Disturbance observer‐based finite‐time control scheme for dynamic positioning of ships subject to thruster faults
Summary The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels. This study proposes a novel DP scheme for ships subjected to comprehensive disturbances (unknown environmental disturbances and thruste...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 31; no. 13; pp. 6255 - 6271 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
10.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1049-8923 1099-1239 |
DOI | 10.1002/rnc.5610 |
Cover
Loading…
Abstract | Summary
The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels. This study proposes a novel DP scheme for ships subjected to comprehensive disturbances (unknown environmental disturbances and thruster faults). An integral nonsingular fast terminal sliding mode control (INFTSMC) scheme is initially designed without accounting for environmental disturbances. This scheme has a higher convergence rate and robustness against unknown environmental disturbances than the NFTSMC scheme. Furthermore, a new finite‐time disturbance observer is developed to adapt to the changes in the comprehensive disturbances and ensure that the observed errors converge within a small region around the origin in finite time. The INFTSMC scheme is then combined with the finite‐time observer to create a finite‐time observer‐based thruster fault‐tolerant control (FTOAFTC) scheme. Detailed simulation studies and quantitative analyses are carried out on the traditional sliding mode control (SMC), NFTSMC, and FTOAFTC schemes. The FTOAFTC scheme's transient and steady‐state performances, robustness against environmental disturbances, and fault‐tolerance ability are found to be superior to those of the other schemes. |
---|---|
AbstractList | Summary
The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels. This study proposes a novel DP scheme for ships subjected to comprehensive disturbances (unknown environmental disturbances and thruster faults). An integral nonsingular fast terminal sliding mode control (INFTSMC) scheme is initially designed without accounting for environmental disturbances. This scheme has a higher convergence rate and robustness against unknown environmental disturbances than the NFTSMC scheme. Furthermore, a new finite‐time disturbance observer is developed to adapt to the changes in the comprehensive disturbances and ensure that the observed errors converge within a small region around the origin in finite time. The INFTSMC scheme is then combined with the finite‐time observer to create a finite‐time observer‐based thruster fault‐tolerant control (FTOAFTC) scheme. Detailed simulation studies and quantitative analyses are carried out on the traditional sliding mode control (SMC), NFTSMC, and FTOAFTC schemes. The FTOAFTC scheme's transient and steady‐state performances, robustness against environmental disturbances, and fault‐tolerance ability are found to be superior to those of the other schemes. The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels. This study proposes a novel DP scheme for ships subjected to comprehensive disturbances (unknown environmental disturbances and thruster faults). An integral nonsingular fast terminal sliding mode control (INFTSMC) scheme is initially designed without accounting for environmental disturbances. This scheme has a higher convergence rate and robustness against unknown environmental disturbances than the NFTSMC scheme. Furthermore, a new finite‐time disturbance observer is developed to adapt to the changes in the comprehensive disturbances and ensure that the observed errors converge within a small region around the origin in finite time. The INFTSMC scheme is then combined with the finite‐time observer to create a finite‐time observer‐based thruster fault‐tolerant control (FTOAFTC) scheme. Detailed simulation studies and quantitative analyses are carried out on the traditional sliding mode control (SMC), NFTSMC, and FTOAFTC schemes. The FTOAFTC scheme's transient and steady‐state performances, robustness against environmental disturbances, and fault‐tolerance ability are found to be superior to those of the other schemes. |
Author | Gao, Zongjiang Wang, Delong Chen, Haili Yu, Feng Guan, Wei Ren, Hongxiang |
Author_xml | – sequence: 1 givenname: Haili orcidid: 0000-0001-5153-9442 surname: Chen fullname: Chen, Haili email: chldlmu@163.com organization: Dalian Maritime University – sequence: 2 givenname: Hongxiang surname: Ren fullname: Ren, Hongxiang organization: Dalian Maritime University – sequence: 3 givenname: Zongjiang surname: Gao fullname: Gao, Zongjiang organization: Dalian Maritime University – sequence: 4 givenname: Feng surname: Yu fullname: Yu, Feng organization: Dalian Maritime University – sequence: 5 givenname: Wei surname: Guan fullname: Guan, Wei organization: Dalian Maritime University – sequence: 6 givenname: Delong surname: Wang fullname: Wang, Delong organization: Dalian Maritime University |
BookMark | eNp1kE1OwzAQhS1UJNqCxBEssWGT4p_EjZeo_EoVSAjWkeNMqKvUDrYD6o4jcEZOQkJZIVjNPM03bzRvgkbWWUDomJIZJYSdeatnmaBkD40pkTKhjMvR0KcyySXjB2gSwpqQfsbSMeouTIidL5XVgF0ZwL-C_3z_KFWACtfGmgi9jGYDWDsbvWtw0CvoZe08rrZWbYzGrQsmGmeNfcauxmFl2oBDV65BRxwdjivfhQge16prYjhE-7VqAhz91Cl6urp8XNwky_vr28X5MtFMcpIAEK6pYkqoNK8Iq-YV8FrrqqJCqzwtpeapUDUTqu_yFPIMhGB5ngko55LwKTrZ-bbevXQQYrF2nbf9yYJlmeRpJvKsp053lPYuBA910XqzUX5bUFIMoRZ9qMUQao_OfqHaRDV8Hr0yzV8LyW7hzTSw_de4eLhbfPNfZMaOwA |
CitedBy_id | crossref_primary_10_1088_1742_6596_2898_1_012035 crossref_primary_10_1016_j_ejcon_2024_101167 crossref_primary_10_1016_j_fmre_2022_09_013 crossref_primary_10_1016_j_oceaneng_2024_116754 crossref_primary_10_3390_s23146246 crossref_primary_10_1016_j_oceaneng_2024_118704 crossref_primary_10_1017_S0263574722001266 crossref_primary_10_3390_jmse13040657 crossref_primary_10_1002_rnc_6970 crossref_primary_10_1002_rnc_7132 |
Cites_doi | 10.1109/JOE.2014.2330958 10.1016/j.ast.2020.105716 10.1109/ACCESS.2019.2903833 10.1016/j.isatra.2020.12.044 10.1016/j.apor.2015.07.005 10.1016/j.ast.2016.04.005 10.1109/TIE.2018.2803773 10.1109/TIE.2018.2795591 10.1109/TSMC.2016.2628859 10.21629/JSEE.2019.01.18 10.1007/s11071-018-4364-1 10.1016/j.sysconle.2015.07.002 10.1016/j.oceaneng.2013.05.021 10.1016/j.conengprac.2010.06.007 10.1016/S0167-6911(00)00089-X 10.1016/j.arcontrol.2011.03.008 10.1109/TCYB.2016.2555307 10.1016/j.oceaneng.2019.106820 10.1007/978-3-642-84379-2 10.1002/rnc.5032 10.1007/s11071-018-4131-3 10.1002/rnc.604 10.1109/87.654882 10.1109/TCST.2015.2497280 10.1109/OCEANSE.2019.8867132 10.1109/TCST.2015.2496585 10.1109/TCST.2010.2090526 10.1002/acs.2972 10.1109/ACCESS.2018.2879646 10.1109/OCEANS-Genova.2015.7271490 10.1109/ACCESS.2019.2931428 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.5610 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 6271 |
ExternalDocumentID | 10_1002_rnc_5610 RNC5610 |
Genre | article |
GrantInformation_xml | – fundername: Shipping joint fund project of Natural Science Foundation of Liaoning Province funderid: 2020‐HYLH‐29 – fundername: Fundamental Research Funds for the Central Universities funderid: 3132019343; 3132020127; 3132020372; 3132020131 – fundername: National Natural Science Foundation of China funderid: 51679024 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2930-ee03c1a2a6a48d02d7de3fccdd16ca84b9c346af26a9c384e85e6628856eb7903 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Fri Jul 25 12:05:55 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 01:03:07 EDT 2025 Wed Jan 22 16:29:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-ee03c1a2a6a48d02d7de3fccdd16ca84b9c346af26a9c384e85e6628856eb7903 |
Notes | Funding information Shipping joint fund project of Natural Science Foundation of Liaoning Province, 2020‐HYLH‐29; the Fundamental Research Funds for the Central Universities, 3132019343, 3132020127; the Fundamental Research Funds for the Central Universities, Grand/Award Number, 3132020372, 3132020131; the National Natural Science Foundation of China, 51679024 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5153-9442 |
PQID | 2559345685 |
PQPubID | 1026344 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2559345685 crossref_primary_10_1002_rnc_5610 crossref_citationtrail_10_1002_rnc_5610 wiley_primary_10_1002_rnc_5610_RNC5610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 September 2021 |
PublicationDateYYYYMMDD | 2021-09-10 |
PublicationDate_xml | – month: 09 year: 2021 text: 10 September 2021 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2020; 42 2017; 47 2019; 30 2019; 33 2010; 18 2015; 53 1976 2016; 54 2008 2013; 70 2011; 35 1992 2002 2020; 98 2018; 44 2018; 65 2011; 19 2015; 7 1999 2018; 18 2001 2020; 30 2021 2015; 40 2018; 1 2020 2015; 42 2015; 85 2018; 92 2016; 65 2019 2020; 199 2015 2018; 94 2001; 11 1998; 6 2016; 24 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 Zhang GQ (e_1_2_10_28_1) 2018; 44 Jann PS (e_1_2_10_2_1) 2001 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 Rahimi Khoygan MR (e_1_2_10_16_1) 2021 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 Jia XL (e_1_2_10_43_1) 1999 e_1_2_10_31_1 Chen HL (e_1_2_10_29_1) 2020; 42 Fossen TI (e_1_2_10_6_1) 2002 Hu X (e_1_2_10_30_1) 2020 Xue H (e_1_2_10_15_1) 2018; 18 Zong Q (e_1_2_10_40_1) 2016; 65 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 44 start-page: 1907 issue: 10 year: 2018 end-page: 1912 article-title: Adaptive finite time dynamic positioning control of fully‐actuated ship with servo system uncertainties publication-title: J Automat – volume: 24 start-page: 1340 issue: 4 year: 2016 end-page: 1353 article-title: Dynamic positioning with model predictive control publication-title: IEEE Trans Control Syst Technol – volume: 7 start-page: 33064 year: 2015 end-page: 33074 article-title: Neural network‐based adaptive finite‐time consensus tracking control for multiple autonomous underwater vehicles publication-title: IEEE Access – volume: 24 start-page: 1454 issue: 4 year: 2016 end-page: 1462 article-title: Adaptive robust finite‐time trajectory tracking control of fully actuated marine surface vehicles publication-title: IEEE Trans Control Syst Technol – volume: 11 start-page: 1239 issue: 13 year: 2001 end-page: 1256 article-title: Dynamic positioning of a turret moored FPSO using sliding mode control publication-title: Int J RNonlinear Control – volume: 199 start-page: 1 year: 2020 end-page: 9 article-title: Robust dynamic positioning of autonomous surface vessels with tube‐based model predictive control publication-title: Ocean Eng – volume: 7 start-page: 100638 issue: 1 year: 2019 end-page: 100648 article-title: A finite‐time output feedback control scheme for dynamic positioning system of ships publication-title: IEEE Access – volume: 30 start-page: 191 issue: 1 year: 2019 end-page: 200 article-title: Attitude control for QTR using exponential nonsingular terminal sliding mode control publication-title: J Syst Eng Electron – volume: 18 start-page: 1121 issue: 10 year: 2010 end-page: 1132 article-title: Dynamic positioning systems: an experimental analysis of sliding mode control publication-title: Control Eng Pract – volume: 70 start-page: 97 year: 2013 end-page: 109 article-title: Tracking control of surface vessels via fault‐ tolerant adaptive backstepping interval type‐2 fuzzy control publication-title: Ocean Eng – volume: 47 start-page: 1681 issue: 7 year: 2017 end-page: 1693 article-title: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control publication-title: IEEE Trans Cybern – volume: 98 start-page: 1 year: 2020 end-page: 18 article-title: Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure publication-title: Aerosp Sci Technol – year: 2001 – volume: 54 start-page: 208 issue: 7 year: 2016 end-page: 217 article-title: Attitude regulation for unmanned quadrotors using adaptive fuzzy gain‐scheduling sliding mode control publication-title: Aerosp Sci Technol – volume: 30 start-page: 5004 year: 2020 end-page: 5020 article-title: Adaptive disturbance estimation and cancelation for ships under thruster saturation publication-title: Int J R Nonlinear Control – year: 2020 article-title: Adaptive synchronization of marine surface ships using disturbance rejection without leader velocity publication-title: ISA Trans – volume: 19 start-page: 1357 issue: 6 year: 2011 end-page: 1370 article-title: Global tracking control of under‐actuated ships with input and velocity constraints using dynamic surface control method publication-title: IEEE Trans Control Syst Technol – volume: 47 start-page: 1500 issue: 7 year: 2017 end-page: 1509 article-title: Robust neural control for dynamic positioning ships with the optimum‐seeking guidance publication-title: IEEE Trans Syst Man Cybern Syst – volume: 40 start-page: 727 issue: 3 year: 2015 end-page: 751 article-title: Finite‐time output feedback tracking control for autonomous underwater vehicles publication-title: IEEE J Ocean Eng – volume: 1 start-page: 76271 issue: 6 year: 2018 end-page: 76281 article-title: Output feedback thruster fault‐tolerant control for dynamic positioning of vessels under input saturation publication-title: IEEE Access – year: 1992 – volume: 65 start-page: 8112 issue: 10 year: 2018 end-page: 8123 article-title: Adaptive parameter estimation and control design for robot manipulators with finite‐time convergence publication-title: IEEE Trans Ind Electron – volume: 33 start-page: 1 issue: 3 year: 2019 end-page: 12 article-title: Robust adaptive regulation of dynamically positioned ships with unknown dynamics and unknown disturbances publication-title: Int J Adapt Control Signal Process – volume: 6 start-page: 121 issue: 1 year: 1998 end-page: 128 article-title: Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping publication-title: IEEE Trans Control Syst Technol – volume: 53 start-page: 46 year: 2015 end-page: 53 article-title: Adaptive fuzzy controller design for dynamic positioning system of vessels publication-title: Appl Ocean Res – start-page: 1 year: 2021 end-page: 15 article-title: Robust observer‐based control of nonlinear multi‐ omnidirectional wheeled robot systems via high order sliding‐mode consensus protocol publication-title: Int J Automat Comput – year: 2002 – year: 2008 – start-page: 1 year: 2019 end-page: 5 – volume: 18 start-page: 123 issue: 5 year: 2018 end-page: 133 article-title: Sliding mode control for ship dynamic positioning based on linear matrix inequality publication-title: J Transp Eng – volume: 85 start-page: 1 year: 2015 end-page: 7 article-title: Global stable tracking control of underactuated ships with input saturation publication-title: Syst Control Lett – start-page: 1 year: 2020 end-page: 9 article-title: Robust synchronization for under‐actuated vessels based on disturbance observer publication-title: IEEE Trans Intell Transp Syst – volume: 42 start-page: 185 issue: 3 year: 2015 end-page: 200 article-title: Non‐Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization publication-title: Syst Control Lett – volume: 35 start-page: 123 issue: 1 year: 2011 end-page: 136 article-title: A survey of dynamic positioning control systems publication-title: Rev Control – volume: 94 start-page: 365 issue: 1 year: 2018 end-page: 376 article-title: Robust nonlinear control design for dynamic positioning of marine vessels with thruster system dynamics publication-title: Nonlinear Dyn – volume: 92 start-page: 1359 issue: 4 year: 2018 end-page: 1367 article-title: A time‐specified nonsingular terminal sliding mode control approach for trajectory tracking of robotic airships publication-title: Nonlinear Dyn – volume: 65 start-page: 7160 issue: 9 year: 2018 end-page: 7172 article-title: Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite‐time exact observer publication-title: IEEE Trans Ind Electron – year: 1976 – volume: 65 start-page: 150 year: 2016 end-page: 163 article-title: Decentralized finite‐time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer publication-title: IEEE Trans Ind Electron – year: 2015 – volume: 42 start-page: 77 issue: 2 year: 2020 end-page: 84 article-title: Finite‐time control based on LS‐SVM for dynamic positioning ships publication-title: Ship Eng – year: 1999 – ident: e_1_2_10_22_1 doi: 10.1109/JOE.2014.2330958 – ident: e_1_2_10_27_1 doi: 10.1016/j.ast.2020.105716 – ident: e_1_2_10_23_1 doi: 10.1109/ACCESS.2019.2903833 – ident: e_1_2_10_31_1 doi: 10.1016/j.isatra.2020.12.044 – ident: e_1_2_10_8_1 doi: 10.1016/j.apor.2015.07.005 – ident: e_1_2_10_17_1 doi: 10.1016/j.ast.2016.04.005 – ident: e_1_2_10_24_1 doi: 10.1109/TIE.2018.2803773 – ident: e_1_2_10_39_1 doi: 10.1109/TIE.2018.2795591 – ident: e_1_2_10_9_1 doi: 10.1109/TSMC.2016.2628859 – volume: 18 start-page: 123 issue: 5 year: 2018 ident: e_1_2_10_15_1 article-title: Sliding mode control for ship dynamic positioning based on linear matrix inequality publication-title: J Transp Eng – ident: e_1_2_10_38_1 doi: 10.21629/JSEE.2019.01.18 – ident: e_1_2_10_12_1 doi: 10.1007/s11071-018-4364-1 – start-page: 1 year: 2021 ident: e_1_2_10_16_1 article-title: Robust observer‐based control of nonlinear multi‐ omnidirectional wheeled robot systems via high order sliding‐mode consensus protocol publication-title: Int J Automat Comput – ident: e_1_2_10_36_1 doi: 10.1016/j.sysconle.2015.07.002 – volume-title: The Ocean Engineering Handbook year: 2001 ident: e_1_2_10_2_1 – volume: 42 start-page: 77 issue: 2 year: 2020 ident: e_1_2_10_29_1 article-title: Finite‐time control based on LS‐SVM for dynamic positioning ships publication-title: Ship Eng – volume: 65 start-page: 150 year: 2016 ident: e_1_2_10_40_1 article-title: Decentralized finite‐time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer publication-title: IEEE Trans Ind Electron – ident: e_1_2_10_35_1 doi: 10.1016/j.oceaneng.2013.05.021 – ident: e_1_2_10_14_1 doi: 10.1016/j.conengprac.2010.06.007 – ident: e_1_2_10_42_1 doi: 10.1016/S0167-6911(00)00089-X – ident: e_1_2_10_3_1 doi: 10.1016/j.arcontrol.2011.03.008 – ident: e_1_2_10_25_1 doi: 10.1109/TCYB.2016.2555307 – ident: e_1_2_10_21_1 doi: 10.1016/j.oceaneng.2019.106820 – ident: e_1_2_10_11_1 doi: 10.1007/978-3-642-84379-2 – volume-title: Mechanism Modelling and Identification Modelling of Ship Motion Mathematical Mode year: 1999 ident: e_1_2_10_43_1 – volume-title: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles year: 2002 ident: e_1_2_10_6_1 – ident: e_1_2_10_32_1 doi: 10.1002/rnc.5032 – ident: e_1_2_10_26_1 doi: 10.1007/s11071-018-4131-3 – ident: e_1_2_10_13_1 doi: 10.1002/rnc.604 – ident: e_1_2_10_18_1 doi: 10.1109/87.654882 – ident: e_1_2_10_20_1 doi: 10.1109/TCST.2015.2497280 – volume: 44 start-page: 1907 issue: 10 year: 2018 ident: e_1_2_10_28_1 article-title: Adaptive finite time dynamic positioning control of fully‐actuated ship with servo system uncertainties publication-title: J Automat – ident: e_1_2_10_33_1 doi: 10.1109/OCEANSE.2019.8867132 – start-page: 1 year: 2020 ident: e_1_2_10_30_1 article-title: Robust synchronization for under‐actuated vessels based on disturbance observer publication-title: IEEE Trans Intell Transp Syst – ident: e_1_2_10_4_1 – ident: e_1_2_10_41_1 doi: 10.1109/TCST.2015.2496585 – ident: e_1_2_10_37_1 doi: 10.1109/TCST.2010.2090526 – ident: e_1_2_10_7_1 – ident: e_1_2_10_10_1 doi: 10.1002/acs.2972 – ident: e_1_2_10_34_1 doi: 10.1109/ACCESS.2018.2879646 – ident: e_1_2_10_19_1 doi: 10.1109/OCEANS-Genova.2015.7271490 – ident: e_1_2_10_5_1 doi: 10.1109/ACCESS.2019.2931428 |
SSID | ssj0009924 |
Score | 2.37203 |
Snippet | Summary
The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine... The increasing dependence on marine resources has encouraged the rapid development of dynamic positioning (DP) technology in ships and other marine vessels.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6255 |
SubjectTerms | Convergence Disturbance observers dynamic positioning finite‐time disturbance observer finite‐time observer‐based thruster fault‐tolerant control scheme integral nonsingular fast terminal sliding mode control scheme Marine resources Marine technology Robustness Ships Sliding mode control |
Title | Disturbance observer‐based finite‐time control scheme for dynamic positioning of ships subject to thruster faults |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5610 https://www.proquest.com/docview/2559345685 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yJz34FldXiSB66m42TdP2KKvLIuhBFBY8lCRNUVx2pY-LJ3-Cv9Ff4kwf7ioK4qkNJKXNZDJfpjPfEHIsdKDgeMydvvQ5_mZkToCJup4NPKVhe-wbTHC-upajO3E59sZ1VCXmwlT8EJ8ON9SMcr9GBVc6681JQ1PQHzT-sP1iqBbioZs5c1QYVvVsAQA7AYCYhneW8V4z8KslmsPLRZBaWpnhGrlv3q8KLnnqFrnumpdv1I3_-4B1slqDT3pWrZYNsmSnm2RlgZJwixTnIPci1bgY6Eyjz9am769vaO1imjwiRIUmlqSndZg7hQOyhSbAXxpXBe5pEwsGz6SzhGJIWEazQqPXh-Yzmj9grodNaaKKSZ5tk7vhxe1g5NSlGRwD-IA51jLX9BVXUokgZjz2Y-smxsRxXxoVCB0aV0iVcKngLhAgeSuxsrEnrfZD5u6Q1nQ2tbuEWqGMYYn1rVEC81q5DpmWIuR-7JnEb5PTRkyRqXnLsXzGJKoYl3kEExnhRLbJ0WfP54qr44c-nUbSUa2tWYTHKheQZOC1yUkpsl_HRzfXA7zu_bXjPlnmGAaDVSdYh7TytLAHgGNyfViu2A-WJ_PY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5ROLQcaOmPWEpbV6raUxbHcZxEPVWU1bbAHla70h4qRbbjqAi0i7LJhROPwDPyJMzkh6UVlVBPiSU7Sjwe-5vJzDcAn6SJNZrHwvNVJOg3I_diStQNXRxqg9ujbynB-WSkhlP5cxbO1uBrlwvT8EPcOdxIM-r9mhScHNL7K9bQAhWITv8nsEEFvWt7arzijkqSpqItQmAvRhjTMc9ysd-N_PMsWgHM-zC1PmcGz-FX94ZNeMlZvypN317-Rd74n5_wArZa_Mm-NQtmG9bc_CVs3mMlfAXVdxR9VRhaD2xhyG3ripurazrwMpafEkrFJlWlZ22kO0Mb2WETETDLmhr3rAsHw2eyRc4oKmzJlpUhxw8rF6z8TekermC5rs7L5WuYDg4nB0Ovrc7gWYQI3HOOB9bXQist44yLLMpckFubZb6yOpYmsYFUOhdK410sUfhOUXHjUDkTJTx4A-vzxdztAHNSW8tzFzmrJaW2CpNwo2Qioiy0edSDL52cUttSl1MFjfO0IV0WKU5kShPZg493PS8auo4H-ux1ok5bhV2mZFkFCCbjsAefa5n9c3w6Hh3QdfexHT_A0-Hk5Dg9_jE6egvPBEXFUBEKvgfrZVG5dwhrSvO-Xr63uWf38w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEB9aC6U-1FpbvPqnK5T6FG9vs9lsHsXzsK0eRRQEH8L-Cy2VO8klL33qR-hn7Cdx5pJ4WhRKn5KF3ZDszOz8djPzG4AP0mqD22MRDVQq6DcjjzQl6iZBJ8bi8jhwlOB8MlZH5_LzRXLRRlVSLkzDD3F74EaWMV-vycCvfdFfkIaWaD_k_J_CM6m4Jo0eni6oo7KsKWiLCDjSiGI64lku-t3I-65ogS_votS5mxmtwGX3gk10yY-9urJ77udf3I3_9wWv4GWLPtl-oy6r8CRMXsPyHU7CNaiHKPi6tKQNbGrp0DaUf379JnfnWfGdMCo2qSY9a-PcGe6QAzYR_zLfVLhnXTAYPpNNC0YxYTM2qy0d-7BqyqpvlOwRSlaY-qqavYHz0eHZwVHU1maIHAIEHoXAYzcwwigjtefCpz7EhXPeD5QzWtrMxVKZQiiDd1qi6IOi0saJCjbNePwWlibTSVgHFqRxjhchDc5ISmwVNuNWyUykPnFF2oPdTky5a4nLqX7GVd5QLoscJzKniezBzm3P64as44E-m52k89ZcZzntq2KEkjrpwce5yB4dn5-OD-j67l87vofnX4ej_PjT-MsGvBAUEkMVKPgmLFVlHbYQ01R2e668Nwcy9qs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disturbance+observer%E2%80%90based+finite%E2%80%90time+control+scheme+for+dynamic+positioning+of+ships+subject+to+thruster+faults&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Chen%2C+Haili&rft.au=Ren%2C+Hongxiang&rft.au=Gao%2C+Zongjiang&rft.au=Yu%2C+Feng&rft.date=2021-09-10&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=13&rft.spage=6255&rft.epage=6271&rft_id=info:doi/10.1002%2Frnc.5610&rft.externalDBID=10.1002%252Frnc.5610&rft.externalDocID=RNC5610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |