Distributed sliding mode control for leader‐follower formation flight of fixed‐wing unmanned aerial vehicles subject to velocity constraints
Summary This paper considers the leader‐follower formation flight of fixed‐wing unmanned aerial vehicles (UAVs) subject to velocity constraints. A novel distributed sliding mode control law is proposed for each UAV, whose kinematics is described by a unicycle model with a saturated angular velocity...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 31; no. 6; pp. 2110 - 2125 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
This paper considers the leader‐follower formation flight of fixed‐wing unmanned aerial vehicles (UAVs) subject to velocity constraints. A novel distributed sliding mode control law is proposed for each UAV, whose kinematics is described by a unicycle model with a saturated angular velocity and a bounded linear velocity within an interval. The designed control law of each follower UAV only uses its own information and the information of its leader UAV. Driven by the designed control law, the desired formation is achieved with rigorous proof, while the follower UAVs' constraints of both the linear and angular velocities are satisfied. Moreover, the follower's speed adjustment range is relaxed and not required to be strictly larger than their leaders'. Finally, numerical simulations are presented to verify the results. |
---|---|
AbstractList | Summary
This paper considers the leader‐follower formation flight of fixed‐wing unmanned aerial vehicles (UAVs) subject to velocity constraints. A novel distributed sliding mode control law is proposed for each UAV, whose kinematics is described by a unicycle model with a saturated angular velocity and a bounded linear velocity within an interval. The designed control law of each follower UAV only uses its own information and the information of its leader UAV. Driven by the designed control law, the desired formation is achieved with rigorous proof, while the follower UAVs' constraints of both the linear and angular velocities are satisfied. Moreover, the follower's speed adjustment range is relaxed and not required to be strictly larger than their leaders'. Finally, numerical simulations are presented to verify the results. This paper considers the leader‐follower formation flight of fixed‐wing unmanned aerial vehicles (UAVs) subject to velocity constraints. A novel distributed sliding mode control law is proposed for each UAV, whose kinematics is described by a unicycle model with a saturated angular velocity and a bounded linear velocity within an interval. The designed control law of each follower UAV only uses its own information and the information of its leader UAV. Driven by the designed control law, the desired formation is achieved with rigorous proof, while the follower UAVs' constraints of both the linear and angular velocities are satisfied. Moreover, the follower's speed adjustment range is relaxed and not required to be strictly larger than their leaders'. Finally, numerical simulations are presented to verify the results. |
Author | Wang, Xiangke Li, Zhongkui Yu, Yangguang |
Author_xml | – sequence: 1 givenname: Xiangke orcidid: 0000-0002-5074-7052 surname: Wang fullname: Wang, Xiangke email: xkwang@nudt.edu.cn organization: National University of Defense Technology – sequence: 2 givenname: Yangguang surname: Yu fullname: Yu, Yangguang organization: National University of Defense Technology – sequence: 3 givenname: Zhongkui surname: Li fullname: Li, Zhongkui organization: Peking University |
BookMark | eNp1kM9uGyEQh1HlSk2cSn0EpF5yWRcWL7scK-dfJSuRova8YmHWwcLgAhvHtzxCnjFPUtbuKUpOoOGb3zDfKZo47wChb5TMKCHlj-DUrCKMfEInlAhR0JKJyXifi6IRJfuCTmNcE5LfyvkJerkwMQXTDQk0jtZo41Z44zVg5V0K3uLeB2xBagivzy-9t9bvIIzVjUzGO9xbs3pI2Pe4N0-gM7QbMwa3kc7lUAnBSIsf4cEoCxHHoVuDSjj5XLNembQfZ-VfSONSPEOfe2kjfP1_TtGfq8vfi5tieXf9a_FzWahSMFIorqlqFFdM6K6uNEhKNDTQ1LUATgWvuq7mwKTs5px3GScVZYSrumrmLHuYou_H3G3wfweIqV37Ibg8si0rQpu6ZJxn6vxIqeBjDNC322A2MuxbStrRd5t9t6PvjM7eoHm1g6JxM_teQ3Fs2BkL-w-D2_vbxYH_B-1DmIE |
CitedBy_id | crossref_primary_10_3390_s22030909 crossref_primary_10_1016_j_ast_2024_109514 crossref_primary_10_1049_cth2_12275 crossref_primary_10_1109_TAES_2022_3226676 crossref_primary_10_1007_s10514_023_10126_4 crossref_primary_10_3390_app13105934 crossref_primary_10_3390_machines12080543 crossref_primary_10_3390_app14010294 crossref_primary_10_1016_j_ast_2024_109812 crossref_primary_10_1177_01423312231190446 crossref_primary_10_1007_s42405_022_00447_6 crossref_primary_10_1007_s11424_023_2387_2 crossref_primary_10_1155_2021_6656422 crossref_primary_10_1002_rnc_7083 crossref_primary_10_1002_rnc_7368 crossref_primary_10_1016_j_neucom_2020_11_043 crossref_primary_10_1109_ACCESS_2022_3225434 crossref_primary_10_1109_TIV_2023_3339836 crossref_primary_10_3390_aerospace10020118 crossref_primary_10_3390_drones6100298 crossref_primary_10_1109_TASE_2021_3094539 crossref_primary_10_1109_TAES_2024_3411563 crossref_primary_10_1002_rnc_6953 crossref_primary_10_1002_rnc_7625 crossref_primary_10_3390_math10101659 crossref_primary_10_1016_j_isatra_2025_01_001 crossref_primary_10_1016_j_jfranklin_2024_106903 crossref_primary_10_1109_ACCESS_2022_3170583 crossref_primary_10_1109_TAES_2023_3286828 crossref_primary_10_1109_ACCESS_2021_3130296 crossref_primary_10_1080_00207179_2023_2260006 crossref_primary_10_3390_drones6070159 crossref_primary_10_1016_j_cja_2025_103445 crossref_primary_10_1016_j_automatica_2023_111492 crossref_primary_10_3390_drones7040231 crossref_primary_10_1002_rnc_6387 crossref_primary_10_1007_s10846_022_01698_x crossref_primary_10_1109_TITS_2023_3240135 crossref_primary_10_1016_j_oceaneng_2024_117906 |
Cites_doi | 10.1016/j.automatica.2007.09.019 10.1109/AIM.2007.4412504 10.1515/ama-2017-0026 10.1002/rnc.1814 10.1002/rnc.2830 10.1109/TRO.2008.2006244 10.1002/rnc.1641 10.1016/j.automatica.2013.11.008 10.1109/TIE.2008.2002717 10.1109/70.976023 10.1504/IJVP.2018.088783 10.1002/rnc.4232 10.1109/TRA.2002.803463 10.12989/sss.2014.13.6.1065 10.1109/TRA.2003.819598 10.1109/TCST.2015.2437328 10.1002/rnc.3308 10.1016/j.sysconle.2010.06.014 10.1016/j.neucom.2016.03.021 10.1109/CDC.2004.1428782 10.1002/rnc.3195 10.1109/TII.2012.2219061 10.1002/rnc.1847 10.1177/0278364909104290 10.1016/S1474-6670(17)40028-0 10.1016/j.automatica.2014.10.022 10.1016/j.automatica.2010.05.020 10.1016/j.automatica.2012.11.031 10.1016/j.automatica.2009.09.002 10.1109/TIE.2015.2504042 10.1109/TCST.2004.826956 10.1007/s11432-018-9887-5 10.1177/0142331212454046 10.1016/j.arcontrol.2016.04.018 10.1109/TRA.2004.825275 10.1016/S0005-1098(97)00055-1 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.5030 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 2125 |
ExternalDocumentID | 10_1002_rnc_5030 RNC5030 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61973309, 61973006 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2930-c6d1c8c6c39db75dea10de8e8779e61965bb76e3aab466bc6d051306c75843923 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Fri Jul 25 12:08:34 EDT 2025 Tue Jul 01 02:06:58 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 Wed Jan 22 16:29:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-c6d1c8c6c39db75dea10de8e8779e61965bb76e3aab466bc6d051306c75843923 |
Notes | Funding information National Natural Science Foundation of China, 61973309, 61973006 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5074-7052 |
PQID | 2501872366 |
PQPubID | 1026344 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2501872366 crossref_primary_10_1002_rnc_5030 crossref_citationtrail_10_1002_rnc_5030 wiley_primary_10_1002_rnc_5030_RNC5030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 45 2018; 28 2004; 20 2010; 59 2002; 18 2013; 2 2013; 49 2013; 23 2015; 53 2007 2004 2008; 55 2003; 19 2002 2013; 9 2015; 24 2015; 25 2019; 62 2018; 4 2010; 46 1997; 33 2010; 29 2013; 35 2017; 11 2015; 63 2004; 12 2016; 41 2016; 199 2014; 13 2008; 24 2011; 21 2008; 44 2001; 17 2014; 50 2016; 26 1998; 31 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Gupta SG (e_1_2_7_2_1) 2013; 2 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 Khalil HK (e_1_2_7_38_1) 2002 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_39_1 |
References_xml | – volume: 45 start-page: 2857 issue: 12 year: 2009 end-page: 2863 article-title: Interconnection topologies for multi‐agent coordination under leader–follower framework publication-title: Automatica – volume: 12 start-page: 706 issue: 5 year: 2004 end-page: 716 article-title: Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints publication-title: IEEE Trans Control Syst Tech – volume: 24 start-page: 727 issue: 2 year: 2015 end-page: 732 article-title: Leader–follower formation and tracking control of mobile robots along straight paths publication-title: IEEE Trans Control Syst Tech – volume: 33 start-page: 1393 issue: 7 year: 1997 end-page: 1399 article-title: Tracking control of mobile robots: a case study in backstepping publication-title: Automatica – volume: 20 start-page: 443 issue: 3 year: 2004 end-page: 455 article-title: Leader‐to‐formation stability publication-title: IEEE Trans Robot Automat – volume: 199 start-page: 204 year: 2016 end-page: 218 article-title: Multi‐agent distributed coordination control: developments and directions via graph viewpoint publication-title: Neurocomputing – volume: 21 start-page: 1237 issue: 11 year: 2011 end-page: 1256 article-title: Constructing consensus controllers for networks with identical general linear agents publication-title: Int J Robust Nonlinear Control – volume: 13 start-page: 1065 issue: 6 year: 2014 end-page: 1094 article-title: A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering publication-title: Smart Struct Syst – year: 2007 – volume: 31 start-page: 201 issue: 27 year: 1998 end-page: 206 article-title: Exponential tracking control of a mobile car using a cascaded approach publication-title: IFAC Proc Vol – volume: 19 start-page: 933 issue: 6 year: 2003 end-page: 941 article-title: A decentralized approach to formation maneuvers publication-title: IEEE Trans Robot Automat – volume: 4 start-page: 46 issue: 1 year: 2018 end-page: 73 article-title: Advanced control techniques for unmanned ground vehicle: literature survey publication-title: Int J Veh Perform – volume: 29 start-page: 727 issue: 6 year: 2010 end-page: 747 article-title: Leader‐follower formation control of multiple non‐holonomic mobile robots incorporating a receding‐horizon scheme publication-title: Int J Robot Res – volume: 11 start-page: 178 issue: 3 year: 2017 end-page: 185 article-title: Flexible structure control scheme of a UAVs formation to improve the formation stability during maneuvers publication-title: Acta Mechanica et Automatica – volume: 2 start-page: 1646 issue: 4 year: 2013 end-page: 1658 article-title: Review of unmanned aircraft system (UAS) publication-title: Int J Adv Res Comput Eng Tech – volume: 9 start-page: 427 issue: 1 year: 2013 end-page: 443 article-title: An overview of recent progress in the study of distributed multi‐agent coordination publication-title: IEEE Trans Ind Inform – volume: 49 start-page: 592 issue: 2 year: 2013 end-page: 600 article-title: Distributed formation control of nonholonomic mobile robots without global position measurements publication-title: Automatica – volume: 63 start-page: 1289 issue: 2 year: 2015 end-page: 1298 article-title: Distributed formation control of nonholonomic vehicles subject to velocity constraints publication-title: IEEE Trans Ind Electron – volume: 62 start-page: 212204 issue: 11 year: 2019 article-title: Coordinated flight control of miniature fixed‐wing UAV swarms: methods and experiments publication-title: Sci China Inf Sci – volume: 55 start-page: 3944 issue: 11 year: 2008 end-page: 3953 article-title: Sliding‐mode formation control for cooperative autonomous mobile robots publication-title: IEEE Trans Ind Electron – volume: 25 start-page: 2101 issue: 13 year: 2015 end-page: 2121 article-title: Containment control of linear multi‐agent systems with multiple leaders of bounded inputs using distributed continuous controllers publication-title: Int J Robust Nonlinear Control – volume: 41 start-page: 71 year: 2016 end-page: 93 article-title: Unmanned surface vehicles: an overview of developments and challenges publication-title: Ann Rev Control – volume: 46 start-page: 1382 issue: 8 year: 2010 end-page: 1387 article-title: Distributed tracking control of leader–follower multi‐agent systems under noisy measurement publication-title: Automatica – volume: 23 start-page: 48 issue: 1 year: 2013 end-page: 66 article-title: Distributed output regulation of leader–follower multi‐agent systems publication-title: Int J Robust Nonlinear Control – volume: 23 start-page: 534 issue: 5 year: 2013 end-page: 547 article-title: Distributed containment control of multi‐agent systems with general linear dynamics in the presence of multiple leaders publication-title: Int J Robust Nonlinear Control – volume: 26 start-page: 143 issue: 1 year: 2016 end-page: 153 article-title: Leader–follower flocking based on distributed event‐triggered hybrid control publication-title: Int J Robust Nonlinear Control – volume: 17 start-page: 905 issue: 6 year: 2001 end-page: 908 article-title: Modeling and control of formations of nonholonomic mobile robots publication-title: IEEE Trans Robot Automat – volume: 24 start-page: 1457 issue: 6 year: 2008 end-page: 1462 article-title: Observer‐based leader‐following formation control using onboard sensor information publication-title: IEEE Trans Robot – year: 2002 – volume: 35 start-page: 426 issue: 4 year: 2013 end-page: 436 article-title: Consensus control of second‐order leader–follower multi‐agent systems with event‐triggered strategy publication-title: Trans Inst Measur Control – volume: 23 start-page: 1433 issue: 13 year: 2013 end-page: 1455 article-title: On input‐to‐state stability‐based design for leader/follower formation control with measurement delays publication-title: Int J Robust Nonlinear Control – volume: 53 start-page: 424 year: 2015 end-page: 440 article-title: A survey of multi‐agent formation control publication-title: Automatica – year: 2004 – volume: 50 start-page: 499 issue: 2 year: 2014 end-page: 506 article-title: Global consensus for discrete‐time multi‐agent systems with input saturation constraints publication-title: Automatica – volume: 59 start-page: 543 issue: 9 year: 2010 end-page: 552 article-title: Distributed leader–follower flocking control for multi‐agent dynamical systems with time‐varying velocities publication-title: Syst Control Lett – volume: 18 start-page: 813 issue: 5 year: 2002 end-page: 825 article-title: A vision‐based formation control framework publication-title: IEEE Trans Robot Automat – volume: 44 start-page: 1343 issue: 5 year: 2008 end-page: 1349 article-title: Leader–follower formation control of nonholonomic mobile robots with input constraints publication-title: Automatica – volume: 28 start-page: 4287 issue: 15 year: 2018 end-page: 4308 article-title: Distributed adaptive fault‐tolerant leader‐following formation control of nonlinear uncertain second‐order multi‐agent systems publication-title: Int J Robust Nonlinear Control – ident: e_1_2_7_17_1 doi: 10.1016/j.automatica.2007.09.019 – ident: e_1_2_7_12_1 doi: 10.1109/AIM.2007.4412504 – ident: e_1_2_7_30_1 doi: 10.1515/ama-2017-0026 – ident: e_1_2_7_20_1 doi: 10.1002/rnc.1814 – ident: e_1_2_7_29_1 doi: 10.1002/rnc.2830 – ident: e_1_2_7_11_1 doi: 10.1109/TRO.2008.2006244 – ident: e_1_2_7_14_1 doi: 10.1002/rnc.1641 – ident: e_1_2_7_15_1 doi: 10.1016/j.automatica.2013.11.008 – ident: e_1_2_7_35_1 doi: 10.1109/TIE.2008.2002717 – ident: e_1_2_7_10_1 doi: 10.1109/70.976023 – ident: e_1_2_7_3_1 doi: 10.1504/IJVP.2018.088783 – ident: e_1_2_7_27_1 doi: 10.1002/rnc.4232 – ident: e_1_2_7_16_1 doi: 10.1109/TRA.2002.803463 – volume-title: Nonlinear Systems year: 2002 ident: e_1_2_7_38_1 – ident: e_1_2_7_5_1 doi: 10.12989/sss.2014.13.6.1065 – ident: e_1_2_7_13_1 doi: 10.1109/TRA.2003.819598 – volume: 2 start-page: 1646 issue: 4 year: 2013 ident: e_1_2_7_2_1 article-title: Review of unmanned aircraft system (UAS) publication-title: Int J Adv Res Comput Eng Tech – ident: e_1_2_7_34_1 doi: 10.1109/TCST.2015.2437328 – ident: e_1_2_7_22_1 doi: 10.1002/rnc.3308 – ident: e_1_2_7_26_1 doi: 10.1016/j.sysconle.2010.06.014 – ident: e_1_2_7_7_1 doi: 10.1016/j.neucom.2016.03.021 – ident: e_1_2_7_25_1 doi: 10.1109/CDC.2004.1428782 – ident: e_1_2_7_24_1 doi: 10.1002/rnc.3195 – ident: e_1_2_7_9_1 doi: 10.1109/TII.2012.2219061 – ident: e_1_2_7_23_1 doi: 10.1002/rnc.1847 – ident: e_1_2_7_21_1 doi: 10.1177/0278364909104290 – ident: e_1_2_7_32_1 doi: 10.1016/S1474-6670(17)40028-0 – ident: e_1_2_7_8_1 doi: 10.1016/j.automatica.2014.10.022 – ident: e_1_2_7_19_1 doi: 10.1016/j.automatica.2010.05.020 – ident: e_1_2_7_36_1 doi: 10.1016/j.automatica.2012.11.031 – ident: e_1_2_7_18_1 doi: 10.1016/j.automatica.2009.09.002 – ident: e_1_2_7_37_1 doi: 10.1109/TIE.2015.2504042 – ident: e_1_2_7_31_1 doi: 10.1109/TCST.2004.826956 – ident: e_1_2_7_6_1 doi: 10.1007/s11432-018-9887-5 – ident: e_1_2_7_28_1 doi: 10.1177/0142331212454046 – ident: e_1_2_7_4_1 doi: 10.1016/j.arcontrol.2016.04.018 – ident: e_1_2_7_39_1 doi: 10.1109/TRA.2004.825275 – ident: e_1_2_7_33_1 doi: 10.1016/S0005-1098(97)00055-1 |
SSID | ssj0009924 |
Score | 2.5045269 |
Snippet | Summary
This paper considers the leader‐follower formation flight of fixed‐wing unmanned aerial vehicles (UAVs) subject to velocity constraints. A novel... This paper considers the leader‐follower formation flight of fixed‐wing unmanned aerial vehicles (UAVs) subject to velocity constraints. A novel distributed... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2110 |
SubjectTerms | Angular velocity Control theory distributed control fixed‐wing UAV formation control Formation flying Kinematics Mathematical models Military strategy Sliding mode control Unmanned aerial vehicles Velocity velocity constraints |
Title | Distributed sliding mode control for leader‐follower formation flight of fixed‐wing unmanned aerial vehicles subject to velocity constraints |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5030 https://www.proquest.com/docview/2501872366 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kJz34LVarrCB6Sttskk1zlGopgh6KhYKHsLvZoFhTaVIVT_6E_kZ_iTObpK2iIJ5yyORrd2b2zfLyhpDjgAnPhhxgeVIICyJRWVJCldKMzeqqfW429K-uebfvXg68QcGqxH9hcn2I2YYbRobJ1xjgQqaNuWjoGOLHAxeF9ItULcRDvblyVBDk_WwBAFstADGl7myTNcoLv65Ec3i5CFLNKtNZI7fl--Xkkof6JJN19fZNuvF_H7BOVgvwSc9yb9kgSzrZJCsLkoRbZHqOSrrYBEtHFDAoLm0U2-XQgtROAeXSoSFAf7xPY3Aj7LNGZz9B0niI9T4dxTS-f9URGL3gPSbJo8CcToXxefqs7wwjj6YTiXtBNBtR5C8pKAvwWalpXpGl26Tfubhpd62ia4OlADo0LcUjW7UUV04QSd-LtLCbkW7plu8HmqOAoZQ-144Q0uVcgjnkBShcFFQugI6Ys0MqySjRu4QyMNZQ0jkKTkW2K-wg9kTgepq7SvqsSk7LGQxVIWmOLzcMczFmFsIYhzjGVXI0s3zKZTx-sKmVThAWgZyGDAUPfeZwXiUnZjZ_vT7sXbfxuPdXw32yzJAhY3hANVLJxhN9ABAnk4fGmT8BpZ39Qg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB6l4dByKLQFEUrpIqH2ZIjX9jpWTyglSmmSQ5RIOSBZu-u1WhESlDht1VMfgWfsk3RmbSehAglx8sGz_tmdmf1mNPsNwHHEZeCiD3ACJaWDlqgdpTBKqad2dzWhsAn9bk-0h_7FKBhV4FN5Fibnh1gm3MgyrL8mA6eE9OmKNXSGBhSgjj6DDWrobeOp_oo7KoryjrYIgZ0GwpiSebbOT8uRd_eiFcBch6l2n2ltwWX5hXl5ydXJIlMn-vd_5I1P_IVteFngT3aWK8wrqJjJa9hcYyV8A7efiUyX-mCZhCEMpd2NUcccVtS1MwS6bGxroP_-uU1Rk6jVGlueg2TpmEJ-Nk1Z-v2XSVDoJz1jMbmW5NaZtGrPfphvtiiPzReK0kEsmzIqYdIYGdC75rZ_RTbfgWHrfNBsO0XjBkcjeqg7WiSubmihvShRYZAY6dYT0zCNMIyMIA5DpUJhPCmVL4RCcXQNGLtoDF4QIHFvF6qT6cTsAeMobDCq8zTeSlxfulEayMgPjPC1CnkNPpZLGOuC1Zw-bhznfMw8xjmOaY5rcLSUvMmZPO6ROSi1IC5seR5z4jwMuSdEDT7Y5XxwfNzvNem6_1jB9_C8Peh24s6X3te38IJTwYwtCzqAajZbmHeIeDJ1aDX7H1wxAWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFB7aCktYsvLSBU9BRIncZJjxbLa0rKqViAh9RDZjiMQ2ywiSVv1xE_gN_JLmHGSXVq1UtVTDhnnYc_jG2v8DcDbhMvQQx_ghEpKBy1RO0phluLmNrqaSNgN_ZORGJ4Fx-fheVtVSWdhGn6I2YYbWYb112Tg11l-MCcNvUH7CVFFn8BSINyYNLo_nlNHJUnT0BYRsBMjiumIZ11-0I38NRTN8eVjlGrDzOAFfOk-sKkuudqvK7Wvf_7G3fh_f7ACz1v0yd436vISFkyxCs8ecRK-grs-UelSFyyTMQShFNsY9cthbVU7Q5jLJrYC-v72Lkc9okZrbHYKkuUTSvjZNGf55Q-TodB3ekZdfJXk1Jm0Ss--mQtbksfKWtFmEKumjAqYNOYF9K7Sdq-oytdwNjg6PRw6bdsGRyN2cB0tMk_HWmg_yVQUZkZ6bmZiE0dRYgQxGCoVCeNLqQIhFIqjY8DMRWPqgvCI-2uwWEwLsw6Mo7DBnM7XeCvzAukleSiTIDQi0CriPXjXrWCqW05z-rhJ2rAx8xTnOKU57sHuTPK64fH4g8xmpwRpa8llyonxMOK-ED3Ys6v51_HpeHRI1zf_KrgDy5_7g_TTh9HHDXjKqVrG1gRtwmJ1U5sthDuV2rZ6_QCGVgAk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+sliding+mode+control+for+leader%E2%80%90follower+formation+flight+of+fixed%E2%80%90wing+unmanned+aerial+vehicles+subject+to+velocity+constraints&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Wang%2C+Xiangke&rft.au=Yu%2C+Yangguang&rft.au=Li%2C+Zhongkui&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=6&rft.spage=2110&rft.epage=2125&rft_id=info:doi/10.1002%2Frnc.5030&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |