Wind‐ and sea wave‐induced response mitigations of offshore wind turbines using track nonlinear energy sinks

Summary Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently, OWTs have become vulnerable to wind and sea wave excitations. Mitigations of unfavorable OWT vibrations have been extensively invest...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 9
Main Authors Zuo, Haoran, Zhang, Jian, Yuan, Guo‐Kai, Zhu, Songye
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1545-2255
1545-2263
DOI10.1002/stc.2990

Cover

Loading…
Abstract Summary Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently, OWTs have become vulnerable to wind and sea wave excitations. Mitigations of unfavorable OWT vibrations have been extensively investigated, with the majority focusing on passive vibration control strategies with control performance sensitive to structural frequency changes. Nonlinear energy sinks (NESs) are regarded as effective vibration control methods because their broadband fashion is robust against variations in structural frequencies. A novel NES with an improved track profile that combines both second‐ and fourth‐order polynomials (Track II NES) is proposed in the present study to improve the vibration mitigation effectiveness of traditional Track I NES with a track profile of a fourth‐order polynomial only. Governing equations of a single‐degree‐of‐freedom system with Track II NES are first established, and an equivalent linearization method is adopted to optimize the track profile and damping of the Track II NES. Moreover, a detailed 3D finite element model of a representative 5‐MW OWT is developed. Control effectiveness of the Track II NES is examined under different structural stiffnesses and mean wind speeds and then compared with that of conventional tuned mass damper (TMD) and Track I NES. Numerical results showed that the Track II NES can effectively suppress displacement and acceleration responses of OWTs and outperform its counterpart Track I NES. Moreover, the Track II NES can obtain reduction ratios close to those of the TMD but with better robustness against the detuning effect.
AbstractList Summary Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently, OWTs have become vulnerable to wind and sea wave excitations. Mitigations of unfavorable OWT vibrations have been extensively investigated, with the majority focusing on passive vibration control strategies with control performance sensitive to structural frequency changes. Nonlinear energy sinks (NESs) are regarded as effective vibration control methods because their broadband fashion is robust against variations in structural frequencies. A novel NES with an improved track profile that combines both second‐ and fourth‐order polynomials (Track II NES) is proposed in the present study to improve the vibration mitigation effectiveness of traditional Track I NES with a track profile of a fourth‐order polynomial only. Governing equations of a single‐degree‐of‐freedom system with Track II NES are first established, and an equivalent linearization method is adopted to optimize the track profile and damping of the Track II NES. Moreover, a detailed 3D finite element model of a representative 5‐MW OWT is developed. Control effectiveness of the Track II NES is examined under different structural stiffnesses and mean wind speeds and then compared with that of conventional tuned mass damper (TMD) and Track I NES. Numerical results showed that the Track II NES can effectively suppress displacement and acceleration responses of OWTs and outperform its counterpart Track I NES. Moreover, the Track II NES can obtain reduction ratios close to those of the TMD but with better robustness against the detuning effect.
Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently, OWTs have become vulnerable to wind and sea wave excitations. Mitigations of unfavorable OWT vibrations have been extensively investigated, with the majority focusing on passive vibration control strategies with control performance sensitive to structural frequency changes. Nonlinear energy sinks (NESs) are regarded as effective vibration control methods because their broadband fashion is robust against variations in structural frequencies. A novel NES with an improved track profile that combines both second‐ and fourth‐order polynomials (Track II NES) is proposed in the present study to improve the vibration mitigation effectiveness of traditional Track I NES with a track profile of a fourth‐order polynomial only. Governing equations of a single‐degree‐of‐freedom system with Track II NES are first established, and an equivalent linearization method is adopted to optimize the track profile and damping of the Track II NES. Moreover, a detailed 3D finite element model of a representative 5‐MW OWT is developed. Control effectiveness of the Track II NES is examined under different structural stiffnesses and mean wind speeds and then compared with that of conventional tuned mass damper (TMD) and Track I NES. Numerical results showed that the Track II NES can effectively suppress displacement and acceleration responses of OWTs and outperform its counterpart Track I NES. Moreover, the Track II NES can obtain reduction ratios close to those of the TMD but with better robustness against the detuning effect.
Author Yuan, Guo‐Kai
Zhu, Songye
Zhang, Jian
Zuo, Haoran
Author_xml – sequence: 1
  givenname: Haoran
  orcidid: 0000-0003-3839-9259
  surname: Zuo
  fullname: Zuo, Haoran
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Guo‐Kai
  surname: Yuan
  fullname: Yuan, Guo‐Kai
  email: yuanguokai@gedi.com.cn
  organization: China Energy Engineering Group Guangdong Electric Power Design Institute Co. Ltd
– sequence: 4
  givenname: Songye
  orcidid: 0000-0002-2617-3378
  surname: Zhu
  fullname: Zhu, Songye
  email: songye.zhu@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BookMark eNp1kMFKAzEQhoNUsK2CjxDw4mVrNrvZbY5StAoFD1Y8hmwyW9Nus2uya-nNR_AZfRLTVjyIwkBmJt8_k_wD1LO1BYTOYzKKCaFXvlUjyjk5Qv2YpSyiNEt6PzljJ2jg_TKQGR2zPmqejdWf7x9YWo09SLyRbxDq0O0UaOzAN7X1gNemNQvZmlDgugxR-pfaAd4EEredK4wFjztv7AK3TqoVDg-rQlM6DBbcYovD3cqfouNSVh7Ovs8herq9mU_uotnD9H5yPYsU5QmJeFpqBXEOTOd0nBWspKnica4KpjQwCZDzjCtZjDmJ80wpqvM0IZkihCelhmSILg5zG1e_duBbsaw7Z8NKQXNC0iTjlATq8kApV3vvoBSNM2vptiImYuenCH6KnZ8BHf1ClWn3hoTvmuovQXQQbEwF238Hi8f5ZM9_AV_gjHw
CitedBy_id crossref_primary_10_1016_j_engstruct_2024_117450
crossref_primary_10_1016_j_apor_2024_104044
crossref_primary_10_1016_j_engstruct_2025_119675
crossref_primary_10_1016_j_oceaneng_2024_117883
crossref_primary_10_1016_j_engstruct_2023_117436
crossref_primary_10_1016_j_engstruct_2024_118228
crossref_primary_10_3390_jmse10060817
crossref_primary_10_1016_j_apor_2024_104404
crossref_primary_10_1016_j_oceaneng_2024_119352
crossref_primary_10_1016_j_istruc_2024_107677
crossref_primary_10_1049_cth2_12518
crossref_primary_10_1016_j_oceaneng_2024_119553
crossref_primary_10_1016_j_engstruct_2022_114982
crossref_primary_10_1016_j_engstruct_2023_116784
crossref_primary_10_1016_j_iintel_2024_100082
crossref_primary_10_1016_j_oceaneng_2024_120182
crossref_primary_10_1155_2023_8897653
crossref_primary_10_1016_j_engstruct_2024_119247
crossref_primary_10_1016_j_egyr_2024_03_014
crossref_primary_10_1007_s11071_025_10963_1
crossref_primary_10_1007_s40430_024_04789_y
crossref_primary_10_1016_j_engstruct_2023_115801
crossref_primary_10_1016_j_ymssp_2024_111407
crossref_primary_10_1016_j_oceaneng_2024_120273
crossref_primary_10_1016_j_engstruct_2023_116732
crossref_primary_10_1016_j_istruc_2024_106790
crossref_primary_10_1155_2024_5549289
crossref_primary_10_1016_j_ymssp_2024_112277
Cites_doi 10.1016/j.soildyn.2019.03.008
10.1061/(ASCE)ST.1943-541X.0001018
10.2172/947422
10.1016/j.ymssp.2017.01.010
10.2172/15014831
10.1016/j.oceaneng.2020.108045
10.1016/j.jsv.2020.115233
10.1016/j.renene.2020.05.181
10.1016/j.soildyn.2014.03.006
10.1016/j.oceaneng.2018.04.041
10.1016/j.soildyn.2015.12.011
10.1002/eqe.3268
10.1002/eqe.3416
10.1016/j.engstruct.2020.111422
10.1002/we.2576
10.1177/1077546313495911
10.1016/j.jsv.2007.11.018
10.1016/j.marstruc.2021.102961
10.1016/j.engstruct.2020.110673
10.1016/j.engstruct.2008.09.001
10.1002/we.2063
10.1016/j.ymssp.2017.12.011
10.1016/j.ymssp.2019.04.047
10.1080/15732479.2013.792098
10.1115/1.4027462
10.1016/j.jsv.2018.02.052
10.1016/j.engstruct.2017.12.001
10.1080/15732479.2018.1550096
10.1016/j.engstruct.2018.10.053
10.1007/s11803-015-0006-5
10.1002/we.426
10.1007/s11071-014-1256-x
10.1016/j.engstruct.2018.09.063
10.1016/j.soildyn.2020.106466
10.1002/we.249
10.1016/j.jsv.2017.12.026
10.1016/j.ymssp.2018.08.026
10.1002/stc.2200
10.1016/j.engstruct.2017.03.006
10.1007/s11071-006-9167-0
10.1016/j.engstruct.2015.03.007
10.1016/j.engstruct.2014.04.045
10.1016/j.rser.2020.109710
10.1115/1.1345524
10.1016/j.engstruct.2016.07.008
10.1016/j.engstruct.2019.109294
10.1002/we.1588
10.1680/geng.11.00015
10.1016/j.engstruct.2018.11.020
10.1016/j.ijnonlinmec.2013.02.004
10.1002/eqe.2677
10.1061/(ASCE)EM.1943-7889.0000824
10.1002/tal.1692
10.1002/we.2281
10.1016/j.soildyn.2019.05.007
10.1016/j.jsv.2021.116144
10.1061/(ASCE)ST.1943-541X.0000978
10.1002/stc.2117
10.1016/j.engstruct.2014.07.020
10.1016/j.jsv.2016.11.003
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2990
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2990
STC2990
Genre article
GrantInformation_xml – fundername: Guangdong Natural Resources Department
  funderid: [2019]019
– fundername: Research Grants Council of Hong Kong
  funderid: C7038‐20G; N_PolyU533/17
– fundername: National Natural Science Foundation of China
  funderid: 52108479
– fundername: Hong Kong Polytechnic University
  funderid: BBW8; ZE2L; ZVX6; P0031763
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
ABJCF
ADMLS
AEUYN
AFKRA
AGQPQ
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2930-94fdce17e5d7286b5f24c917cb5cde5aee7969cab890176cc2d74306c0093fde3
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Sat Sep 06 11:44:53 EDT 2025
Tue Jul 01 04:05:46 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Wed Jan 22 16:24:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-94fdce17e5d7286b5f24c917cb5cde5aee7969cab890176cc2d74306c0093fde3
Notes Funding information
National Natural Science Foundation of China, Grant/Award Number: 52108479; Guangdong Natural Resources Department, Grant/Award Number: [2019]019; Hong Kong Polytechnic University, Grant/Award Numbers: BBW8, ZE2L, ZVX6, P0031763; Research Grants Council of Hong Kong, Grant/Award Numbers: C7038‐20G, N_PolyU533/17
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2617-3378
0000-0003-3839-9259
PQID 2700436920
PQPubID 2034347
PageCount 26
ParticipantIDs proquest_journals_2700436920
crossref_primary_10_1002_stc_2990
crossref_citationtrail_10_1002_stc_2990
wiley_primary_10_1002_stc_2990_STC2990
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 24
2015; 141
2018; 160
2013; 21
2020; 121
2019; 15
2013; 166
2019; 125
1973
2011; 14
2019; 129
2014; 63
2019; 123
2019; 121
2018; 177
2021; 77
1990
2013; 10
2019; 22
2013; 52
2020; 215
2020; 49
2020; 217
2016; 83
2008; 313
2018; 419
2014; 17
2019; 196
2016; 45
2021; 505
2017; 20
2015; 14
2020; 140
2018; 105
2011
2010
2015; 94
2021; 227
2018; 423
2015; 10
2009
2005
2008; 11
1993
2016; 126
2021; 50
2008; 51
2001; 68
2018; 25
2019; 180
2017; 91
2009; 31
2020; 473
2020
2018; 157
2020; 159
2019
2018
2020; 26
2017; 141
2014; 140
2014; 73
2017; 389
2019; 178
2014; 77
2014; 76
2020; 29
e_1_2_10_23_1
e_1_2_10_46_1
ASCE/AWEA (e_1_2_10_64_1) 2011
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Global Wind Energy Council (GWEC) (e_1_2_10_3_1) 2018
e_1_2_10_72_1
e_1_2_10_4_1
Soong TT (e_1_2_10_56_1) 1993
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Zuo H (e_1_2_10_53_1) 2020; 26
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
Chen J (e_1_2_10_18_1) 2019
e_1_2_10_24_1
e_1_2_10_45_1
Hasselmann K (e_1_2_10_69_1) 1973
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Ma R (e_1_2_10_70_1) 2019
e_1_2_10_71_1
e_1_2_10_52_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
Det Norske Veritas (DNV) (e_1_2_10_59_1) 2010
e_1_2_10_12_1
e_1_2_10_35_1
Roberts JB (e_1_2_10_54_1) 1990
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
IEC 61400–1 (e_1_2_10_68_1) 2005
e_1_2_10_31_1
e_1_2_10_50_1
Global Wind Energy Council (GWEC) (e_1_2_10_2_1) 2020
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – year: 2011
– volume: 77
  start-page: 34
  year: 2014
  end-page: 48
  article-title: Large‐scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation
  publication-title: Eng Struct
– year: 2009
– volume: 83
  start-page: 18
  year: 2016
  end-page: 32
  article-title: Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI
  publication-title: Soil Dyn Earthq Eng
– volume: 389
  start-page: 52
  year: 2017
  end-page: 72
  article-title: Response attenuation in a large‐scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers
  publication-title: J Sound Vib
– volume: 227
  year: 2021
  article-title: Influences of ground motion parameters and structural damping on the optimum design of inerter‐based tuned mass dampers
  publication-title: Eng Struct
– volume: 17
  start-page: 519
  issue: 4
  year: 2014
  end-page: 547
  article-title: Verification of aero‐elastic offshore wind turbine design codes under IEA Wind Task XXIII
  publication-title: Wind Energy
– year: 2005
– volume: 11
  start-page: 305
  issue: 4
  year: 2008
  end-page: 317
  article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence
  publication-title: Wind Energy
– volume: 157
  start-page: 42
  year: 2018
  end-page: 62
  article-title: Dynamic analyses of operating offshore wind turbines including soil‐structure interaction
  publication-title: Eng Struct
– volume: 24
  start-page: 323
  year: 2021
  end-page: 344
  article-title: Effects of soil‐structure interaction on the design of tuned mass damper to control the seismic response of wind turbine towers with gravity base
  publication-title: Wind Energy
– volume: 51
  start-page: 31
  issue: 1–2
  year: 2008
  end-page: 46
  article-title: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes
  publication-title: Nonlinear Dyn
– volume: 129
  start-page: 449
  year: 2019
  end-page: 454
  article-title: An inerter‐enhanced nonlinear energy sink
  publication-title: Mech Syst Signal Process
– volume: 141
  issue: 1
  year: 2015
  article-title: Track nonlinear energy sink for rapid response reduction in building structures
  publication-title: J Eng Mech
– volume: 94
  start-page: 9
  year: 2015
  end-page: 15
  article-title: Experimental study of track nonlinear energy sinks for dynamic response reduction
  publication-title: Eng Struct
– year: 2019
  article-title: Experimental research on design parameters of basin tuned and particle damper for wind turbine tower on shaker
  publication-title: Struct Control Health Monit
– volume: 14
  start-page: 55
  issue: 1
  year: 2015
  end-page: 75
  article-title: Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD
  publication-title: Earthq Eng Eng Vib
– volume: 10
  issue: 1
  year: 2015
  article-title: Asymmetric magnet‐based nonlinear energy sink
  publication-title: J Comput Nonlinear Dyn
– year: 2019
  article-title: A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea
  publication-title: Struct Control Health Monit
– year: 2018
– volume: 423
  start-page: 18
  year: 2018
  end-page: 49
  article-title: Nonlinear dissipative devices in structural vibration control: A review
  publication-title: J Sound Vib
– year: 1990
– volume: 10
  start-page: 1087
  issue: 8
  year: 2013
  end-page: 1100
  article-title: Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber
  publication-title: Struct Infrastruct Eng
– volume: 159
  start-page: 1224
  year: 2020
  end-page: 1242
  article-title: Study on the aerodynamic damping for the seismic analysis of wind turbines in operation
  publication-title: Renew Energy
– volume: 15
  start-page: 269
  issue: 2
  year: 2019
  end-page: 284
  article-title: Mitigation of tower and out‐of‐plane blade vibrations of offshore monopile wind turbines by using multiple tuned mass dampers
  publication-title: Struct Infrastruct Eng
– volume: 50
  start-page: 1628
  year: 2021
  end-page: 1650
  article-title: Effectiveness and robustness of an asymmetric nonlinear energy sink‐inerter for dynamic response mitigation
  publication-title: Earthq Eng Struct Dyn
– volume: 121
  start-page: 151
  year: 2019
  end-page: 167
  article-title: Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines
  publication-title: Soil Dyn Earthq Eng
– volume: 505
  year: 2021
  article-title: Vibration damping of an offshore wind turbine by optimally calibrated pendulum absorber with shunted electromagnetic transducer
  publication-title: J Sound Vib
– volume: 180
  start-page: 29
  year: 2019
  end-page: 39
  article-title: Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system
  publication-title: Eng Struct
– volume: 126
  start-page: 417
  year: 2016
  end-page: 431
  article-title: Performance evaluation of full‐scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real‐time hybrid testing
  publication-title: Eng Struct
– volume: 31
  start-page: 358
  issue: 2
  year: 2009
  end-page: 368
  article-title: Tuned liquid column dampers in offshore wind turbines for structural control
  publication-title: Eng Struct
– volume: 105
  start-page: 338
  year: 2018
  end-page: 360
  article-title: Bi‐directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper
  publication-title: Mech Syst Signal Process
– volume: 21
  start-page: 1875
  issue: 10
  year: 2013
  end-page: 1885
  article-title: Spherical tuned liquid damper for vibration control in wind turbines
  publication-title: J Vib Control
– volume: 26
  start-page: 435
  issue: 4
  year: 2020
  end-page: 449
  article-title: Simultaneous out‐of‐plane and in‐plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers
  publication-title: Smart Struct Syst
– volume: 140
  year: 2020
  article-title: Robust design optimization for SMA based nonlinear energy sink with negative stiffness and friction
  publication-title: Soil Dyn Earthq Eng
– year: 1993
– volume: 91
  start-page: 198
  year: 2017
  end-page: 214
  article-title: Identification of aerodynamic damping in wind turbines using time‐frequency analysis
  publication-title: Mech Syst Signal Process
– volume: 49
  start-page: 863
  issue: 9
  year: 2020
  end-page: 883
  article-title: Dynamic analysis of track nonlinear energy sinks subjected to simple and stochastic excitations
  publication-title: Earthq Eng Struct Dyn
– volume: 166
  start-page: 159
  issue: 2
  year: 2013
  end-page: 169
  article-title: Dynamics of offshore wind turbines supported on two foundations
  publication-title: Proc Insti Civil Eng‐Geotechn Eng
– volume: 419
  start-page: 103
  year: 2018
  end-page: 122
  article-title: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)
  publication-title: J Sound Vib
– year: 2018
  article-title: Vibration control using double‐response damper and site measurements on wind turbine
  publication-title: Struct Control Health Monit
– volume: 217
  year: 2020
  article-title: Frequency change and accumulated inclination of offshore wind turbine jacket structure with piles in sand under cyclic loadings
  publication-title: Ocean Eng
– volume: 20
  start-page: 783
  year: 2017
  end-page: 796
  article-title: Active tuned mass damper for damping of offshore wind turbine vibrations
  publication-title: Wind Energy
– volume: 140
  issue: 6
  year: 2014
  article-title: Experimental testing and numerical simulation of a six‐story structure incorporating two‐degree‐of‐freedom nonlinear energy sink
  publication-title: J Struct Eng
– volume: 160
  start-page: 449
  year: 2018
  end-page: 460
  article-title: Multiple tuned mass damper for multi‐mode vibration reduction of offshore wind turbine under seismic excitation
  publication-title: Ocean Eng
– volume: 68
  start-page: 34
  issue: 1
  year: 2001
  end-page: 41
  article-title: Energy pumping in nonlinear mechanical oscillators: part I‐dynamics of the underlying Hamiltonian systems
  publication-title: J Appl Mech
– volume: 22
  start-page: 239
  year: 2019
  end-page: 256
  article-title: Real‐time hybrid aeroelastic simulation of wind turbines with various types of full‐scale tuned liquid dampers
  publication-title: Wind Energy
– volume: 125
  start-page: 52
  year: 2019
  end-page: 64
  article-title: Nonlinear energy sink with inerter
  publication-title: Mech Syst Signal Process
– volume: 52
  start-page: 96
  year: 2013
  end-page: 109
  article-title: Numerical and experimental investigation of a highly effective single‐sided vibro‐impact non‐linear energy sink for shock mitigation
  publication-title: Int J Non‐linear Mech
– year: 1973
– volume: 77
  year: 2021
  article-title: Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect
  publication-title: Marine Struct
– volume: 177
  start-page: 198
  year: 2018
  end-page: 209
  article-title: Load mitigation for a barge‐type floating offshore wind turbine via inerter‐based passive structural control
  publication-title: Eng Struct
– volume: 29
  issue: 2
  year: 2020
  article-title: Multi‐objective design and performance investigation of a high‐rise building with track nonlinear energy sinks
  publication-title: Struct Design Tall Special Build
– volume: 25
  year: 2018
  article-title: Mitigation of offshore wind turbine responses under wind and wave loading: Considering soil effects and damage
  publication-title: Struct Control Health Monit
– volume: 45
  start-page: 635
  issue: 4
  year: 2016
  end-page: 652
  article-title: Numerical and experimental study of the performance of a single‐sided vibro‐impact track nonlinear energy sink
  publication-title: Earthq Eng Struct Dyn
– volume: 196
  year: 2019
  article-title: Studies on application of scissor‐jack braced viscous damper system in wind turbines under seismic and wind loads
  publication-title: Eng Struct
– year: 2010
– volume: 73
  start-page: 54
  year: 2014
  end-page: 61
  article-title: The impact of passive tuned mass dampers and wind‐wave misalignment on offshore wind turbine loads
  publication-title: Eng Struct
– volume: 473
  year: 2020
  article-title: A magnetic Bi‐stable nonlinear energy sink for structural seismic control
  publication-title: J Sound Vib
– volume: 178
  start-page: 472
  year: 2019
  end-page: 483
  article-title: Fatigue damage mitigation of offshore wind turbines under real wind and wave conditions
  publication-title: Eng Struct
– volume: 313
  start-page: 57
  issue: 1–2
  year: 2008
  end-page: 76
  article-title: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Experimental results
  publication-title: J Sound Vib
– volume: 140
  issue: 11
  year: 2014
  article-title: Aerodynamic damping and seismic response of horizontal axis wind turbine towers
  publication-title: J Struct Eng
– year: 2020
– volume: 76
  start-page: 1905
  issue: 4
  year: 2014
  end-page: 1920
  article-title: Highly efficient nonlinear energy sink
  publication-title: Nonlinear Dyn
– volume: 121
  year: 2020
  article-title: A state‐of‐the‐art review on the vibration mitigation of wind turbines
  publication-title: Renew Sustain Energy Rev
– volume: 14
  start-page: 373
  issue: 3
  year: 2011
  end-page: 388
  article-title: Passive structural control of offshore wind turbines
  publication-title: Wind Energy
– volume: 63
  start-page: 19
  year: 2014
  end-page: 35
  article-title: Dynamic analysis of offshore wind turbine in clay considering soil‐monopile‐tower interaction
  publication-title: Soil Dyn Earthq Eng
– volume: 215
  year: 2020
  article-title: Seismic response mitigation of building structures with a novel vibro‐impact dual‐mass damper
  publication-title: Eng Struct
– volume: 141
  start-page: 303
  year: 2017
  end-page: 315
  article-title: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards
  publication-title: Eng Struct
– volume: 123
  start-page: 435
  year: 2019
  end-page: 448
  article-title: Development of a two‐phased nonlinear mass damper for displacement mitigation in base‐isolated structures
  publication-title: Soil Dyn Earthq Eng
– ident: e_1_2_10_58_1
  doi: 10.1016/j.soildyn.2019.03.008
– ident: e_1_2_10_63_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001018
– ident: e_1_2_10_57_1
  doi: 10.2172/947422
– ident: e_1_2_10_62_1
  doi: 10.1016/j.ymssp.2017.01.010
– ident: e_1_2_10_65_1
  doi: 10.2172/15014831
– ident: e_1_2_10_31_1
  doi: 10.1016/j.oceaneng.2020.108045
– ident: e_1_2_10_41_1
  doi: 10.1016/j.jsv.2020.115233
– ident: e_1_2_10_61_1
  doi: 10.1016/j.renene.2020.05.181
– ident: e_1_2_10_66_1
  doi: 10.1016/j.soildyn.2014.03.006
– ident: e_1_2_10_25_1
  doi: 10.1016/j.oceaneng.2018.04.041
– start-page: e2368
  year: 2019
  ident: e_1_2_10_70_1
  article-title: A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea
  publication-title: Struct Control Health Monit
– ident: e_1_2_10_67_1
  doi: 10.1016/j.soildyn.2015.12.011
– ident: e_1_2_10_55_1
  doi: 10.1002/eqe.3268
– ident: e_1_2_10_45_1
  doi: 10.1002/eqe.3416
– ident: e_1_2_10_28_1
  doi: 10.1016/j.engstruct.2020.111422
– ident: e_1_2_10_10_1
  doi: 10.1002/we.2576
– ident: e_1_2_10_14_1
  doi: 10.1177/1077546313495911
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jsv.2007.11.018
– ident: e_1_2_10_11_1
  doi: 10.1016/j.marstruc.2021.102961
– ident: e_1_2_10_51_1
  doi: 10.1016/j.engstruct.2020.110673
– ident: e_1_2_10_15_1
  doi: 10.1016/j.engstruct.2008.09.001
– ident: e_1_2_10_5_1
  doi: 10.1002/we.2063
– ident: e_1_2_10_20_1
  doi: 10.1016/j.ymssp.2017.12.011
– ident: e_1_2_10_46_1
  doi: 10.1016/j.ymssp.2019.04.047
– ident: e_1_2_10_19_1
  doi: 10.1080/15732479.2013.792098
– ident: e_1_2_10_40_1
  doi: 10.1115/1.4027462
– ident: e_1_2_10_42_1
  doi: 10.1016/j.jsv.2018.02.052
– volume-title: Random vibration of mechanical and structural systems
  year: 1993
  ident: e_1_2_10_56_1
– ident: e_1_2_10_71_1
  doi: 10.1016/j.engstruct.2017.12.001
– ident: e_1_2_10_72_1
  doi: 10.1080/15732479.2018.1550096
– ident: e_1_2_10_21_1
  doi: 10.1016/j.engstruct.2018.10.053
– ident: e_1_2_10_16_1
  doi: 10.1007/s11803-015-0006-5
– ident: e_1_2_10_8_1
  doi: 10.1002/we.426
– ident: e_1_2_10_35_1
  doi: 10.1007/s11071-014-1256-x
– ident: e_1_2_10_26_1
  doi: 10.1016/j.engstruct.2018.09.063
– ident: e_1_2_10_43_1
  doi: 10.1016/j.soildyn.2020.106466
– ident: e_1_2_10_7_1
  doi: 10.1002/we.249
– ident: e_1_2_10_6_1
  doi: 10.1016/j.jsv.2017.12.026
– ident: e_1_2_10_44_1
  doi: 10.1016/j.ymssp.2018.08.026
– ident: e_1_2_10_17_1
  doi: 10.1002/stc.2200
– ident: e_1_2_10_24_1
  doi: 10.1016/j.engstruct.2017.03.006
– ident: e_1_2_10_34_1
  doi: 10.1007/s11071-006-9167-0
– volume-title: DNV‐RP‐C205: environmental conditions and environmental loads
  year: 2010
  ident: e_1_2_10_59_1
– ident: e_1_2_10_50_1
  doi: 10.1016/j.engstruct.2015.03.007
– ident: e_1_2_10_9_1
  doi: 10.1016/j.engstruct.2014.04.045
– start-page: e2440
  year: 2019
  ident: e_1_2_10_18_1
  article-title: Experimental research on design parameters of basin tuned and particle damper for wind turbine tower on shaker
  publication-title: Struct Control Health Monit
– ident: e_1_2_10_4_1
  doi: 10.1016/j.rser.2020.109710
– ident: e_1_2_10_32_1
  doi: 10.1115/1.1345524
– ident: e_1_2_10_12_1
  doi: 10.1016/j.engstruct.2016.07.008
– ident: e_1_2_10_22_1
  doi: 10.1016/j.engstruct.2019.109294
– volume-title: Recommended practice for compliance of large land‐based wind turbine support structures
  year: 2011
  ident: e_1_2_10_64_1
– ident: e_1_2_10_60_1
  doi: 10.1002/we.1588
– ident: e_1_2_10_30_1
  doi: 10.1680/geng.11.00015
– ident: e_1_2_10_27_1
  doi: 10.1016/j.engstruct.2018.11.020
– ident: e_1_2_10_36_1
  doi: 10.1016/j.ijnonlinmec.2013.02.004
– volume-title: Global Wind Report 2019
  year: 2020
  ident: e_1_2_10_2_1
– volume-title: Random vibration and statistical linearization
  year: 1990
  ident: e_1_2_10_54_1
– ident: e_1_2_10_52_1
  doi: 10.1002/eqe.2677
– volume-title: Global Wind Report‐Annual Market Update 2017
  year: 2018
  ident: e_1_2_10_3_1
– ident: e_1_2_10_47_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000824
– ident: e_1_2_10_49_1
  doi: 10.1002/tal.1692
– ident: e_1_2_10_13_1
  doi: 10.1002/we.2281
– ident: e_1_2_10_48_1
  doi: 10.1016/j.soildyn.2019.05.007
– ident: e_1_2_10_23_1
  doi: 10.1016/j.jsv.2021.116144
– ident: e_1_2_10_33_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000978
– volume-title: Measurements of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
  year: 1973
  ident: e_1_2_10_69_1
– ident: e_1_2_10_29_1
  doi: 10.1002/stc.2117
– ident: e_1_2_10_38_1
  doi: 10.1016/j.engstruct.2014.07.020
– ident: e_1_2_10_37_1
  doi: 10.1016/j.jsv.2016.11.003
– volume: 26
  start-page: 435
  issue: 4
  year: 2020
  ident: e_1_2_10_53_1
  article-title: Simultaneous out‐of‐plane and in‐plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers
  publication-title: Smart Struct Syst
– volume-title: Wind turbines‐Part 1: Design requirements
  year: 2005
  ident: e_1_2_10_68_1
SSID ssj0026285
Score 2.448226
Snippet Summary Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively....
Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Broadband
Control methods
Damping
Finite element method
Mathematical analysis
Offshore energy sources
offshore wind turbine
Polynomials
Robustness (mathematics)
sea wave
Three dimensional models
track nonlinear energy sink
Turbines
Vibration
Vibration control
Vibration isolators
Vibrations
wind
Wind power
Wind speed
Wind turbines
Title Wind‐ and sea wave‐induced response mitigations of offshore wind turbines using track nonlinear energy sinks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2990
https://www.proquest.com/docview/2700436920
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iL_rgXbyOCKJP1a5LsvZxbIqI-qAOBz6UXFWmc7Sbgk_-BH-jv8RzepkXFEQolLQnNE3OSU6S73whZEtoISLDEaejucekUZ4KmfHAM6-6UDLcvEO0xak4bLOjDu8UqEqMhcn5IUYLbmgZWX-NBi5VuvdBGpoiAyH0pdD9VmsCafNbZyPmqAAjAzOqVMY9UFle8s76wV6Z8etI9OFefnZSs1HmYIZcleXLwSXd3eFA7ernb9SN__uBWTJdOJ-0kWvLHBmzvXky9YmScIH0L2GS_vbySmXPUDAD-iQfLaThKSiBoUmOqbX0_jZn54AEfXBwufTmIbH0CSQpjGMK8fQUYfXXdJBI3aW9vNAyoTYLOKQpbh4vkvbB_kXz0CtOZfA0uAa-FzFntK3WLTf1IBSKu4BpmPRpxbWxXFpbj0SkpQrB1agjLNuAl-ILjYsnztjaEhmHD9plQgPQCMd8K0IBsxrGolAqwTT3lRNMutoK2SlbKNYFZTmenHEX52TLQQx1GGMdrpDNkWQ_p-n4QWa9bOS4MNQ0xn13VhNRAK-3s9b6NX98ftHE--pfBdfIZIDBEhkibZ2MD5Kh3QAXZqAqZKLROjk-r2RK-w5AsvMW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4tcKAcyqOtuuVlJASnQMja3kQ9VQtoeR5gERwqRX62aGF3lV1A4sRP6G_kl3Qm2SxQUQkhRYqc2Ipjz9jf2DOfAValkTKxgvx0jAi4sjrQMbcBIvMtHytOm3fkbXEsm2d8_0JcVOB7GQtT8EOMFtxIM_LxmhScFqQ3n1hD-0RBiIPpGExwxBlkeW2fjLijIooNzMlSuQhQaEXJPBtGm2XJl3PRE8B8DlPzeWZ3Gn6WNSzcS9obNwO9Ye7_IW985y_MwMch_mQ_CoGZhYrrzMHUM1bCT9A7Rzv98eEPUx3LUBPYnbp1mManKAeWZYVbrWPXlwVBByZY1-Pl-7-7mWN3mJPhVKbJpZ6RZ_0vNsiUabNOUWuVMZfHHLI-7R9_hrPdnVajGQwPZggMooMwSLi3xm3VnbD1KJZa-IgbtPuMFsY6oZyrJzIxSseINurkmW0RqITS0PqJt672Bcbxg-4rsAiFwvPQyViiYcN5EistuRGh9pIrX6vCetlFqRmyltPhGVdpwbccpdiGKbVhFVZGOXsFU8creRbKXk6HutpPaeud12QS4eu1vLv-Wz49bTXo_u2tGZdhstk6OkwP944P5uFDRLETuYPaAowPshu3iIhmoJdyyf0LuvH1oQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZSsQwFA06guiDu7gbQfSpTu0kmfZRRodxQcQFBR9KVhV1HDozCj75CX6jX-K9XcYFBREKJW1C0-QmOUnOPSFkVWghIsORp6O5x6RRngqZ8QCZb7pQMty8Q7bFoWicsb0LfpGzKtEXJtOH6C24YctI-2ts4C3jyh-ioW1UIIS-tJ8MMAFAAgHRcU86KkDXwFQrlXEPbJYXwrN-UC5Sfh2KPvDlZ5SaDjP1UXJZZDBjl9xudDtqQz9_02783x-MkZEcfdKtzFzGSZ9tTpDhT5qEk6R1DrP0t5dXKpuGQjugT_LRQhieghUYmmSkWkvvbzJ5DgjQBweXa18_JJY-QUwKA5lCQj1FXv0V7SRS39JmlmmZUJt6HNI27h5PkbP6zmmt4eXHMngasIHvRcwZbTerlptqEArFXcA0zPq04tpYLq2tRiLSUoWANarIyzYAU3yhcfXEGVuZJiX4oJ0hNACTcMy3IhQwrWEsCqUSTHNfOcGkq8yS9aKGYp1rluPRGXdxprYcxFCGMZbhLFnpxWxlOh0_xFkoKjnOW2o7xo13VhFRAK_X0tr6NX18clrD-9xfIy6TwaPtenywe7g_T4YCdJxI2WkLpNRJunYR4ExHLaV2-w71mfRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind%E2%80%90+and+sea+wave%E2%80%90induced+response+mitigations+of+offshore+wind+turbines+using+track+nonlinear+energy+sinks&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Zuo%2C+Haoran&rft.au=Zhang%2C+Jian&rft.au=Guo%E2%80%90Kai+Yuan&rft.au=Zhu%2C+Songye&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fstc.2990&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon