Disturbance observer‐based finite‐time control scheme for dynamic positioning of ships subject to thruster faults

Summary The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels. This study proposes a novel DP scheme for ships subjected to comprehensive disturbances (unknown environmental disturbances and thruste...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 31; no. 13; pp. 6255 - 6271
Main Authors Chen, Haili, Ren, Hongxiang, Gao, Zongjiang, Yu, Feng, Guan, Wei, Wang, Delong
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 10.09.2021
Subjects
Online AccessGet full text
ISSN1049-8923
1099-1239
DOI10.1002/rnc.5610

Cover

Loading…
Abstract Summary The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels. This study proposes a novel DP scheme for ships subjected to comprehensive disturbances (unknown environmental disturbances and thruster faults). An integral nonsingular fast terminal sliding mode control (INFTSMC) scheme is initially designed without accounting for environmental disturbances. This scheme has a higher convergence rate and robustness against unknown environmental disturbances than the NFTSMC scheme. Furthermore, a new finite‐time disturbance observer is developed to adapt to the changes in the comprehensive disturbances and ensure that the observed errors converge within a small region around the origin in finite time. The INFTSMC scheme is then combined with the finite‐time observer to create a finite‐time observer‐based thruster fault‐tolerant control (FTOAFTC) scheme. Detailed simulation studies and quantitative analyses are carried out on the traditional sliding mode control (SMC), NFTSMC, and FTOAFTC schemes. The FTOAFTC scheme's transient and steady‐state performances, robustness against environmental disturbances, and fault‐tolerance ability are found to be superior to those of the other schemes.
AbstractList Summary The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels. This study proposes a novel DP scheme for ships subjected to comprehensive disturbances (unknown environmental disturbances and thruster faults). An integral nonsingular fast terminal sliding mode control (INFTSMC) scheme is initially designed without accounting for environmental disturbances. This scheme has a higher convergence rate and robustness against unknown environmental disturbances than the NFTSMC scheme. Furthermore, a new finite‐time disturbance observer is developed to adapt to the changes in the comprehensive disturbances and ensure that the observed errors converge within a small region around the origin in finite time. The INFTSMC scheme is then combined with the finite‐time observer to create a finite‐time observer‐based thruster fault‐tolerant control (FTOAFTC) scheme. Detailed simulation studies and quantitative analyses are carried out on the traditional sliding mode control (SMC), NFTSMC, and FTOAFTC schemes. The FTOAFTC scheme's transient and steady‐state performances, robustness against environmental disturbances, and fault‐tolerance ability are found to be superior to those of the other schemes.
The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels. This study proposes a novel DP scheme for ships subjected to comprehensive disturbances (unknown environmental disturbances and thruster faults). An integral nonsingular fast terminal sliding mode control (INFTSMC) scheme is initially designed without accounting for environmental disturbances. This scheme has a higher convergence rate and robustness against unknown environmental disturbances than the NFTSMC scheme. Furthermore, a new finite‐time disturbance observer is developed to adapt to the changes in the comprehensive disturbances and ensure that the observed errors converge within a small region around the origin in finite time. The INFTSMC scheme is then combined with the finite‐time observer to create a finite‐time observer‐based thruster fault‐tolerant control (FTOAFTC) scheme. Detailed simulation studies and quantitative analyses are carried out on the traditional sliding mode control (SMC), NFTSMC, and FTOAFTC schemes. The FTOAFTC scheme's transient and steady‐state performances, robustness against environmental disturbances, and fault‐tolerance ability are found to be superior to those of the other schemes.
Author Gao, Zongjiang
Wang, Delong
Chen, Haili
Yu, Feng
Guan, Wei
Ren, Hongxiang
Author_xml – sequence: 1
  givenname: Haili
  orcidid: 0000-0001-5153-9442
  surname: Chen
  fullname: Chen, Haili
  email: chldlmu@163.com
  organization: Dalian Maritime University
– sequence: 2
  givenname: Hongxiang
  surname: Ren
  fullname: Ren, Hongxiang
  organization: Dalian Maritime University
– sequence: 3
  givenname: Zongjiang
  surname: Gao
  fullname: Gao, Zongjiang
  organization: Dalian Maritime University
– sequence: 4
  givenname: Feng
  surname: Yu
  fullname: Yu, Feng
  organization: Dalian Maritime University
– sequence: 5
  givenname: Wei
  surname: Guan
  fullname: Guan, Wei
  organization: Dalian Maritime University
– sequence: 6
  givenname: Delong
  surname: Wang
  fullname: Wang, Delong
  organization: Dalian Maritime University
BookMark eNp1kE1OwzAQhS1UJNqCxBEssWGT4p_EjZeo_EoVSAjWkeNMqKvUDrYD6o4jcEZOQkJZIVjNPM03bzRvgkbWWUDomJIZJYSdeatnmaBkD40pkTKhjMvR0KcyySXjB2gSwpqQfsbSMeouTIidL5XVgF0ZwL-C_3z_KFWACtfGmgi9jGYDWDsbvWtw0CvoZe08rrZWbYzGrQsmGmeNfcauxmFl2oBDV65BRxwdjivfhQge16prYjhE-7VqAhz91Cl6urp8XNwky_vr28X5MtFMcpIAEK6pYkqoNK8Iq-YV8FrrqqJCqzwtpeapUDUTqu_yFPIMhGB5ngko55LwKTrZ-bbevXQQYrF2nbf9yYJlmeRpJvKsp053lPYuBA910XqzUX5bUFIMoRZ9qMUQao_OfqHaRDV8Hr0yzV8LyW7hzTSw_de4eLhbfPNfZMaOwA
CitedBy_id crossref_primary_10_1088_1742_6596_2898_1_012035
crossref_primary_10_1016_j_ejcon_2024_101167
crossref_primary_10_1016_j_fmre_2022_09_013
crossref_primary_10_1016_j_oceaneng_2024_116754
crossref_primary_10_3390_s23146246
crossref_primary_10_1016_j_oceaneng_2024_118704
crossref_primary_10_1017_S0263574722001266
crossref_primary_10_3390_jmse13040657
crossref_primary_10_1002_rnc_6970
crossref_primary_10_1002_rnc_7132
Cites_doi 10.1109/JOE.2014.2330958
10.1016/j.ast.2020.105716
10.1109/ACCESS.2019.2903833
10.1016/j.isatra.2020.12.044
10.1016/j.apor.2015.07.005
10.1016/j.ast.2016.04.005
10.1109/TIE.2018.2803773
10.1109/TIE.2018.2795591
10.1109/TSMC.2016.2628859
10.21629/JSEE.2019.01.18
10.1007/s11071-018-4364-1
10.1016/j.sysconle.2015.07.002
10.1016/j.oceaneng.2013.05.021
10.1016/j.conengprac.2010.06.007
10.1016/S0167-6911(00)00089-X
10.1016/j.arcontrol.2011.03.008
10.1109/TCYB.2016.2555307
10.1016/j.oceaneng.2019.106820
10.1007/978-3-642-84379-2
10.1002/rnc.5032
10.1007/s11071-018-4131-3
10.1002/rnc.604
10.1109/87.654882
10.1109/TCST.2015.2497280
10.1109/OCEANSE.2019.8867132
10.1109/TCST.2015.2496585
10.1109/TCST.2010.2090526
10.1002/acs.2972
10.1109/ACCESS.2018.2879646
10.1109/OCEANS-Genova.2015.7271490
10.1109/ACCESS.2019.2931428
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.5610
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 6271
ExternalDocumentID 10_1002_rnc_5610
RNC5610
Genre article
GrantInformation_xml – fundername: Shipping joint fund project of Natural Science Foundation of Liaoning Province
  funderid: 2020‐HYLH‐29
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 3132019343; 3132020127; 3132020372; 3132020131
– fundername: National Natural Science Foundation of China
  funderid: 51679024
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2930-ee03c1a2a6a48d02d7de3fccdd16ca84b9c346af26a9c384e85e6628856eb7903
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Fri Jul 25 12:05:55 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Tue Jul 01 01:03:07 EDT 2025
Wed Jan 22 16:29:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-ee03c1a2a6a48d02d7de3fccdd16ca84b9c346af26a9c384e85e6628856eb7903
Notes Funding information
Shipping joint fund project of Natural Science Foundation of Liaoning Province, 2020‐HYLH‐29; the Fundamental Research Funds for the Central Universities, 3132019343, 3132020127; the Fundamental Research Funds for the Central Universities, Grand/Award Number, 3132020372, 3132020131; the National Natural Science Foundation of China, 51679024
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5153-9442
PQID 2559345685
PQPubID 1026344
PageCount 17
ParticipantIDs proquest_journals_2559345685
crossref_primary_10_1002_rnc_5610
crossref_citationtrail_10_1002_rnc_5610
wiley_primary_10_1002_rnc_5610_RNC5610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 September 2021
PublicationDateYYYYMMDD 2021-09-10
PublicationDate_xml – month: 09
  year: 2021
  text: 10 September 2021
  day: 10
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2020; 42
2017; 47
2019; 30
2019; 33
2010; 18
2015; 53
1976
2016; 54
2008
2013; 70
2011; 35
1992
2002
2020; 98
2018; 44
2018; 65
2011; 19
2015; 7
1999
2018; 18
2001
2020; 30
2021
2015; 40
2018; 1
2020
2015; 42
2015; 85
2018; 92
2016; 65
2019
2020; 199
2015
2018; 94
2001; 11
1998; 6
2016; 24
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
Zhang GQ (e_1_2_10_28_1) 2018; 44
Jann PS (e_1_2_10_2_1) 2001
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
Rahimi Khoygan MR (e_1_2_10_16_1) 2021
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
Jia XL (e_1_2_10_43_1) 1999
e_1_2_10_31_1
Chen HL (e_1_2_10_29_1) 2020; 42
Fossen TI (e_1_2_10_6_1) 2002
Hu X (e_1_2_10_30_1) 2020
Xue H (e_1_2_10_15_1) 2018; 18
Zong Q (e_1_2_10_40_1) 2016; 65
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 44
  start-page: 1907
  issue: 10
  year: 2018
  end-page: 1912
  article-title: Adaptive finite time dynamic positioning control of fully‐actuated ship with servo system uncertainties
  publication-title: J Automat
– volume: 24
  start-page: 1340
  issue: 4
  year: 2016
  end-page: 1353
  article-title: Dynamic positioning with model predictive control
  publication-title: IEEE Trans Control Syst Technol
– volume: 7
  start-page: 33064
  year: 2015
  end-page: 33074
  article-title: Neural network‐based adaptive finite‐time consensus tracking control for multiple autonomous underwater vehicles
  publication-title: IEEE Access
– volume: 24
  start-page: 1454
  issue: 4
  year: 2016
  end-page: 1462
  article-title: Adaptive robust finite‐time trajectory tracking control of fully actuated marine surface vehicles
  publication-title: IEEE Trans Control Syst Technol
– volume: 11
  start-page: 1239
  issue: 13
  year: 2001
  end-page: 1256
  article-title: Dynamic positioning of a turret moored FPSO using sliding mode control
  publication-title: Int J RNonlinear Control
– volume: 199
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Robust dynamic positioning of autonomous surface vessels with tube‐based model predictive control
  publication-title: Ocean Eng
– volume: 7
  start-page: 100638
  issue: 1
  year: 2019
  end-page: 100648
  article-title: A finite‐time output feedback control scheme for dynamic positioning system of ships
  publication-title: IEEE Access
– volume: 30
  start-page: 191
  issue: 1
  year: 2019
  end-page: 200
  article-title: Attitude control for QTR using exponential nonsingular terminal sliding mode control
  publication-title: J Syst Eng Electron
– volume: 18
  start-page: 1121
  issue: 10
  year: 2010
  end-page: 1132
  article-title: Dynamic positioning systems: an experimental analysis of sliding mode control
  publication-title: Control Eng Pract
– volume: 70
  start-page: 97
  year: 2013
  end-page: 109
  article-title: Tracking control of surface vessels via fault‐ tolerant adaptive backstepping interval type‐2 fuzzy control
  publication-title: Ocean Eng
– volume: 47
  start-page: 1681
  issue: 7
  year: 2017
  end-page: 1693
  article-title: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control
  publication-title: IEEE Trans Cybern
– volume: 98
  start-page: 1
  year: 2020
  end-page: 18
  article-title: Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure
  publication-title: Aerosp Sci Technol
– year: 2001
– volume: 54
  start-page: 208
  issue: 7
  year: 2016
  end-page: 217
  article-title: Attitude regulation for unmanned quadrotors using adaptive fuzzy gain‐scheduling sliding mode control
  publication-title: Aerosp Sci Technol
– volume: 30
  start-page: 5004
  year: 2020
  end-page: 5020
  article-title: Adaptive disturbance estimation and cancelation for ships under thruster saturation
  publication-title: Int J R Nonlinear Control
– year: 2020
  article-title: Adaptive synchronization of marine surface ships using disturbance rejection without leader velocity
  publication-title: ISA Trans
– volume: 19
  start-page: 1357
  issue: 6
  year: 2011
  end-page: 1370
  article-title: Global tracking control of under‐actuated ships with input and velocity constraints using dynamic surface control method
  publication-title: IEEE Trans Control Syst Technol
– volume: 47
  start-page: 1500
  issue: 7
  year: 2017
  end-page: 1509
  article-title: Robust neural control for dynamic positioning ships with the optimum‐seeking guidance
  publication-title: IEEE Trans Syst Man Cybern Syst
– volume: 40
  start-page: 727
  issue: 3
  year: 2015
  end-page: 751
  article-title: Finite‐time output feedback tracking control for autonomous underwater vehicles
  publication-title: IEEE J Ocean Eng
– volume: 1
  start-page: 76271
  issue: 6
  year: 2018
  end-page: 76281
  article-title: Output feedback thruster fault‐tolerant control for dynamic positioning of vessels under input saturation
  publication-title: IEEE Access
– year: 1992
– volume: 65
  start-page: 8112
  issue: 10
  year: 2018
  end-page: 8123
  article-title: Adaptive parameter estimation and control design for robot manipulators with finite‐time convergence
  publication-title: IEEE Trans Ind Electron
– volume: 33
  start-page: 1
  issue: 3
  year: 2019
  end-page: 12
  article-title: Robust adaptive regulation of dynamically positioned ships with unknown dynamics and unknown disturbances
  publication-title: Int J Adapt Control Signal Process
– volume: 6
  start-page: 121
  issue: 1
  year: 1998
  end-page: 128
  article-title: Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping
  publication-title: IEEE Trans Control Syst Technol
– volume: 53
  start-page: 46
  year: 2015
  end-page: 53
  article-title: Adaptive fuzzy controller design for dynamic positioning system of vessels
  publication-title: Appl Ocean Res
– start-page: 1
  year: 2021
  end-page: 15
  article-title: Robust observer‐based control of nonlinear multi‐ omnidirectional wheeled robot systems via high order sliding‐mode consensus protocol
  publication-title: Int J Automat Comput
– year: 2002
– year: 2008
– start-page: 1
  year: 2019
  end-page: 5
– volume: 18
  start-page: 123
  issue: 5
  year: 2018
  end-page: 133
  article-title: Sliding mode control for ship dynamic positioning based on linear matrix inequality
  publication-title: J Transp Eng
– volume: 85
  start-page: 1
  year: 2015
  end-page: 7
  article-title: Global stable tracking control of underactuated ships with input saturation
  publication-title: Syst Control Lett
– start-page: 1
  year: 2020
  end-page: 9
  article-title: Robust synchronization for under‐actuated vessels based on disturbance observer
  publication-title: IEEE Trans Intell Transp Syst
– volume: 42
  start-page: 185
  issue: 3
  year: 2015
  end-page: 200
  article-title: Non‐Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization
  publication-title: Syst Control Lett
– volume: 35
  start-page: 123
  issue: 1
  year: 2011
  end-page: 136
  article-title: A survey of dynamic positioning control systems
  publication-title: Rev Control
– volume: 94
  start-page: 365
  issue: 1
  year: 2018
  end-page: 376
  article-title: Robust nonlinear control design for dynamic positioning of marine vessels with thruster system dynamics
  publication-title: Nonlinear Dyn
– volume: 92
  start-page: 1359
  issue: 4
  year: 2018
  end-page: 1367
  article-title: A time‐specified nonsingular terminal sliding mode control approach for trajectory tracking of robotic airships
  publication-title: Nonlinear Dyn
– volume: 65
  start-page: 7160
  issue: 9
  year: 2018
  end-page: 7172
  article-title: Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite‐time exact observer
  publication-title: IEEE Trans Ind Electron
– year: 1976
– volume: 65
  start-page: 150
  year: 2016
  end-page: 163
  article-title: Decentralized finite‐time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer
  publication-title: IEEE Trans Ind Electron
– year: 2015
– volume: 42
  start-page: 77
  issue: 2
  year: 2020
  end-page: 84
  article-title: Finite‐time control based on LS‐SVM for dynamic positioning ships
  publication-title: Ship Eng
– year: 1999
– ident: e_1_2_10_22_1
  doi: 10.1109/JOE.2014.2330958
– ident: e_1_2_10_27_1
  doi: 10.1016/j.ast.2020.105716
– ident: e_1_2_10_23_1
  doi: 10.1109/ACCESS.2019.2903833
– ident: e_1_2_10_31_1
  doi: 10.1016/j.isatra.2020.12.044
– ident: e_1_2_10_8_1
  doi: 10.1016/j.apor.2015.07.005
– ident: e_1_2_10_17_1
  doi: 10.1016/j.ast.2016.04.005
– ident: e_1_2_10_24_1
  doi: 10.1109/TIE.2018.2803773
– ident: e_1_2_10_39_1
  doi: 10.1109/TIE.2018.2795591
– ident: e_1_2_10_9_1
  doi: 10.1109/TSMC.2016.2628859
– volume: 18
  start-page: 123
  issue: 5
  year: 2018
  ident: e_1_2_10_15_1
  article-title: Sliding mode control for ship dynamic positioning based on linear matrix inequality
  publication-title: J Transp Eng
– ident: e_1_2_10_38_1
  doi: 10.21629/JSEE.2019.01.18
– ident: e_1_2_10_12_1
  doi: 10.1007/s11071-018-4364-1
– start-page: 1
  year: 2021
  ident: e_1_2_10_16_1
  article-title: Robust observer‐based control of nonlinear multi‐ omnidirectional wheeled robot systems via high order sliding‐mode consensus protocol
  publication-title: Int J Automat Comput
– ident: e_1_2_10_36_1
  doi: 10.1016/j.sysconle.2015.07.002
– volume-title: The Ocean Engineering Handbook
  year: 2001
  ident: e_1_2_10_2_1
– volume: 42
  start-page: 77
  issue: 2
  year: 2020
  ident: e_1_2_10_29_1
  article-title: Finite‐time control based on LS‐SVM for dynamic positioning ships
  publication-title: Ship Eng
– volume: 65
  start-page: 150
  year: 2016
  ident: e_1_2_10_40_1
  article-title: Decentralized finite‐time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer
  publication-title: IEEE Trans Ind Electron
– ident: e_1_2_10_35_1
  doi: 10.1016/j.oceaneng.2013.05.021
– ident: e_1_2_10_14_1
  doi: 10.1016/j.conengprac.2010.06.007
– ident: e_1_2_10_42_1
  doi: 10.1016/S0167-6911(00)00089-X
– ident: e_1_2_10_3_1
  doi: 10.1016/j.arcontrol.2011.03.008
– ident: e_1_2_10_25_1
  doi: 10.1109/TCYB.2016.2555307
– ident: e_1_2_10_21_1
  doi: 10.1016/j.oceaneng.2019.106820
– ident: e_1_2_10_11_1
  doi: 10.1007/978-3-642-84379-2
– volume-title: Mechanism Modelling and Identification Modelling of Ship Motion Mathematical Mode
  year: 1999
  ident: e_1_2_10_43_1
– volume-title: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles
  year: 2002
  ident: e_1_2_10_6_1
– ident: e_1_2_10_32_1
  doi: 10.1002/rnc.5032
– ident: e_1_2_10_26_1
  doi: 10.1007/s11071-018-4131-3
– ident: e_1_2_10_13_1
  doi: 10.1002/rnc.604
– ident: e_1_2_10_18_1
  doi: 10.1109/87.654882
– ident: e_1_2_10_20_1
  doi: 10.1109/TCST.2015.2497280
– volume: 44
  start-page: 1907
  issue: 10
  year: 2018
  ident: e_1_2_10_28_1
  article-title: Adaptive finite time dynamic positioning control of fully‐actuated ship with servo system uncertainties
  publication-title: J Automat
– ident: e_1_2_10_33_1
  doi: 10.1109/OCEANSE.2019.8867132
– start-page: 1
  year: 2020
  ident: e_1_2_10_30_1
  article-title: Robust synchronization for under‐actuated vessels based on disturbance observer
  publication-title: IEEE Trans Intell Transp Syst
– ident: e_1_2_10_4_1
– ident: e_1_2_10_41_1
  doi: 10.1109/TCST.2015.2496585
– ident: e_1_2_10_37_1
  doi: 10.1109/TCST.2010.2090526
– ident: e_1_2_10_7_1
– ident: e_1_2_10_10_1
  doi: 10.1002/acs.2972
– ident: e_1_2_10_34_1
  doi: 10.1109/ACCESS.2018.2879646
– ident: e_1_2_10_19_1
  doi: 10.1109/OCEANS-Genova.2015.7271490
– ident: e_1_2_10_5_1
  doi: 10.1109/ACCESS.2019.2931428
SSID ssj0009924
Score 2.37203
Snippet Summary The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine...
The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6255
SubjectTerms Convergence
Disturbance observers
dynamic positioning
finite‐time disturbance observer
finite‐time observer‐based thruster fault‐tolerant control scheme
integral nonsingular fast terminal sliding mode control scheme
Marine resources
Marine technology
Robustness
Ships
Sliding mode control
Title Disturbance observer‐based finite‐time control scheme for dynamic positioning of ships subject to thruster faults
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5610
https://www.proquest.com/docview/2559345685
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yJz34FldXiSB66m42TdP2KKvLIuhBFBY8lCRNUVx2pY-LJ3-Cv9Ff4kwf7ioK4qkNJKXNZDJfpjPfEHIsdKDgeMydvvQ5_mZkToCJup4NPKVhe-wbTHC-upajO3E59sZ1VCXmwlT8EJ8ON9SMcr9GBVc6681JQ1PQHzT-sP1iqBbioZs5c1QYVvVsAQA7AYCYhneW8V4z8KslmsPLRZBaWpnhGrlv3q8KLnnqFrnumpdv1I3_-4B1slqDT3pWrZYNsmSnm2RlgZJwixTnIPci1bgY6Eyjz9am769vaO1imjwiRIUmlqSndZg7hQOyhSbAXxpXBe5pEwsGz6SzhGJIWEazQqPXh-Yzmj9grodNaaKKSZ5tk7vhxe1g5NSlGRwD-IA51jLX9BVXUokgZjz2Y-smxsRxXxoVCB0aV0iVcKngLhAgeSuxsrEnrfZD5u6Q1nQ2tbuEWqGMYYn1rVEC81q5DpmWIuR-7JnEb5PTRkyRqXnLsXzGJKoYl3kEExnhRLbJ0WfP54qr44c-nUbSUa2tWYTHKheQZOC1yUkpsl_HRzfXA7zu_bXjPlnmGAaDVSdYh7TytLAHgGNyfViu2A-WJ_PY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5ROLQcaOmPWEpbV6raUxbHcZxEPVWU1bbAHla70h4qRbbjqAi0i7LJhROPwDPyJMzkh6UVlVBPiSU7Sjwe-5vJzDcAn6SJNZrHwvNVJOg3I_diStQNXRxqg9ujbynB-WSkhlP5cxbO1uBrlwvT8EPcOdxIM-r9mhScHNL7K9bQAhWITv8nsEEFvWt7arzijkqSpqItQmAvRhjTMc9ysd-N_PMsWgHM-zC1PmcGz-FX94ZNeMlZvypN317-Rd74n5_wArZa_Mm-NQtmG9bc_CVs3mMlfAXVdxR9VRhaD2xhyG3ripurazrwMpafEkrFJlWlZ22kO0Mb2WETETDLmhr3rAsHw2eyRc4oKmzJlpUhxw8rF6z8TekermC5rs7L5WuYDg4nB0Ovrc7gWYQI3HOOB9bXQist44yLLMpckFubZb6yOpYmsYFUOhdK410sUfhOUXHjUDkTJTx4A-vzxdztAHNSW8tzFzmrJaW2CpNwo2Qioiy0edSDL52cUttSl1MFjfO0IV0WKU5kShPZg493PS8auo4H-ux1ok5bhV2mZFkFCCbjsAefa5n9c3w6Hh3QdfexHT_A0-Hk5Dg9_jE6egvPBEXFUBEKvgfrZVG5dwhrSvO-Xr63uWf38w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEB9aC6U-1FpbvPqnK5T6FG9vs9lsHsXzsK0eRRQEH8L-Cy2VO8klL33qR-hn7Cdx5pJ4WhRKn5KF3ZDszOz8djPzG4AP0mqD22MRDVQq6DcjjzQl6iZBJ8bi8jhwlOB8MlZH5_LzRXLRRlVSLkzDD3F74EaWMV-vycCvfdFfkIaWaD_k_J_CM6m4Jo0eni6oo7KsKWiLCDjSiGI64lku-t3I-65ogS_votS5mxmtwGX3gk10yY-9urJ77udf3I3_9wWv4GWLPtl-oy6r8CRMXsPyHU7CNaiHKPi6tKQNbGrp0DaUf379JnfnWfGdMCo2qSY9a-PcGe6QAzYR_zLfVLhnXTAYPpNNC0YxYTM2qy0d-7BqyqpvlOwRSlaY-qqavYHz0eHZwVHU1maIHAIEHoXAYzcwwigjtefCpz7EhXPeD5QzWtrMxVKZQiiDd1qi6IOi0saJCjbNePwWlibTSVgHFqRxjhchDc5ISmwVNuNWyUykPnFF2oPdTky5a4nLqX7GVd5QLoscJzKniezBzm3P64as44E-m52k89ZcZzntq2KEkjrpwce5yB4dn5-OD-j67l87vofnX4ej_PjT-MsGvBAUEkMVKPgmLFVlHbYQ01R2e668Nwcy9qs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disturbance+observer%E2%80%90based+finite%E2%80%90time+control+scheme+for+dynamic+positioning+of+ships+subject+to+thruster+faults&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Chen%2C+Haili&rft.au=Ren%2C+Hongxiang&rft.au=Gao%2C+Zongjiang&rft.au=Yu%2C+Feng&rft.date=2021-09-10&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=13&rft.spage=6255&rft.epage=6271&rft_id=info:doi/10.1002%2Frnc.5610&rft.externalDBID=10.1002%252Frnc.5610&rft.externalDocID=RNC5610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon