Tooth instance segmentation based on capturing dependencies and receptive field adjustment in cone beam computed tomography

Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth segmentation studies often ignore the rich structural features of teeth. Capturing the complete and accurate geometry as well as morphological detail...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 33; no. 5
Main Authors Dou, Wenhan, Gao, Shanshan, Mao, Deqian, Dai, Honghao, Zhang, Chenhao, Zhou, Yuanfeng
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth segmentation studies often ignore the rich structural features of teeth. Capturing the complete and accurate geometry as well as morphological details of a single tooth remains a challenge for current tooth segmentation studies. In this article, a new tooth segmentation deeplearning network based on capturing dependencies and receptive field adjustment in cone beam computed tomography (CBCT) is proposed to achieve automatic and accurate instance segmentation of dental CBCT data. The method acquires coarse‐level features of tooth and accurate tooth centroids in the first stage, and acquires the instance information and spatial position localization of the tooth. The encoding process in the second stage of the network introduces a guidance module for obtaining tooth geometry information based on a 3D self‐attention mechanism to capture dependencies in CBCT. The proposed tooth feature integration module is based on multiscale fusion of dilated convolutions to capture tooth detailed information at multiple scales, and the network receptive field was adjusted. Extensive evaluation, ablation, and comparison experiments demonstrate that our method exhibits state‐of‐the‐art segmentation performance and accurate instance segmentation results, reflecting their potential applicability in clinical medicine. We propose a new fully automated tooth instance segmentation network based on capturing dependencies and receptive field adjustment in CBCT. The TSDNet achieves predicting the centroid of a single tooth, and introduces a tooth geometric structure information guidance module and a tooth feature integration module to enhance the capture of tooth feature information.
AbstractList Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth segmentation studies often ignore the rich structural features of teeth. Capturing the complete and accurate geometry as well as morphological details of a single tooth remains a challenge for current tooth segmentation studies. In this article, a new tooth segmentation deeplearning network based on capturing dependencies and receptive field adjustment in cone beam computed tomography (CBCT) is proposed to achieve automatic and accurate instance segmentation of dental CBCT data. The method acquires coarse‐level features of tooth and accurate tooth centroids in the first stage, and acquires the instance information and spatial position localization of the tooth. The encoding process in the second stage of the network introduces a guidance module for obtaining tooth geometry information based on a 3D self‐attention mechanism to capture dependencies in CBCT. The proposed tooth feature integration module is based on multiscale fusion of dilated convolutions to capture tooth detailed information at multiple scales, and the network receptive field was adjusted. Extensive evaluation, ablation, and comparison experiments demonstrate that our method exhibits state‐of‐the‐art segmentation performance and accurate instance segmentation results, reflecting their potential applicability in clinical medicine.
Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth segmentation studies often ignore the rich structural features of teeth. Capturing the complete and accurate geometry as well as morphological details of a single tooth remains a challenge for current tooth segmentation studies. In this article, a new tooth segmentation deeplearning network based on capturing dependencies and receptive field adjustment in cone beam computed tomography (CBCT) is proposed to achieve automatic and accurate instance segmentation of dental CBCT data. The method acquires coarse‐level features of tooth and accurate tooth centroids in the first stage, and acquires the instance information and spatial position localization of the tooth. The encoding process in the second stage of the network introduces a guidance module for obtaining tooth geometry information based on a 3D self‐attention mechanism to capture dependencies in CBCT. The proposed tooth feature integration module is based on multiscale fusion of dilated convolutions to capture tooth detailed information at multiple scales, and the network receptive field was adjusted. Extensive evaluation, ablation, and comparison experiments demonstrate that our method exhibits state‐of‐the‐art segmentation performance and accurate instance segmentation results, reflecting their potential applicability in clinical medicine. We propose a new fully automated tooth instance segmentation network based on capturing dependencies and receptive field adjustment in CBCT. The TSDNet achieves predicting the centroid of a single tooth, and introduces a tooth geometric structure information guidance module and a tooth feature integration module to enhance the capture of tooth feature information.
Author Zhang, Chenhao
Dou, Wenhan
Zhou, Yuanfeng
Gao, Shanshan
Dai, Honghao
Mao, Deqian
Author_xml – sequence: 1
  givenname: Wenhan
  orcidid: 0000-0001-7017-5429
  surname: Dou
  fullname: Dou, Wenhan
  organization: Shandong University of Finance and Economics
– sequence: 2
  givenname: Shanshan
  surname: Gao
  fullname: Gao, Shanshan
  email: gsszxy@aliyun.com
  organization: Shandong Provincial Key Laboratory of Digital Media Technology
– sequence: 3
  givenname: Deqian
  surname: Mao
  fullname: Mao, Deqian
  organization: Shandong University of Finance and Economics
– sequence: 4
  givenname: Honghao
  surname: Dai
  fullname: Dai, Honghao
  organization: Shandong University of Finance and Economics
– sequence: 5
  givenname: Chenhao
  surname: Zhang
  fullname: Zhang, Chenhao
  organization: Shandong University of Finance and Economics
– sequence: 6
  givenname: Yuanfeng
  surname: Zhou
  fullname: Zhou, Yuanfeng
  organization: Shandong University
BookMark eNp1kE9Lw0AQxRdRUKvgR1jw4iU1mzSb5ijFf1DwouItTHYm7ZZmN-5ulOKXd2vFg-hl5h1-783wjtm-sYYYOxPpWKRpdqngbZxFtceORDGRySQrX_Z_tBSH7Nj7VSRlpI7Yx6O1Ycm18QGMIu5p0ZEJELQ1vAFPyKNQ0IfBabPgSD0ZJKM0eQ4GuSNFfdBvxFtNa-SAq8GHbUYM5So-xxuCLqquH0KMC7azCwf9cnPCDlpYezr93iP2dHP9OLtL5g-397OreaKyKk8TbCVWWORlo5CUEO0UM1CAoqUcp4hV0VZxCFlmAhpQ2IIoQEhRyUYWKPIRO9_l9s6-DuRDvbKDM_FknZVZLstpJSeRGu8o5az3jtpa6V0PwYFe1yKttwXXseB6W3A0XPwy9E534DZ_ockOfddr2vzL1bOr5y_-E_X_j34
CitedBy_id crossref_primary_10_1016_j_ejwf_2024_09_008
crossref_primary_10_1007_s00371_024_03451_x
crossref_primary_10_7717_peerj_cs_1994
crossref_primary_10_1007_s00784_023_05048_5
crossref_primary_10_1016_j_joen_2023_11_002
crossref_primary_10_3390_app14146298
Cites_doi 10.1109/JBHI.2019.2891526
10.1126/science.1242072
10.1016/j.compbiomed.2014.04.006
10.1118/1.4901521
10.1016/j.media.2019.02.005
10.1016/j.media.2020.101949
10.1118/1.4938267
10.1109/CVPR.2019.00653
10.1038/nature14539
10.1007/978-3-030-78191-0_12
10.1109/ACCESS.2020.2991799
10.1109/TMI.2020.2968472
10.1007/978-3-319-24574-4_28
10.1109/JBHI.2017.2709406
10.1109/ISBI.2017.7950731
10.1016/j.compbiomed.2016.11.003
10.1007/s11548-008-0230-9
10.1109/TPAMI.2016.2572683
10.1016/j.patcog.2010.01.010
10.1109/ISBI.2019.8759310
10.1109/3DV.2016.79
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2100
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2100
CAV2100
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U1909210; 62172257; 61902217
– fundername: The National Key R & D Plan on Strategic International Scientific and Technological Innovation Cooperation Special Project
  funderid: 2021YFE0203800
– fundername: Key Research and Development Program of Shandong Province
  funderid: ZR2020MF037; ZR2019BF043; ZR2019MF016
– fundername: The Introduction and Education Plan of Young Creative Talents in Colleges, Jinan Scientific Research Leader Studio
  funderid: Z2020025
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2930-df6d9d537bcdec11f8d2acad1fe3d8dd95f9d9516721abacdfa15a16196b65d13
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Fri Jul 25 23:10:18 EDT 2025
Tue Jul 01 02:42:23 EDT 2025
Thu Apr 24 23:04:51 EDT 2025
Wed Jan 22 16:24:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-df6d9d537bcdec11f8d2acad1fe3d8dd95f9d9516721abacdfa15a16196b65d13
Notes Funding information
The National Key R & D Plan on Strategic International Scientific and Technological Innovation Cooperation Special Project, Grant/Award Number: 2021YFE0203800; National Natural Science Foundation of China, Grant/Award Numbers: U1909210; 62172257; 61902217; Natural Science Foundation & Key Research and Development Program of Shandong Province, Grant/Award Numbers: ZR2020MF037; ZR2019BF043; ZR2019MF016; The Introduction and Education Plan of Young Creative Talents in Colleges, Jinan Scientific Research Leader Studio, Grant/Award Number: Z2020025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7017-5429
PQID 2723678964
PQPubID 2034909
PageCount 16
ParticipantIDs proquest_journals_2723678964
crossref_citationtrail_10_1002_cav_2100
crossref_primary_10_1002_cav_2100
wiley_primary_10_1002_cav_2100_CAV2100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September/October 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September/October 2022
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 69
2020; 8
2010; 43
2017; 30
2017; 80
2019; 53
2017; 39
2015; 521
2017; 22
2015; 42
2019; 23
2016; 43
2008; 3
2020; 32
2014; 50
2015; 9415
2014; 344
e_1_2_7_6_1
e_1_2_7_5_1
Suzani A (e_1_2_7_18_1) 2015
e_1_2_7_4_1
e_1_2_7_3_1
Vaswani A (e_1_2_7_23_1) 2017; 30
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Jiang X (e_1_2_7_15_1) 2020; 32
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 53
  start-page: 142
  year: 2019
  end-page: 55
  article-title: Iterative fully convolutional neural networks for automatic vertebra segmentation and identification
  publication-title: Med Image Anal
– volume: 43
  start-page: 2406
  issue: 7
  year: 2010
  end-page: 17
  article-title: Individual tooth segmentation from CT images using level set method with shape and intensity prior
  publication-title: Pattern Recognit
– volume: 22
  start-page: 196
  issue: 1
  year: 2017
  end-page: 204
  article-title: Tooth and alveolar bone segmentation from dental computed tomography images
  publication-title: IEEE J Biomed Health Inform
– volume: 32
  start-page: 820
  issue: 5
  year: 2020
  end-page: 9
  article-title: A semi‐automatic precise tooth segmentation algorithm of dental model
  publication-title: J Comput‐Aided Design Comput Graph
– volume: 39
  start-page: 640
  issue: 4
  year: 2017
  end-page: 51
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 9415
  start-page: 269
  year: 2015
  end-page: 75
– volume: 80
  start-page: 24
  year: 2017
  end-page: 9
  article-title: Classification of teeth in conebeam CT using deep convolutional neural network
  publication-title: Comput Biol Med
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  article-title: Deep learning
  publication-title: Nature
– volume: 8
  start-page: 97296
  year: 2020
  end-page: 309
  article-title: Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi‐task FCN
  publication-title: IEEE Access
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  end-page: 6
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 42
  start-page: 14
  issue: 1
  year: 2015
  end-page: 27
  article-title: Toward accurate tooth segmentation from computed tomography images using a hybrid level set model
  publication-title: Med Phys
– volume: 23
  start-page: 1363
  issue: 4
  year: 2019
  end-page: 73
  article-title: Knowledge‐aided convolutional neural network for small organ segmentation
  publication-title: IEEE J Biomed Health Inform
– volume: 30
  start-page: 87
  year: 2017
  end-page: 90
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Proces Syst
– volume: 50
  start-page: 116
  year: 2014
  end-page: 28
  article-title: A level‐set based approach for anterior teeth segmentation in cone beam computed tomography images
  publication-title: Comput Biol Med
– volume: 43
  start-page: 336
  issue: 1
  year: 2016
  end-page: 46
  article-title: Automated segmentation of dental CBCT image with prior‐guided sequential random forests
  publication-title: Med Phys
– volume: 69
  year: 2021
  article-title: Tsegnet: an efficient and accurate tooth segmentation network on 3d dental model
  publication-title: Med Image Anal
– volume: 3
  start-page: 257
  issue: 3
  year: 2008
  end-page: 65
  article-title: Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set
  publication-title: Int J Comput Assist Radiol Surg
– ident: e_1_2_7_16_1
  doi: 10.1109/JBHI.2019.2891526
– ident: e_1_2_7_26_1
  doi: 10.1126/science.1242072
– ident: e_1_2_7_9_1
  doi: 10.1016/j.compbiomed.2014.04.006
– ident: e_1_2_7_6_1
  doi: 10.1118/1.4901521
– ident: e_1_2_7_17_1
  doi: 10.1016/j.media.2019.02.005
– ident: e_1_2_7_2_1
  doi: 10.1016/j.media.2020.101949
– ident: e_1_2_7_4_1
  doi: 10.1118/1.4938267
– ident: e_1_2_7_25_1
– ident: e_1_2_7_8_1
  doi: 10.1109/CVPR.2019.00653
– ident: e_1_2_7_20_1
  doi: 10.1038/nature14539
– ident: e_1_2_7_27_1
  doi: 10.1007/978-3-030-78191-0_12
– ident: e_1_2_7_12_1
  doi: 10.1109/ACCESS.2020.2991799
– ident: e_1_2_7_24_1
  doi: 10.1109/TMI.2020.2968472
– ident: e_1_2_7_11_1
  doi: 10.1007/978-3-319-24574-4_28
– volume: 32
  start-page: 820
  issue: 5
  year: 2020
  ident: e_1_2_7_15_1
  article-title: A semi‐automatic precise tooth segmentation algorithm of dental model
  publication-title: J Comput‐Aided Design Comput Graph
– ident: e_1_2_7_5_1
  doi: 10.1109/JBHI.2017.2709406
– ident: e_1_2_7_3_1
  doi: 10.1109/ISBI.2017.7950731
– ident: e_1_2_7_7_1
  doi: 10.1016/j.compbiomed.2016.11.003
– ident: e_1_2_7_21_1
– ident: e_1_2_7_14_1
  doi: 10.1007/s11548-008-0230-9
– ident: e_1_2_7_19_1
  doi: 10.1109/TPAMI.2016.2572683
– volume: 30
  start-page: 87
  year: 2017
  ident: e_1_2_7_23_1
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Proces Syst
– ident: e_1_2_7_13_1
  doi: 10.1016/j.patcog.2010.01.010
– ident: e_1_2_7_22_1
  doi: 10.1109/ISBI.2019.8759310
– start-page: 269
  volume-title: Medical Imaging 2015: Image‐Guided Procedures, Robotic Interventions, and Modeling
  year: 2015
  ident: e_1_2_7_18_1
– ident: e_1_2_7_10_1
  doi: 10.1109/3DV.2016.79
SSID ssj0026210
Score 2.3490238
Snippet Automatic and accurate instance segmentation of teeth can provide important support for computer‐aided orthodontic work. Traditional methods for tooth...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ablation
CBCT
centroid prediction
Centroids
Clinical medicine
Computed tomography
Data acquisition
dependency
Instance segmentation
Modules
receptive field
Teeth
Tomography
tooth instance segmentation
Title Tooth instance segmentation based on capturing dependencies and receptive field adjustment in cone beam computed tomography
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2100
https://www.proquest.com/docview/2723678964
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_iSQ9-i9MpEURP3dY0zdrjGI4h6EG2MfBQ8lWZum7Ydgf9531J201FQby0pbw0bV6S93vlvd9D6EK2NIAGGTrEldShgfIdQOGx0w5jDvaSUsFMcvLtHesP6c3YH5dRlSYXpuCHWP5wMyvD7tdmgXORNlekoZIvGuCvGHfdhGoZPHS_ZI4ijBREBD5ljvESKt7ZFmlWDb9aohW8_AxSrZXpbaOH6v2K4JLnRp6Jhnz7Rt34vw_YQVsl-MSdYrbsojWd7KHN0STNi7vpPnofzEB3eGJRo9Q41Y_TMj0pwcbkKQwXks8zm9-IqyK6sEWkmCcKww5qAmUWGtvgOMzVU57aUHZ4KAbvW2Oh-RTLopyEwtlsWtJmH6Bh73rQ7TtlgQZHAkpoOSpmKlS-1xZSaem6caAIl1y5sfZUoFToxyEcXAZuJhdcKtC_zwFjhkwwX7neIVpPoN8jhDUV0rgvRFp6IE8IKnRAYk8EGkAqraGrSlmRLNnLTRGNl6jgXSYRDGdkhrOGzpeS84Kx4weZeqXvqFyzaUTahs0uCBl0dmkV92v7qNsZmfPxXwVP0AYxeRM2OK2O1rPXXJ8CmsnEmZ23H1aK8-Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5Remg5QJ_iXVfq45Rl4zje5MABQdFSHodqQdxSe-xUtN0sarIg4CfxV_hRjJ1kaatW6oVDL0kUObZjjz3fWDPfALzBriXQgGnAQxSBSEwcEArPg16aK9KXQmjpgpP3D2T_UHw8jo-n4LqNhan5ISYHbm5l-P3aLXB3IL12xxqK6qxDBku38ajctRfnZK-V6ztbNLlvOd_-MNjsB01KgQBJr3UDk0uTmjjqaTQWwzBPDFeoTJjbyCTGpHGe0iWUZBgprdBQj2NFqCiVWsYmjKjeB_DQJRB3RP1bnyZcVVzymvogFjJwdknLdNvla21Pf9V9d4D2Z1js9dr2HNy0I1K7s3zrjCvdwcvfyCL_kyF7ArMNvmYb9YJ4ClO2eAYzRyfluH5bPoerwYjEk514YIyWlfbLsInAKpjT6obRA6rTyodwsjZPMO2CJVOFYaQknC_QmWXe_48p83Vcem99qpThqLBMWzVkWGfMMKwaDRtm8BdweC9__xKmC2p3HpgVGp2FxtEzIEVaC20Tnkc6sYTDxQK8b6Ujw4ag3eUJ-Z7V1NI8o-nL3PQtwOtJydOalOQPZZZbAcuabanMeM8R9iWppMbeeUn56_fZ5saRuy_-a8FX8Kg_2N_L9nYOdpfgMXdhIt4Xbxmmqx9ju0LgrdKrftEw-HzfIncLXNxVqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE4AOUhCn24Eo9TtonjeJMDh6rbVUtLhVBb9ZbaHge1ZbMrki0C_hF_hT_F2Em2gIrEpQcuSRQ5sWPPeL6JZr4BeG5CS6DBZAGPjAhEiklAKLwI-lmhyF4KoaVLTn67L7cPxZvj5HgOvne5MA0_xOyHm9MMv187BZ9gsX5JGmrURY_8lbANqNy1Xz6Tu1a93hnQ2r7gfLh1sLkdtBUFAkNmLQywkJhhEve1QWuiqEiRK6MwKmyMKWKWFBkdIkl-kdLKIA04UQSKMqllglFM770BN4UMM1cmYvB-RlXFJW-YDxIhA-eWdES3IV_vRvq76bvEs7-iYm_WhvfgRzchTTTLeW9a6575-gdX5P8xY_fhbouu2UajDgswZ8sHcOfotJo2d6uH8O1gTMLJTj0sNpZV9sOozb8qmbPpyOjCqEntEzhZVyWY9sCKqRIZmQgXCXRhmY_-YwrPppWP1aeXMjMuLdNWjZhp6mUgq8ejlhf8ERxey9c_hvmS-n0CzAptnH_Gjec_irUW2qa8iHVqCYWLRXjVCUduWnp2VyXkY94QS_Ocli93y7cIa7OWk4aS5Io2S5185e2mVOW87-j60kxSZy-9oPz1-Xxz48idn_5rw1W49W4wzPd29nefwW3uckR8IN4SzNefpnaZkFutV7zKMDi5bon7CQNFVFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tooth+instance+segmentation+based+on+capturing+dependencies+and+receptive+field+adjustment+in+cone+beam+computed+tomography&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Dou%2C+Wenhan&rft.au=Gao%2C+Shanshan&rft.au=Mao%2C+Deqian&rft.au=Dai%2C+Honghao&rft.date=2022-09-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=33&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2100&rft.externalDBID=10.1002%252Fcav.2100&rft.externalDocID=CAV2100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon