Performance and optimal design of base‐isolated structures with clutching inerter damper

Summary The performance and optimal design of the base‐isolated structure supplemented with clutching inerter damper (CID) subjected to seismic loading are investigated. Because of the nonlinear force‐deformation behavior of the CID, the stochastic response of the isolated structure subjected to non...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 9
Main Author Jangid, Radhey Shyam
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.3000

Cover

Abstract Summary The performance and optimal design of the base‐isolated structure supplemented with clutching inerter damper (CID) subjected to seismic loading are investigated. Because of the nonlinear force‐deformation behavior of the CID, the stochastic response of the isolated structure subjected to nonstationary earthquake excitation is obtained using the time‐dependent equivalent linearization technique. To investigate the effects of nonstationary earthquake characteristics, the isolated structure's nonstationary response is compared to the corresponding stationary response. For a given isolated structural system and excitation, there exists an optimum value of the CID inertance at which the root mean square absolute acceleration of the superstructure achieves a minimum value. The effects of key parameters like superstructure flexibility, isolation period, and isolation damping ratio on the CID's optimal inertance are examined. The seismic response of base‐isolated structures is also obtained under real earthquakes using the nonlinear model of the CID. The effects of the CID on the response of isolated structures under real earthquakes were found to be well correlated with those of stochastic analysis. Finally, for the approximate response and initial design of base‐isolated structures, a closed‐form expression for the equivalent damping of the CID is proposed. Using the equivalent inertance and damping of the CID, the bearing displacements and forces of isolated structures with the CID were found to be matching with that obtained by the nonlinear analysis. However, there can be an error in the prediction of structural acceleration and force in the CID by using this equivalent approach.
AbstractList Summary The performance and optimal design of the base‐isolated structure supplemented with clutching inerter damper (CID) subjected to seismic loading are investigated. Because of the nonlinear force‐deformation behavior of the CID, the stochastic response of the isolated structure subjected to nonstationary earthquake excitation is obtained using the time‐dependent equivalent linearization technique. To investigate the effects of nonstationary earthquake characteristics, the isolated structure's nonstationary response is compared to the corresponding stationary response. For a given isolated structural system and excitation, there exists an optimum value of the CID inertance at which the root mean square absolute acceleration of the superstructure achieves a minimum value. The effects of key parameters like superstructure flexibility, isolation period, and isolation damping ratio on the CID's optimal inertance are examined. The seismic response of base‐isolated structures is also obtained under real earthquakes using the nonlinear model of the CID. The effects of the CID on the response of isolated structures under real earthquakes were found to be well correlated with those of stochastic analysis. Finally, for the approximate response and initial design of base‐isolated structures, a closed‐form expression for the equivalent damping of the CID is proposed. Using the equivalent inertance and damping of the CID, the bearing displacements and forces of isolated structures with the CID were found to be matching with that obtained by the nonlinear analysis. However, there can be an error in the prediction of structural acceleration and force in the CID by using this equivalent approach.
The performance and optimal design of the base‐isolated structure supplemented with clutching inerter damper (CID) subjected to seismic loading are investigated. Because of the nonlinear force‐deformation behavior of the CID, the stochastic response of the isolated structure subjected to nonstationary earthquake excitation is obtained using the time‐dependent equivalent linearization technique. To investigate the effects of nonstationary earthquake characteristics, the isolated structure's nonstationary response is compared to the corresponding stationary response. For a given isolated structural system and excitation, there exists an optimum value of the CID inertance at which the root mean square absolute acceleration of the superstructure achieves a minimum value. The effects of key parameters like superstructure flexibility, isolation period, and isolation damping ratio on the CID's optimal inertance are examined. The seismic response of base‐isolated structures is also obtained under real earthquakes using the nonlinear model of the CID. The effects of the CID on the response of isolated structures under real earthquakes were found to be well correlated with those of stochastic analysis. Finally, for the approximate response and initial design of base‐isolated structures, a closed‐form expression for the equivalent damping of the CID is proposed. Using the equivalent inertance and damping of the CID, the bearing displacements and forces of isolated structures with the CID were found to be matching with that obtained by the nonlinear analysis. However, there can be an error in the prediction of structural acceleration and force in the CID by using this equivalent approach.
Author Jangid, Radhey Shyam
Author_xml – sequence: 1
  givenname: Radhey Shyam
  orcidid: 0000-0002-2408-2368
  surname: Jangid
  fullname: Jangid, Radhey Shyam
  email: rsjangid@civil.iitb.ac.in
  organization: Indian Institute of Technology Bombay
BookMark eNp1kMtKAzEUhoMo2FbBRwi4cTM1mSRzWUrxBgUF68bNkGZO2pRpMiYZSnc-gs_okzi14kJ0dc7i-__D-Ybo0DoLCJ1RMqaEpJchqjEjhBygARVcJGmascOfXYhjNAxh1ZNZWogBenkEr51fS6sAS1tj10azlg2uIZiFxU7juQzw8fZugmtkhBqH6DsVOw8Bb0xcYtV0US2NXWBjwUfwuJbrFvwJOtKyCXD6PUfo-eZ6NrlLpg-395OraaLSkpFE5UwJkmumQWdyXlNOaZZzKhSTuiSFLDVwwetS0UJQUCLL56yURQa50LwANkLn-97Wu9cOQqxWrvO2P1mlOSGcZSUve-piTynvQvCgq9b3j_ptRUm1M1f15qqduR4d_0KViTIaZ6OXpvkrkOwDG9PA9t_i6mk2-eI_AQu4gqU
CitedBy_id crossref_primary_10_1002_eqe_3776
crossref_primary_10_1016_j_iintel_2023_100038
crossref_primary_10_1177_14613484241308430
crossref_primary_10_1016_j_istruc_2023_01_057
crossref_primary_10_1007_s40996_025_01734_4
crossref_primary_10_1016_j_jobe_2025_111791
crossref_primary_10_1016_j_soildyn_2024_109068
crossref_primary_10_1177_14613484241290564
crossref_primary_10_1002_eqe_4186
crossref_primary_10_1007_s13369_024_08960_4
crossref_primary_10_1038_s41598_025_93971_w
crossref_primary_10_1088_2631_8695_ac8278
crossref_primary_10_1007_s11071_025_11010_9
crossref_primary_10_1007_s11831_023_09931_y
crossref_primary_10_1080_15732479_2024_2340085
crossref_primary_10_1155_2023_8392421
crossref_primary_10_1007_s41062_024_01527_0
crossref_primary_10_1007_s42107_024_01022_y
crossref_primary_10_1016_j_istruc_2024_107322
crossref_primary_10_1002_eqe_4072
crossref_primary_10_1016_j_istruc_2024_107781
crossref_primary_10_1002_eqe_4211
crossref_primary_10_1016_j_istruc_2024_108099
crossref_primary_10_1016_j_jdd_2024_100001
crossref_primary_10_1016_j_istruc_2024_107042
crossref_primary_10_1007_s42417_024_01387_z
Cites_doi 10.1061/(ASCE)1084‐0680(2008)13:4(175
10.1007/s42417‐021‐00309‐7
10.1002/eqe.3034
10.1002/eqe.3011
10.1002/eqe.3124
10.1061/(ASCE)SC.1943‐5576.0000661
10.1002/stc.2234
10.1061/(ASCE)EM.1943‐7889.0001732
10.1002/eqe.3469
10.1002/stc.2665
10.1155/2003/368693
10.1007/s10518‐017‐0268‐6
10.1061/(ASCE)EM.1943‐7889.0001152
10.1016/j.soildyn.2019.03.016
10.1002/stc.2840
10.1002/stc.2409
10.1002/stc.266
10.1002/eqe.4290220704
10.1061/(ASCE)ST.1943‐541X.0001680
10.1016/j.soildyn.2021.106830
10.1061/(ASCE)EM.1943‐7889.0001262
10.1002/eqe.3165
10.1016/j.ymssp.2019.106337
10.1061/(ASCE)ST.1943‐541X.0002267
10.1002/eqe.4290210805
10.1002/stc.59
10.1006/jsvi.1996.0030
10.1016/j.engstruct.2021.113072
10.1002/stc.270
10.1016/j.soildyn.2021.106589
10.1016/j.engstruct.2019.05.091
10.1016/S0045‐7949(99)00126‐1
10.1002/9780470172742
10.1016/j.engstruct.2006.08.005
10.1002/stc.419
10.1016/j.soildyn.2020.106099
10.1016/j.engstruct.2021.112655
10.1007/s11803‐021‐2066‐z
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.3000
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_3000
STC3000
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
ABJCF
ADMLS
AEUYN
AFKRA
AGQPQ
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2930-c73c507f3fef6abd141167415c3af908a9fe454d9c1851ec567b39a86e75f48e3
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Wed Aug 13 11:03:35 EDT 2025
Tue Jul 01 04:05:47 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Wed Jan 22 16:24:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-c73c507f3fef6abd141167415c3af908a9fe454d9c1851ec567b39a86e75f48e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2408-2368
PQID 2700436949
PQPubID 2034347
PageCount 17
ParticipantIDs proquest_journals_2700436949
crossref_primary_10_1002_stc_3000
crossref_citationtrail_10_1002_stc_3000
wiley_primary_10_1002_stc_3000_STC3000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 9
2021; 20
2021; 246
2010; 17
1993; 22
2021; 28
2021; 149
2008; 15
2008; 13
2012; 19
2021; 243
2020; 146
2003
2021; 143
2021; 50
1996; 189
2016; 142
2022; 27
2019; 145
2003; 10
2018; 47
2018; 25
1999
2019; 121
2007; 29
1990
2020; 132
2000; 76
2019; 48
2019; 26
2017; 143
2019; 196
1992; 21
2018; 16
2005; 12
2019; 134
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
Roberts JB (e_1_2_9_35_1) 1990
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Clough RW (e_1_2_9_32_1) 2003
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 13
  start-page: 175
  issue: 4
  year: 2008
  end-page: 185
  article-title: Base isolation for seismic retrofitting of structures
  publication-title: Pract Period Struct Des Constr
– volume: 132
  year: 2020
  article-title: Optimal design and seismic performance of tuned fluid inerter applied to structures with friction pendulum isolators
  publication-title: Soil Dyn Earthq
– volume: 16
  start-page: 2021
  issue: 5
  year: 2018
  end-page: 2042
  article-title: Seismic assessment of a benchmark based isolated ordinary building with soil structure interaction
  publication-title: Bull Earthq Eng
– volume: 25
  issue: 10
  year: 2018
  article-title: Improving the dynamic performance of base‐isolated structures via tuned mass damper and inerter devices: a comparative study
  publication-title: Struct Control Health Monit
– volume: 50
  start-page: 2732
  issue: 10
  year: 2021
  end-page: 2753
  article-title: Experimental seismic performance assessment and numerical modelling of nonlinear inerter vibration absorber (IVA)‐equipped base isolated structures tested on shaking table
  publication-title: Earthq Eng Struct Dyn
– volume: 20
  start-page: 1021
  issue: 4
  year: 2021
  end-page: 1032
  article-title: Optimal design and effectiveness evaluation for inerter‐based devices on mitigating seismic responses of base isolated structures
  publication-title: Earthq Eng Eng Vib
– year: 2003
– volume: 134
  year: 2019
  article-title: Simplified analytical solution for the optimal design of Tuned Mass Damper Inerter for base isolated structures
  publication-title: Mech Syst Signal Process
– volume: 143
  year: 2021
  article-title: Performance of a nonlinear hybrid base isolation system under the ground motions
  publication-title: Soil Dyn Earthq
– volume: 28
  issue: 2
  year: 2021
  article-title: Assessment of the tuned mass damper inerter for seismic response control of base‐isolated structures
  publication-title: Struct Control Health Monit
– volume: 189
  start-page: 477
  issue: 4
  year: 1996
  end-page: 487
  article-title: Optimum damping in a nonlinear base isolation system
  publication-title: J Sound Vib
– volume: 121
  start-page: 200
  year: 2019
  end-page: 211
  article-title: Experimental and numerical assessment of the seismic response of steel structures with clutched inerters
  publication-title: Soil Dyn Earthq
– volume: 28
  issue: 12
  year: 2021
  article-title: Closed‐form design formulae for seismically isolated structure with a damping enhanced inerter system
  publication-title: Struct Control Health Monit
– volume: 47
  start-page: 1169
  issue: 5
  year: 2018
  end-page: 1192
  article-title: An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)
  publication-title: Earthq Eng Struct Dyn
– year: 1990
– volume: 19
  start-page: 246
  issue: 2
  year: 2012
  end-page: 259
  article-title: On the performance of gyro‐mass devices for displacement mitigation in base isolation systems
  publication-title: Struct Control Health Monit
– volume: 27
  issue: 2
  year: 2022
  article-title: Seismic performance assessment of clutching inerter damper for isolated bridges
  publication-title: Pract Period Struct Des Constr
– volume: 146
  issue: 4
  year: 2020
  article-title: Seismic assessment and optimal design for structures with clutching inerter dampers
  publication-title: J Eng Mech
– volume: 12
  start-page: 117
  issue: 1
  year: 2005
  end-page: 137
  article-title: Computational numerical models for seismic response of structures isolated by sliding systems
  publication-title: Struct Control Health Monit
– volume: 196
  year: 2019
  article-title: Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base‐isolated systems
  publication-title: Eng Struct
– volume: 143
  issue: 8
  year: 2017
  article-title: Energy transfer to high‐frequency modes of a building due to sudden change in stiffness at its base
  publication-title: J Eng Mech
– volume: 246
  year: 2021
  article-title: Dynamic behavior and seismic performance of base‐isolated structures with electromagnetic inertial mass dampers: analytical solutions and simulations
  publication-title: Eng Struct
– volume: 142
  issue: 11
  year: 2016
  article-title: Seismic protection of structures with supplemental rotational inertia
  publication-title: J Eng Mech
– volume: 48
  start-page: 1083
  issue: 9
  year: 2019
  end-page: 1090
  article-title: Analytical solution of seismic response of base‐isolated structure with supplemental inerter
  publication-title: Earthq Eng Struct Dyn
– volume: 149
  year: 2021
  article-title: Optimal design of dual isolated structure with supplemental tuned inerter damper based on performance requirements
  publication-title: Soil Dyn Earthq
– volume: 22
  start-page: 583
  issue: 7
  year: 1993
  end-page: 598
  article-title: Optimum damping in linear isolation systems
  publication-title: Earthq Eng Struct Dyn
– volume: 21
  start-page: 713
  issue: 8
  year: 1992
  end-page: 740
  article-title: Response spectrum method for multi‐support seismic excitations
  publication-title: Earthq Eng Struct Dyn
– volume: 10
  start-page: 1
  issue: 1
  year: 2003
  end-page: 13
  article-title: Effects of superstructure flexibility on the response of base‐isolated structures
  publication-title: Shock Vib
– volume: 17
  start-page: 1
  issue: 1
  year: 2010
  end-page: 22
  article-title: Stochastic response of building frames isolated by lead‐rubber bearings
  publication-title: Struct Control Health Monit
– volume: 15
  start-page: 737
  issue: 5
  year: 2008
  end-page: 745
  article-title: Application of angular‐mass dampers to base‐isolated benchmark building
  publication-title: Struct Control Health Monit
– volume: 76
  start-page: 651
  issue: 4
  year: 2000
  end-page: 661
  article-title: Optimum frictional elements in sliding isolation system
  publication-title: Comput Struct
– volume: 29
  start-page: 1201
  issue: 6
  year: 2007
  end-page: 1208
  article-title: Rotational inertia dampers with toggle bracing for vibration control of a building structure
  publication-title: Eng Struct
– volume: 143
  issue: 4
  year: 2017
  article-title: Design and evaluation of tuned inerter‐based dampers for the seismic control of MDOF structures
  publication-title: J Struct Eng
– volume: 47
  start-page: 1651
  issue: 7
  year: 2018
  end-page: 1672
  article-title: Displacement reduction effect and simplified evaluation method for SDOF systems using a clutching inerter damper
  publication-title: Earthq Eng Struct Dyn
– volume: 145
  issue: 2
  year: 2019
  article-title: Displacements and forces in structures with inerters when subjected to earthquakes
  publication-title: J Struct Eng
– volume: 26
  issue: 10
  year: 2019
  article-title: Effect of inerter for seismic mitigation comparing with base isolation
  publication-title: Struct Control Health Monit
– volume: 243
  year: 2021
  article-title: Inerter‐based structural vibration control: a state‐of‐the‐art review
  publication-title: Eng Struct
– volume: 9
  start-page: 1483
  issue: 7
  year: 2021
  end-page: 1497
  article-title: Optimum tuned inerter damper for base‐isolated structures
  publication-title: J Vib Eng Technol
– volume: 48
  start-page: 269
  issue: 2
  year: 2019
  end-page: 283
  article-title: Seismic isolation: early history
  publication-title: Earthq Eng Struct Dyn
– year: 1999
– ident: e_1_2_9_4_1
  doi: 10.1061/(ASCE)1084‐0680(2008)13:4(175
– ident: e_1_2_9_28_1
  doi: 10.1007/s42417‐021‐00309‐7
– ident: e_1_2_9_11_1
  doi: 10.1002/eqe.3034
– ident: e_1_2_9_19_1
  doi: 10.1002/eqe.3011
– ident: e_1_2_9_5_1
  doi: 10.1002/eqe.3124
– ident: e_1_2_9_14_1
  doi: 10.1061/(ASCE)SC.1943‐5576.0000661
– ident: e_1_2_9_20_1
  doi: 10.1002/stc.2234
– ident: e_1_2_9_13_1
  doi: 10.1061/(ASCE)EM.1943‐7889.0001732
– ident: e_1_2_9_31_1
  doi: 10.1002/eqe.3469
– ident: e_1_2_9_22_1
  doi: 10.1002/stc.2665
– ident: e_1_2_9_36_1
  doi: 10.1155/2003/368693
– ident: e_1_2_9_33_1
  doi: 10.1007/s10518‐017‐0268‐6
– ident: e_1_2_9_8_1
  doi: 10.1061/(ASCE)EM.1943‐7889.0001152
– ident: e_1_2_9_12_1
  doi: 10.1016/j.soildyn.2019.03.016
– ident: e_1_2_9_30_1
  doi: 10.1002/stc.2840
– ident: e_1_2_9_18_1
  doi: 10.1002/stc.2409
– ident: e_1_2_9_37_1
  doi: 10.1002/stc.266
– ident: e_1_2_9_38_1
  doi: 10.1002/eqe.4290220704
– ident: e_1_2_9_9_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0001680
– ident: e_1_2_9_29_1
  doi: 10.1016/j.soildyn.2021.106830
– ident: e_1_2_9_41_1
  doi: 10.1061/(ASCE)EM.1943‐7889.0001262
– ident: e_1_2_9_17_1
  doi: 10.1002/eqe.3165
– ident: e_1_2_9_21_1
  doi: 10.1016/j.ymssp.2019.106337
– ident: e_1_2_9_10_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0002267
– ident: e_1_2_9_34_1
  doi: 10.1002/eqe.4290210805
– volume-title: Random Vibration and Statistical Linearization
  year: 1990
  ident: e_1_2_9_35_1
– ident: e_1_2_9_3_1
  doi: 10.1002/stc.59
– ident: e_1_2_9_39_1
  doi: 10.1006/jsvi.1996.0030
– ident: e_1_2_9_26_1
  doi: 10.1016/j.engstruct.2021.113072
– ident: e_1_2_9_15_1
  doi: 10.1002/stc.270
– ident: e_1_2_9_24_1
  doi: 10.1016/j.soildyn.2021.106589
– ident: e_1_2_9_23_1
  doi: 10.1016/j.engstruct.2019.05.091
– ident: e_1_2_9_40_1
  doi: 10.1016/S0045‐7949(99)00126‐1
– ident: e_1_2_9_2_1
  doi: 10.1002/9780470172742
– ident: e_1_2_9_7_1
  doi: 10.1016/j.engstruct.2006.08.005
– ident: e_1_2_9_16_1
  doi: 10.1002/stc.419
– ident: e_1_2_9_25_1
  doi: 10.1016/j.soildyn.2020.106099
– volume-title: Dynamics of Structures
  year: 2003
  ident: e_1_2_9_32_1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.engstruct.2021.112655
– ident: e_1_2_9_27_1
  doi: 10.1007/s11803‐021‐2066‐z
SSID ssj0026285
Score 2.4471908
Snippet Summary The performance and optimal design of the base‐isolated structure supplemented with clutching inerter damper (CID) subjected to seismic loading are...
The performance and optimal design of the base‐isolated structure supplemented with clutching inerter damper (CID) subjected to seismic loading are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms clutching inerter damper
Damping ratio
Design
Design optimization
Earthquake dampers
Earthquake loads
Earthquakes
Equivalence
equivalent damping
equivalent linearization
Excitation
Nonlinear analysis
nonstationary earthquake
Optimization
optimum inertance
Seismic activity
seismic base isolation
Seismic response
Stationary response
Superstructures
Title Performance and optimal design of base‐isolated structures with clutching inerter damper
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.3000
https://www.proquest.com/docview/2700436949
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEMeD9KQH32K1SgTR07a7m0c3R6mWIiiiLRQ9LHktiNqKbS-e_Ah-Rj-Jk-xuW0VBPO0lgd3MJPPPZuYXhA6FjIQB5wmYkGFAKWxQlGI6ECZOFBGUWc_uvLjknR4977N-kVXpamFyPsT0h5ubGX69dhNcqlFjBg0djXWdwISG5Tci3GHzT6-n5KjYVQZ6VCplAbgsK7mzYdwoO36NRDN5OS9SfZRpr6C78v3y5JKH-mSs6vr1G7rxfx-wipYL8YlPcm9ZQwt2sI6W5pCEG-j2alZJgOXA4CGsKU_QyfhUDzzMsAt8H2_v9-C1IFQNzhG0E9i3Y_dXF2twZp-hiV1hIdgNGwni_GUT9dpn3VYnKO5fCDSIgDDQTaJBLmYksxmXykTUHdpAxNdEZiJMpMgsZdQIDUE_sprxJphXJtw2WUYTS7ZQZTAc2G2EtQqp5CKKrTvGzEJlqFFRZHlkHF4mrKLj0hapLuDk7o6MxzTHKscpjFbqRquKDqYtn3Mgxw9taqU502JKjlJ3wk4JF1RU0ZG3y6_905tuyz13_tpwFy3GrizC557VUAXG3e6BWBmrfe-Wn5F152I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HNSDb7FaNYLoaes-km2DJ6mW-mgRbUFEWPJaELUVrRdP_gR_o7_ESbbbqiiIp71MIJuZyXyTzHwB2OIi4BqNx2Nc-B6lmKBIyZTHdViREafMOO7ORjOut-nxJbscgb28FybjhxgcuFnPcPu1dXB7IL07ZA196qlShB49CuMUcYbNvA7OB9xRoe0NdGSplHlotCxnnvXD3Xzk11g0BJifYaqLM7UZuM5nmJWX3Jaee7KkXr6RN_7zF2Zhuo8_yX5mMHMwYjrzMPWJlXABrs6GzQREdDTp4rZyj4O0q_Yg3ZTY2Pf--naDhotYVZOMhfYZU3diD3aJQnt2RZrE9hai6ogWiM8fF6FdO2xV617_CQZPIQ7wPVWOFC5tGqUmjYXUAbX3Nhj0VSRS7lcETw1lVHOFcT8wisVl1LCoxKbMUlox0RKMdbodswxESZ-KmAehsTeZqS811TIITBxoyzDjF2AnV0ai-vzk9pmMuyRjVg4TXK3ErlYBNgeSDxknxw8yxVyfSd8rnxJ7yU6jmFNegG2nmF_HJxetqv2u_FVwAybqrcZpcnrUPFmFydB2SbhStCKMoQ7MGmKXnlx3NvoBCqbrgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60gujBt1ifEURPW_eRbJujqMU34gNED0ueIGortl48-RP8jf4SJ9ndVkVBPO1lAtnMTOZLZuYLwBoXEddoPAHjIgwoxQOKlEwFXMcNmXDKjOfuPD5J9y7pwRW7KqoqXS9Mzg_Ru3BznuH3a-fgj9pu9klDO11VS9ChB2GIpggkHCA661FHxa410HOlUhagzbKSeDaMN8uRX0NRH19-Rqk-zDTH4aacYF5dcld77sqaevnG3fi_P5iAsQJ9kq3cXCZhwLSmYPQTJ-E0XJ_2WwmIaGnSxk3lAQdpX-tB2pa4yPf--naLZotIVZOcg_YZD-7EXesShdbsSzSJ6yxExREtEJ0_zcBlc_diey8oHmAIFKKAMFD1RCFetIk1NhVSR9RlbTDkq0RYHjYEt4YyqrnCqB8ZxdI66lc0UlNnljZMMguVVrtl5oAoGVKR8ig2Lo9pQ6mpllFk0kg7fpmwChulLjJVsJO7RzLus5xXOc5wtTK3WlVY7Uk-5owcP8gslurMCp_sZC7FTpOUU16Fda-XX8dn5xfb7jv_V8EVGD7daWZH-yeHCzASuxYJX4e2CBVUgVlC4NKVy95CPwBlGuow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+and+optimal+design+of+base%E2%80%90isolated+structures+with+clutching+inerter+damper&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Jangid%2C+Radhey+Shyam&rft.date=2022-09-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fstc.3000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stc_3000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon