Tooth instance segmentation based on capturing dependencies and receptive field adjustment in cone beam computed tomography
Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth segmentation studies often ignore the rich structural features of teeth. Capturing the complete and accurate geometry as well as morphological detail...
Saved in:
Published in | Computer animation and virtual worlds Vol. 33; no. 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth segmentation studies often ignore the rich structural features of teeth. Capturing the complete and accurate geometry as well as morphological details of a single tooth remains a challenge for current tooth segmentation studies. In this article, a new tooth segmentation deeplearning network based on capturing dependencies and receptive field adjustment in cone beam computed tomography (CBCT) is proposed to achieve automatic and accurate instance segmentation of dental CBCT data. The method acquires coarse‐level features of tooth and accurate tooth centroids in the first stage, and acquires the instance information and spatial position localization of the tooth. The encoding process in the second stage of the network introduces a guidance module for obtaining tooth geometry information based on a 3D self‐attention mechanism to capture dependencies in CBCT. The proposed tooth feature integration module is based on multiscale fusion of dilated convolutions to capture tooth detailed information at multiple scales, and the network receptive field was adjusted. Extensive evaluation, ablation, and comparison experiments demonstrate that our method exhibits state‐of‐the‐art segmentation performance and accurate instance segmentation results, reflecting their potential applicability in clinical medicine.
We propose a new fully automated tooth instance segmentation network based on capturing dependencies and receptive field adjustment in CBCT. The TSDNet achieves predicting the centroid of a single tooth, and introduces a tooth geometric structure information guidance module and a tooth feature integration module to enhance the capture of tooth feature information. |
---|---|
AbstractList | Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth segmentation studies often ignore the rich structural features of teeth. Capturing the complete and accurate geometry as well as morphological details of a single tooth remains a challenge for current tooth segmentation studies. In this article, a new tooth segmentation deeplearning network based on capturing dependencies and receptive field adjustment in cone beam computed tomography (CBCT) is proposed to achieve automatic and accurate instance segmentation of dental CBCT data. The method acquires coarse‐level features of tooth and accurate tooth centroids in the first stage, and acquires the instance information and spatial position localization of the tooth. The encoding process in the second stage of the network introduces a guidance module for obtaining tooth geometry information based on a 3D self‐attention mechanism to capture dependencies in CBCT. The proposed tooth feature integration module is based on multiscale fusion of dilated convolutions to capture tooth detailed information at multiple scales, and the network receptive field was adjusted. Extensive evaluation, ablation, and comparison experiments demonstrate that our method exhibits state‐of‐the‐art segmentation performance and accurate instance segmentation results, reflecting their potential applicability in clinical medicine. Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth segmentation studies often ignore the rich structural features of teeth. Capturing the complete and accurate geometry as well as morphological details of a single tooth remains a challenge for current tooth segmentation studies. In this article, a new tooth segmentation deeplearning network based on capturing dependencies and receptive field adjustment in cone beam computed tomography (CBCT) is proposed to achieve automatic and accurate instance segmentation of dental CBCT data. The method acquires coarse‐level features of tooth and accurate tooth centroids in the first stage, and acquires the instance information and spatial position localization of the tooth. The encoding process in the second stage of the network introduces a guidance module for obtaining tooth geometry information based on a 3D self‐attention mechanism to capture dependencies in CBCT. The proposed tooth feature integration module is based on multiscale fusion of dilated convolutions to capture tooth detailed information at multiple scales, and the network receptive field was adjusted. Extensive evaluation, ablation, and comparison experiments demonstrate that our method exhibits state‐of‐the‐art segmentation performance and accurate instance segmentation results, reflecting their potential applicability in clinical medicine. We propose a new fully automated tooth instance segmentation network based on capturing dependencies and receptive field adjustment in CBCT. The TSDNet achieves predicting the centroid of a single tooth, and introduces a tooth geometric structure information guidance module and a tooth feature integration module to enhance the capture of tooth feature information. |
Author | Zhang, Chenhao Dou, Wenhan Zhou, Yuanfeng Gao, Shanshan Dai, Honghao Mao, Deqian |
Author_xml | – sequence: 1 givenname: Wenhan orcidid: 0000-0001-7017-5429 surname: Dou fullname: Dou, Wenhan organization: Shandong University of Finance and Economics – sequence: 2 givenname: Shanshan surname: Gao fullname: Gao, Shanshan email: gsszxy@aliyun.com organization: Shandong Provincial Key Laboratory of Digital Media Technology – sequence: 3 givenname: Deqian surname: Mao fullname: Mao, Deqian organization: Shandong University of Finance and Economics – sequence: 4 givenname: Honghao surname: Dai fullname: Dai, Honghao organization: Shandong University of Finance and Economics – sequence: 5 givenname: Chenhao surname: Zhang fullname: Zhang, Chenhao organization: Shandong University of Finance and Economics – sequence: 6 givenname: Yuanfeng surname: Zhou fullname: Zhou, Yuanfeng organization: Shandong University |
BookMark | eNp1kE9Lw0AQxRdRUKvgR1jw4iU1mzSb5ijFf1DwouItTHYm7ZZmN-5ulOKXd2vFg-hl5h1-783wjtm-sYYYOxPpWKRpdqngbZxFtceORDGRySQrX_Z_tBSH7Nj7VSRlpI7Yx6O1Ycm18QGMIu5p0ZEJELQ1vAFPyKNQ0IfBabPgSD0ZJKM0eQ4GuSNFfdBvxFtNa-SAq8GHbUYM5So-xxuCLqquH0KMC7azCwf9cnPCDlpYezr93iP2dHP9OLtL5g-397OreaKyKk8TbCVWWORlo5CUEO0UM1CAoqUcp4hV0VZxCFlmAhpQ2IIoQEhRyUYWKPIRO9_l9s6-DuRDvbKDM_FknZVZLstpJSeRGu8o5az3jtpa6V0PwYFe1yKttwXXseB6W3A0XPwy9E534DZ_ockOfddr2vzL1bOr5y_-E_X_j34 |
CitedBy_id | crossref_primary_10_1016_j_ejwf_2024_09_008 crossref_primary_10_1007_s00371_024_03451_x crossref_primary_10_7717_peerj_cs_1994 crossref_primary_10_1007_s00784_023_05048_5 crossref_primary_10_1016_j_joen_2023_11_002 crossref_primary_10_3390_app14146298 |
Cites_doi | 10.1109/JBHI.2019.2891526 10.1126/science.1242072 10.1016/j.compbiomed.2014.04.006 10.1118/1.4901521 10.1016/j.media.2019.02.005 10.1016/j.media.2020.101949 10.1118/1.4938267 10.1109/CVPR.2019.00653 10.1038/nature14539 10.1007/978-3-030-78191-0_12 10.1109/ACCESS.2020.2991799 10.1109/TMI.2020.2968472 10.1007/978-3-319-24574-4_28 10.1109/JBHI.2017.2709406 10.1109/ISBI.2017.7950731 10.1016/j.compbiomed.2016.11.003 10.1007/s11548-008-0230-9 10.1109/TPAMI.2016.2572683 10.1016/j.patcog.2010.01.010 10.1109/ISBI.2019.8759310 10.1109/3DV.2016.79 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2100 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2100 CAV2100 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U1909210; 62172257; 61902217 – fundername: The National Key R & D Plan on Strategic International Scientific and Technological Innovation Cooperation Special Project funderid: 2021YFE0203800 – fundername: Key Research and Development Program of Shandong Province funderid: ZR2020MF037; ZR2019BF043; ZR2019MF016 – fundername: The Introduction and Education Plan of Young Creative Talents in Colleges, Jinan Scientific Research Leader Studio funderid: Z2020025 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2930-df6d9d537bcdec11f8d2acad1fe3d8dd95f9d9516721abacdfa15a16196b65d13 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Fri Jul 25 23:10:18 EDT 2025 Tue Jul 01 02:42:23 EDT 2025 Thu Apr 24 23:04:51 EDT 2025 Wed Jan 22 16:24:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-df6d9d537bcdec11f8d2acad1fe3d8dd95f9d9516721abacdfa15a16196b65d13 |
Notes | Funding information The National Key R & D Plan on Strategic International Scientific and Technological Innovation Cooperation Special Project, Grant/Award Number: 2021YFE0203800; National Natural Science Foundation of China, Grant/Award Numbers: U1909210; 62172257; 61902217; Natural Science Foundation & Key Research and Development Program of Shandong Province, Grant/Award Numbers: ZR2020MF037; ZR2019BF043; ZR2019MF016; The Introduction and Education Plan of Young Creative Talents in Colleges, Jinan Scientific Research Leader Studio, Grant/Award Number: Z2020025 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7017-5429 |
PQID | 2723678964 |
PQPubID | 2034909 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2723678964 crossref_citationtrail_10_1002_cav_2100 crossref_primary_10_1002_cav_2100 wiley_primary_10_1002_cav_2100_CAV2100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September/October 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September/October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 69 2020; 8 2010; 43 2017; 30 2017; 80 2019; 53 2017; 39 2015; 521 2017; 22 2015; 42 2019; 23 2016; 43 2008; 3 2020; 32 2014; 50 2015; 9415 2014; 344 e_1_2_7_6_1 e_1_2_7_5_1 Suzani A (e_1_2_7_18_1) 2015 e_1_2_7_4_1 e_1_2_7_3_1 Vaswani A (e_1_2_7_23_1) 2017; 30 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 Jiang X (e_1_2_7_15_1) 2020; 32 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 53 start-page: 142 year: 2019 end-page: 55 article-title: Iterative fully convolutional neural networks for automatic vertebra segmentation and identification publication-title: Med Image Anal – volume: 43 start-page: 2406 issue: 7 year: 2010 end-page: 17 article-title: Individual tooth segmentation from CT images using level set method with shape and intensity prior publication-title: Pattern Recognit – volume: 22 start-page: 196 issue: 1 year: 2017 end-page: 204 article-title: Tooth and alveolar bone segmentation from dental computed tomography images publication-title: IEEE J Biomed Health Inform – volume: 32 start-page: 820 issue: 5 year: 2020 end-page: 9 article-title: A semi‐automatic precise tooth segmentation algorithm of dental model publication-title: J Comput‐Aided Design Comput Graph – volume: 39 start-page: 640 issue: 4 year: 2017 end-page: 51 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 9415 start-page: 269 year: 2015 end-page: 75 – volume: 80 start-page: 24 year: 2017 end-page: 9 article-title: Classification of teeth in conebeam CT using deep convolutional neural network publication-title: Comput Biol Med – volume: 521 start-page: 436 issue: 7553 year: 2015 article-title: Deep learning publication-title: Nature – volume: 8 start-page: 97296 year: 2020 end-page: 309 article-title: Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi‐task FCN publication-title: IEEE Access – volume: 344 start-page: 1492 issue: 6191 year: 2014 end-page: 6 article-title: Clustering by fast search and find of density peaks publication-title: Science – volume: 42 start-page: 14 issue: 1 year: 2015 end-page: 27 article-title: Toward accurate tooth segmentation from computed tomography images using a hybrid level set model publication-title: Med Phys – volume: 23 start-page: 1363 issue: 4 year: 2019 end-page: 73 article-title: Knowledge‐aided convolutional neural network for small organ segmentation publication-title: IEEE J Biomed Health Inform – volume: 30 start-page: 87 year: 2017 end-page: 90 article-title: Attention is all you need publication-title: Adv Neural Inf Proces Syst – volume: 50 start-page: 116 year: 2014 end-page: 28 article-title: A level‐set based approach for anterior teeth segmentation in cone beam computed tomography images publication-title: Comput Biol Med – volume: 43 start-page: 336 issue: 1 year: 2016 end-page: 46 article-title: Automated segmentation of dental CBCT image with prior‐guided sequential random forests publication-title: Med Phys – volume: 69 year: 2021 article-title: Tsegnet: an efficient and accurate tooth segmentation network on 3d dental model publication-title: Med Image Anal – volume: 3 start-page: 257 issue: 3 year: 2008 end-page: 65 article-title: Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set publication-title: Int J Comput Assist Radiol Surg – ident: e_1_2_7_16_1 doi: 10.1109/JBHI.2019.2891526 – ident: e_1_2_7_26_1 doi: 10.1126/science.1242072 – ident: e_1_2_7_9_1 doi: 10.1016/j.compbiomed.2014.04.006 – ident: e_1_2_7_6_1 doi: 10.1118/1.4901521 – ident: e_1_2_7_17_1 doi: 10.1016/j.media.2019.02.005 – ident: e_1_2_7_2_1 doi: 10.1016/j.media.2020.101949 – ident: e_1_2_7_4_1 doi: 10.1118/1.4938267 – ident: e_1_2_7_25_1 – ident: e_1_2_7_8_1 doi: 10.1109/CVPR.2019.00653 – ident: e_1_2_7_20_1 doi: 10.1038/nature14539 – ident: e_1_2_7_27_1 doi: 10.1007/978-3-030-78191-0_12 – ident: e_1_2_7_12_1 doi: 10.1109/ACCESS.2020.2991799 – ident: e_1_2_7_24_1 doi: 10.1109/TMI.2020.2968472 – ident: e_1_2_7_11_1 doi: 10.1007/978-3-319-24574-4_28 – volume: 32 start-page: 820 issue: 5 year: 2020 ident: e_1_2_7_15_1 article-title: A semi‐automatic precise tooth segmentation algorithm of dental model publication-title: J Comput‐Aided Design Comput Graph – ident: e_1_2_7_5_1 doi: 10.1109/JBHI.2017.2709406 – ident: e_1_2_7_3_1 doi: 10.1109/ISBI.2017.7950731 – ident: e_1_2_7_7_1 doi: 10.1016/j.compbiomed.2016.11.003 – ident: e_1_2_7_21_1 – ident: e_1_2_7_14_1 doi: 10.1007/s11548-008-0230-9 – ident: e_1_2_7_19_1 doi: 10.1109/TPAMI.2016.2572683 – volume: 30 start-page: 87 year: 2017 ident: e_1_2_7_23_1 article-title: Attention is all you need publication-title: Adv Neural Inf Proces Syst – ident: e_1_2_7_13_1 doi: 10.1016/j.patcog.2010.01.010 – ident: e_1_2_7_22_1 doi: 10.1109/ISBI.2019.8759310 – start-page: 269 volume-title: Medical Imaging 2015: Image‐Guided Procedures, Robotic Interventions, and Modeling year: 2015 ident: e_1_2_7_18_1 – ident: e_1_2_7_10_1 doi: 10.1109/3DV.2016.79 |
SSID | ssj0026210 |
Score | 2.3490238 |
Snippet | Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ablation CBCT centroid prediction Centroids Clinical medicine Computed tomography Data acquisition dependency Instance segmentation Modules receptive field Teeth Tomography tooth instance segmentation |
Title | Tooth instance segmentation based on capturing dependencies and receptive field adjustment in cone beam computed tomography |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2100 https://www.proquest.com/docview/2723678964 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_iSQ9-i9MpEURP3dY0zdrjGI4h6EG2MfBQ8lWZum7Ydgf9531J201FQby0pbw0bV6S93vlvd9D6EK2NIAGGTrEldShgfIdQOGx0w5jDvaSUsFMcvLtHesP6c3YH5dRlSYXpuCHWP5wMyvD7tdmgXORNlekoZIvGuCvGHfdhGoZPHS_ZI4ijBREBD5ljvESKt7ZFmlWDb9aohW8_AxSrZXpbaOH6v2K4JLnRp6Jhnz7Rt34vw_YQVsl-MSdYrbsojWd7KHN0STNi7vpPnofzEB3eGJRo9Q41Y_TMj0pwcbkKQwXks8zm9-IqyK6sEWkmCcKww5qAmUWGtvgOMzVU57aUHZ4KAbvW2Oh-RTLopyEwtlsWtJmH6Bh73rQ7TtlgQZHAkpoOSpmKlS-1xZSaem6caAIl1y5sfZUoFToxyEcXAZuJhdcKtC_zwFjhkwwX7neIVpPoN8jhDUV0rgvRFp6IE8IKnRAYk8EGkAqraGrSlmRLNnLTRGNl6jgXSYRDGdkhrOGzpeS84Kx4weZeqXvqFyzaUTahs0uCBl0dmkV92v7qNsZmfPxXwVP0AYxeRM2OK2O1rPXXJ8CmsnEmZ23H1aK8-Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5Remg5QJ_iXVfq45Rl4zje5MABQdFSHodqQdxSe-xUtN0sarIg4CfxV_hRjJ1kaatW6oVDL0kUObZjjz3fWDPfALzBriXQgGnAQxSBSEwcEArPg16aK9KXQmjpgpP3D2T_UHw8jo-n4LqNhan5ISYHbm5l-P3aLXB3IL12xxqK6qxDBku38ajctRfnZK-V6ztbNLlvOd_-MNjsB01KgQBJr3UDk0uTmjjqaTQWwzBPDFeoTJjbyCTGpHGe0iWUZBgprdBQj2NFqCiVWsYmjKjeB_DQJRB3RP1bnyZcVVzymvogFjJwdknLdNvla21Pf9V9d4D2Z1js9dr2HNy0I1K7s3zrjCvdwcvfyCL_kyF7ArMNvmYb9YJ4ClO2eAYzRyfluH5bPoerwYjEk514YIyWlfbLsInAKpjT6obRA6rTyodwsjZPMO2CJVOFYaQknC_QmWXe_48p83Vcem99qpThqLBMWzVkWGfMMKwaDRtm8BdweC9__xKmC2p3HpgVGp2FxtEzIEVaC20Tnkc6sYTDxQK8b6Ujw4ag3eUJ-Z7V1NI8o-nL3PQtwOtJydOalOQPZZZbAcuabanMeM8R9iWppMbeeUn56_fZ5saRuy_-a8FX8Kg_2N_L9nYOdpfgMXdhIt4Xbxmmqx9ju0LgrdKrftEw-HzfIncLXNxVqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE4AOUhCn24Eo9TtonjeJMDh6rbVUtLhVBb9ZbaHge1ZbMrki0C_hF_hT_F2Em2gIrEpQcuSRQ5sWPPeL6JZr4BeG5CS6DBZAGPjAhEiklAKLwI-lmhyF4KoaVLTn67L7cPxZvj5HgOvne5MA0_xOyHm9MMv187BZ9gsX5JGmrURY_8lbANqNy1Xz6Tu1a93hnQ2r7gfLh1sLkdtBUFAkNmLQywkJhhEve1QWuiqEiRK6MwKmyMKWKWFBkdIkl-kdLKIA04UQSKMqllglFM770BN4UMM1cmYvB-RlXFJW-YDxIhA-eWdES3IV_vRvq76bvEs7-iYm_WhvfgRzchTTTLeW9a6575-gdX5P8xY_fhbouu2UajDgswZ8sHcOfotJo2d6uH8O1gTMLJTj0sNpZV9sOozb8qmbPpyOjCqEntEzhZVyWY9sCKqRIZmQgXCXRhmY_-YwrPppWP1aeXMjMuLdNWjZhp6mUgq8ejlhf8ERxey9c_hvmS-n0CzAptnH_Gjec_irUW2qa8iHVqCYWLRXjVCUduWnp2VyXkY94QS_Ocli93y7cIa7OWk4aS5Io2S5185e2mVOW87-j60kxSZy-9oPz1-Xxz48idn_5rw1W49W4wzPd29nefwW3uckR8IN4SzNefpnaZkFutV7zKMDi5bon7CQNFVFk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tooth+instance+segmentation+based+on+capturing+dependencies+and+receptive+field+adjustment+in+cone+beam+computed+tomography&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Dou%2C+Wenhan&rft.au=Gao%2C+Shanshan&rft.au=Mao%2C+Deqian&rft.au=Dai%2C+Honghao&rft.date=2022-09-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=33&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2100&rft.externalDBID=10.1002%252Fcav.2100&rft.externalDocID=CAV2100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |