 article-title: Multipath load balancing in SDN/OSPF hybrid network publication-title: International Federation for Information Processing International Conference on Network and Parallel Computing (NPC 2016) – volume: 31 start-page: 1 issue: 1 year: 2018 end-page: 13 article-title: Genetic algorithm‐based routing method for enhanced video delivery over software defined networks publication-title: Int J Commun Syst – start-page: 96 year: 2017 end-page: 108 – volume: 15 start-page: 27 issue: 1 year: 2018 end-page: 38 article-title: Big data analysis‐based secure cluster management for optimized control plane in software‐defined networks publication-title: IEEE Trans Netw Serv Manage – volume: 182 start-page: 1 year: 2019 end-page: 7 article-title: Improved PSO algorithm for training of neural network in co‐design architecture publication-title: Int J Comput Appl Technol – volume: 15 start-page: 1146 issue: 3 year: 2018 end-page: 1160 article-title: Dynamic attack‐resilient routing in software defined networks publication-title: IEEE Trans Netw Serv Manage – volume: 51 start-page: 1259 issue: 16 year: 2015 end-page: 1261 article-title: Controller scheduling for continued SDN operation under DDoS attacks publication-title: Electron Lett – volume: 2018 year: 2018 article-title: Security analysis of dynamic SDN architectures based on game theory publication-title: Secur Commun Netw – volume: 94 start-page: 3549 issue: 4 year: 2017 end-page: 3574 article-title: Load‐balancing multiple controllers mechanism for software‐defined networking publication-title: Wirel Pers Commun – volume: 31 start-page: 1 issue: 8 year: 2018 end-page: 13 article-title: An SDN‐based scalable routing and resource management model for service provider networks publication-title: Int J Commun Syst – volume: 5 start-page: 1797 issue: 3 year: 2018 end-page: 1806 article-title: SDN‐enabled traffic‐aware load balancing for M2M networks publication-title: IEEE Internet Things J – volume: 141 start-page: 82 year: 2018 end-page: 91 article-title: Load‐balancing routing in software defined networks with multiple controllers publication-title: Comput Networks – volume: 13 start-page: 810 issue: 2 year: 2017 end-page: 820 article-title: Social‐oriented adaptive transmission in opportunistic Internet of smartphones publication-title: IEEE Trans Ind Inf – volume: 68 start-page: 444 issue: 6 year: 2017 end-page: 454 article-title: Enhanced method of fast re‐routing with load balancing in software‐defined networks publication-title: J Electr Eng – volume: 7 start-page: 166011 year: 2019 end-page: 166020 article-title: FWFS: selecting robust features towards reliable and stable traffic classifier in SDN publication-title: IEEE Access – volume: 157 start-page: 1 year: 2019 end-page: 10 article-title: Fractional switch migration in multi‐controller software defined networking publication-title: Comput Networks – volume: 10 start-page: 1 issue: 6 year: 2019 end-page: 60 article-title: Deep reinforcement learning for vehicular edge computing: an intelligent offloading system publication-title: ACM Trans Intell Syst Technol – volume: 12 start-page: 1 issue: 4 year: 2017 end-page: 19 article-title: Distributed controller clustering in software defined networks publication-title: PLoS One – volume: 8271 start-page: 269 year: 2013 end-page: 280 article-title: Markov decision processes with functional rewards publication-title: International Workshop on Multi‐Disciplinary Trends in Artificial Intelligence – volume: 55 start-page: 217 issue: 3 year: 2017 end-page: 223 article-title: An SDN/NFV‐enabled enterprise network architecture offering fine‐grained security policy enforcement publication-title: IEEE Commun Mag – start-page: 842 year: 2013 end-page: 853 article-title: Network security using ECC with biometric publication-title: International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine 2013) – volume: 11 start-page: 380 issue: 3 year: 2018 end-page: 396 article-title: Multi‐class routing protocol using virtualization and SDN‐enabled architecture for smart grid publication-title: Peer Peer Netw Appl – volume: 25 start-page: 1104 year: 2012 end-page: 1109 article-title: A clustering method based on ‐means algorithm publication-title: Physics Procedia – ident: e_1_2_10_34_1 doi: 10.1007/978-3-319-60033-8_9 – ident: e_1_2_10_43_1 doi: 10.1109/TII.2016.2635081 – volume: 8271 start-page: 269 year: 2013 ident: e_1_2_10_41_1 article-title: Markov decision processes with functional rewards publication-title: International Workshop on Multi‐Disciplinary Trends in Artificial Intelligence – ident: e_1_2_10_11_1 doi: 10.1002/dac.3530 – ident: e_1_2_10_42_1 doi: 10.1109/TII.2018.2816590 – ident: e_1_2_10_47_1 – ident: e_1_2_10_3_1 doi: 10.1007/s11432-017-9043-8 – ident: e_1_2_10_33_1 doi: 10.1007/s11276-017-1504-3 – ident: e_1_2_10_5_1 doi: 10.1109/ACCESS.2018.2814738 – ident: e_1_2_10_14_1 doi: 10.1109/TNSM.2018.2846294 – ident: e_1_2_10_25_1 doi: 10.1109/MCOM.2017.1600414CM – volume: 404 start-page: 1 year: 2018 ident: e_1_2_10_40_1 article-title: Fundamentals of recurrent neural network (RNN) and long short‐term memory (LSTM) network publication-title: Physica D: Nonlinear Phenomena – ident: e_1_2_10_46_1 doi: 10.1109/ACCESS.2019.2941229 – ident: e_1_2_10_29_1 doi: 10.1016/j.comnet.2019.04.011 – ident: e_1_2_10_39_1 doi: 10.1016/j.phpro.2012.03.206 – ident: e_1_2_10_19_1 doi: 10.1049/el.2015.0334 – start-page: 30 year: 2017 ident: e_1_2_10_23_1 article-title: A new approach for server‐based load balancing using software‐defined networking publication-title: 8th IEEE International Conference on Intelligent Computing and Information Systems (ICICIS 2017) – ident: e_1_2_10_20_1 doi: 10.1109/ACCESS.2018.2797214 – ident: e_1_2_10_24_1 doi: 10.1007/s11277-016-3790-y – ident: e_1_2_10_26_1 doi: 10.1109/JIOT.2018.2812718 – ident: e_1_2_10_12_1 doi: 10.1109/JIOT.2018.2864782 – ident: e_1_2_10_18_1 doi: 10.1016/j.comnet.2018.05.012 – ident: e_1_2_10_8_1 doi: 10.1007/s12083-016-0537-1 – ident: e_1_2_10_9_1 doi: 10.3103/S0146411616070166 – volume: 182 start-page: 1 year: 2019 ident: e_1_2_10_38_1 article-title: Improved PSO algorithm for training of neural network in co‐design architecture publication-title: Int J Comput Appl Technol – ident: e_1_2_10_35_1 doi: 10.1371/journal.pone.0174715 – ident: e_1_2_10_31_1 doi: 10.1109/TNSM.2018.2799000 – ident: e_1_2_10_36_1 doi: 10.1007/978-3-642-37949-9_73 – ident: e_1_2_10_13_1 doi: 10.1109/COMST.2018.2882064 – ident: e_1_2_10_28_1 doi: 10.12988/ces.2016.66105 – ident: e_1_2_10_30_1 doi: 10.1109/ACCESS.2019.2953565 – ident: e_1_2_10_4_1 doi: 10.1109/TMM.2014.2325791 – ident: e_1_2_10_45_1 doi: 10.1145/3317572 – start-page: 344 year: 2015 ident: e_1_2_10_44_1 article-title: A4SDN—adaptive alienated ant algorithm for software‐defined networking publication-title: 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing – ident: e_1_2_10_2_1 doi: 10.1109/TNSM.2017.2758796 – ident: e_1_2_10_32_1 doi: 10.23919/TST.2017.7986943 – start-page: 93 year: 2016 ident: e_1_2_10_21_1 article-title: Multipath load balancing in SDN/OSPF hybrid network publication-title: International Federation for Information Processing International Conference on Network and Parallel Computing (NPC 2016) – ident: e_1_2_10_22_1 doi: 10.1515/jee-2017-0079 – ident: e_1_2_10_37_1 doi: 10.1016/j.matpr.2018.02.334 – ident: e_1_2_10_27_1 doi: 10.1109/TNSM.2015.2454293 – ident: e_1_2_10_6_1 doi: 10.1109/TSC.2016.2602861 – ident: e_1_2_10_7_1 doi: 10.1007/s40012-017-0171-y – ident: e_1_2_10_10_1 doi: 10.1002/dac.3391 – ident: e_1_2_10_15_1 doi: 10.1155/2018/4123736 – volume: 9 start-page: 379 issue: 6 year: 2017 ident: e_1_2_10_17_1 article-title: Traffic based load balancing in software defined networking publication-title: Int J Comput Sci Eng – ident: e_1_2_10_16_1 doi: 10.1109/ACCESS.2018.2805842 |
SSID | ssj0008265 |
Score | 2.2542849 |
Snippet | Summary
Software‐defined networking is an emerging paradigm for supporting flexible network management. In the traditional architecture for a software‐defined... Software‐defined networking is an emerging paradigm for supporting flexible network management. In the traditional architecture for a software‐defined network... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Analytic hierarchy process Ant colony optimization Clustering Communications traffic Computer architecture Controllers Cryptography Curves elliptic curve cryptography fuzzy analytical hierarchy process Load balancing Machine learning multicontroller Optimization algorithms Particle swarm optimization Recurrent neural networks Response time scalable secure routing Shortest-path problems Software-defined networking Switches |
Title | A novel four‐tier software‐defined network architecture for scalable secure routing and load balancing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5020 https://www.proquest.com/docview/2608271897 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz34FlfXJYLoqdpNmnZz3IeLCHoQFxY8lCaZHHTpyj4UPPkT_I3-Eid9uKsoiKfSMqFtpjPzJf3yhZAjZrFqGms8kL71AoCGpywwD7CaJZbXeZRpd15dhxe94LIv-gWr0q2FyfUhPifcXGRk-doFeKLGZzPRUIP3Ewh2MP06qpbDQzcz5ShEzaKkGwou6qXurM_OyoZfK9EMXs6D1KzKdNfIXfl8Obnk4XQ6Uaf65Zt04_9eYJ2sFuCTNvOvZYMsQLpJVuYkCbfIfZOmwycYUIvG769vEyybdIy5-jkZAZ4bsGhsaJrTx-n8jwhsg7bodLcci47dTD7Q0XDqmNU0SQ0dDBNDlSNTary0TXrd89v2hVfsx-BpBAW-Z6WEMJSRFCzhIjJMhgIaGnwbaMwNEDaYrlsrlA8Y5RD5DEfqEiTXwkCQKL5DFtNhCruESovQpq5MEJogyBRwAu4rKTTT3BoeVshJ6ZtYF2Llbs-MQZzLLLMYey92vVchh5-Wj7lAxw821dK9cRGi4xgHcg2GlVlGFXKc-enX9nGn2XbHvb8a7pNl5pZJ-I4uWCWLk9EUDhC8TFSNLDVbnVa3ln2uH4Cn7zI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9144HtgQFjWsc2jITgKVtix0mtPVXdqgJtH1Ar9WFSlNjnB6hS1D9M4mkfYZ-RT7Jz0rRlYhLaU5ToTol9Pt_Pzt3PAB-4pahprPFQ-dYLERteZpF7SNEstSIQccHd2etHnWH4ZSRHNbioamFKfojVhpvzjGK-dg7uNqTP16yhhl4oCe1swTN3oHexnvq25o4i3CyrhEMpZFAxz_r8vNL8OxatAeYmTC3iTHsPrqsvLNNLfpwt5tmZ_v2AvPGJTXgJL5b4kzXLAfMKapi_ht0NVsJ9-N5k-eQXjpkl4T-3d3OKnGxG0_VNOkW6N2hJ2LC8zCBnm_8iSIdkye6uIovN3GY-sulk4ZKrWZobNp6khmUun1LTozcwbF8NWh1veSSDpwkX-J5VCqNIxUryVMjYcBVJbGj0bahpesCowXVgrcx8JEfH2Oe0WFeohJYGwzQTB7CdT3I8BKYsoZsgM2FkwrAgwQmFnympuRbWiKgOnyrjJHrJV-6OzRgnJdMyT6j3Etd7dXi_kvxZcnT8Q-a4sm-y9NJZQmu5BqfgrOI6fCwM9ah-ctlsuevR_wq-g-edQa-bdD_3v76FHe6qJnyXPXgM2_PpAk8Iy8yz02LM3gPcvPHb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkKr2UEpb1G2hdaWqPQW8fiTxccWygvJQVRUJqYcosccHWGXRPkDixE_gN_JLOs6D3aIiVT1FicZK7PF4PjufPwN8Fp6ypvMuQsN9pBDTqPAoIqRslnvZlUml3Xl0HO-dqG-n-rRhVYa9MLU-xP2CW4iMarwOAX7h_PZcNNTR-zSBnSewomKehh7d_zGXjiLYrFu-oZa62wrPcrHdlvwzFc3x5SJKrdLMYBV-tR9Ys0vOt2bTYsteP9Bu_L8avIQXDfpkvbq7rMESlq_g-YIm4Ws467FydIlD5sn47uZ2SnmTTWiwvsrHSPcOPRk7Vtb8cbb4J4LKkC15PezHYpOwlI9sPJoFajXLS8eGo9yxIrApLT16AyeD3Z87e1FzIENkCRXwyBuDcWwSo0UudeKEiTWmFrlXlgYHjFNhu97rgiOFOSZc0FTdoJFWO1R5IddhuRyV-BaY8YRtuoVTsVOqksBRkhdGW2GldzLuwNfWN5lt1MrDoRnDrNZZFhm1XhZarwOf7i0vaoWOv9hstO7NmhidZDSTSwWlZpN04Evlp0fLZ_3eTri--1fDj_D0e3-QHe4fH7yHZyJsmeCBOrgBy9PxDDcJyEyLD1WP_Q04ZfCT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+four%E2%80%90tier+software%E2%80%90defined+network+architecture+for+scalable+secure+routing+and+load+balancing&rft.jtitle=International+journal+of+communication+systems&rft.au=Hongvanthong%2C+Sisamouth&rft.au=Chunlin%2C+Li&rft.date=2022-01-10&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Fdac.5020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_dac_5020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |