Wind‐ and sea wave‐induced response mitigations of offshore wind turbines using track nonlinear energy sinks
Summary Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently, OWTs have become vulnerable to wind and sea wave excitations. Mitigations of unfavorable OWT vibrations have been extensively invest...
Saved in:
Published in | Structural control and health monitoring Vol. 29; no. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1545-2255 1545-2263 |
DOI | 10.1002/stc.2990 |
Cover
Loading…
Abstract | Summary
Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently, OWTs have become vulnerable to wind and sea wave excitations. Mitigations of unfavorable OWT vibrations have been extensively investigated, with the majority focusing on passive vibration control strategies with control performance sensitive to structural frequency changes. Nonlinear energy sinks (NESs) are regarded as effective vibration control methods because their broadband fashion is robust against variations in structural frequencies. A novel NES with an improved track profile that combines both second‐ and fourth‐order polynomials (Track II NES) is proposed in the present study to improve the vibration mitigation effectiveness of traditional Track I NES with a track profile of a fourth‐order polynomial only. Governing equations of a single‐degree‐of‐freedom system with Track II NES are first established, and an equivalent linearization method is adopted to optimize the track profile and damping of the Track II NES. Moreover, a detailed 3D finite element model of a representative 5‐MW OWT is developed. Control effectiveness of the Track II NES is examined under different structural stiffnesses and mean wind speeds and then compared with that of conventional tuned mass damper (TMD) and Track I NES. Numerical results showed that the Track II NES can effectively suppress displacement and acceleration responses of OWTs and outperform its counterpart Track I NES. Moreover, the Track II NES can obtain reduction ratios close to those of the TMD but with better robustness against the detuning effect. |
---|---|
AbstractList | Summary
Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently, OWTs have become vulnerable to wind and sea wave excitations. Mitigations of unfavorable OWT vibrations have been extensively investigated, with the majority focusing on passive vibration control strategies with control performance sensitive to structural frequency changes. Nonlinear energy sinks (NESs) are regarded as effective vibration control methods because their broadband fashion is robust against variations in structural frequencies. A novel NES with an improved track profile that combines both second‐ and fourth‐order polynomials (Track II NES) is proposed in the present study to improve the vibration mitigation effectiveness of traditional Track I NES with a track profile of a fourth‐order polynomial only. Governing equations of a single‐degree‐of‐freedom system with Track II NES are first established, and an equivalent linearization method is adopted to optimize the track profile and damping of the Track II NES. Moreover, a detailed 3D finite element model of a representative 5‐MW OWT is developed. Control effectiveness of the Track II NES is examined under different structural stiffnesses and mean wind speeds and then compared with that of conventional tuned mass damper (TMD) and Track I NES. Numerical results showed that the Track II NES can effectively suppress displacement and acceleration responses of OWTs and outperform its counterpart Track I NES. Moreover, the Track II NES can obtain reduction ratios close to those of the TMD but with better robustness against the detuning effect. Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently, OWTs have become vulnerable to wind and sea wave excitations. Mitigations of unfavorable OWT vibrations have been extensively investigated, with the majority focusing on passive vibration control strategies with control performance sensitive to structural frequency changes. Nonlinear energy sinks (NESs) are regarded as effective vibration control methods because their broadband fashion is robust against variations in structural frequencies. A novel NES with an improved track profile that combines both second‐ and fourth‐order polynomials (Track II NES) is proposed in the present study to improve the vibration mitigation effectiveness of traditional Track I NES with a track profile of a fourth‐order polynomial only. Governing equations of a single‐degree‐of‐freedom system with Track II NES are first established, and an equivalent linearization method is adopted to optimize the track profile and damping of the Track II NES. Moreover, a detailed 3D finite element model of a representative 5‐MW OWT is developed. Control effectiveness of the Track II NES is examined under different structural stiffnesses and mean wind speeds and then compared with that of conventional tuned mass damper (TMD) and Track I NES. Numerical results showed that the Track II NES can effectively suppress displacement and acceleration responses of OWTs and outperform its counterpart Track I NES. Moreover, the Track II NES can obtain reduction ratios close to those of the TMD but with better robustness against the detuning effect. |
Author | Yuan, Guo‐Kai Zhu, Songye Zhang, Jian Zuo, Haoran |
Author_xml | – sequence: 1 givenname: Haoran orcidid: 0000-0003-3839-9259 surname: Zuo fullname: Zuo, Haoran organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Guo‐Kai surname: Yuan fullname: Yuan, Guo‐Kai email: yuanguokai@gedi.com.cn organization: China Energy Engineering Group Guangdong Electric Power Design Institute Co. Ltd – sequence: 4 givenname: Songye orcidid: 0000-0002-2617-3378 surname: Zhu fullname: Zhu, Songye email: songye.zhu@polyu.edu.hk organization: The Hong Kong Polytechnic University |
BookMark | eNp1kMFKAzEQhoNUsK2CjxDw4mVrNrvZbY5StAoFD1Y8hmwyW9Nus2uya-nNR_AZfRLTVjyIwkBmJt8_k_wD1LO1BYTOYzKKCaFXvlUjyjk5Qv2YpSyiNEt6PzljJ2jg_TKQGR2zPmqejdWf7x9YWo09SLyRbxDq0O0UaOzAN7X1gNemNQvZmlDgugxR-pfaAd4EEredK4wFjztv7AK3TqoVDg-rQlM6DBbcYovD3cqfouNSVh7Ovs8herq9mU_uotnD9H5yPYsU5QmJeFpqBXEOTOd0nBWspKnica4KpjQwCZDzjCtZjDmJ80wpqvM0IZkihCelhmSILg5zG1e_duBbsaw7Z8NKQXNC0iTjlATq8kApV3vvoBSNM2vptiImYuenCH6KnZ8BHf1ClWn3hoTvmuovQXQQbEwF238Hi8f5ZM9_AV_gjHw |
CitedBy_id | crossref_primary_10_1016_j_engstruct_2024_117450 crossref_primary_10_1016_j_apor_2024_104044 crossref_primary_10_1016_j_engstruct_2025_119675 crossref_primary_10_1016_j_oceaneng_2024_117883 crossref_primary_10_1016_j_engstruct_2023_117436 crossref_primary_10_1016_j_engstruct_2024_118228 crossref_primary_10_3390_jmse10060817 crossref_primary_10_1016_j_apor_2024_104404 crossref_primary_10_1016_j_oceaneng_2024_119352 crossref_primary_10_1016_j_istruc_2024_107677 crossref_primary_10_1049_cth2_12518 crossref_primary_10_1016_j_oceaneng_2024_119553 crossref_primary_10_1016_j_engstruct_2022_114982 crossref_primary_10_1016_j_engstruct_2023_116784 crossref_primary_10_1016_j_iintel_2024_100082 crossref_primary_10_1016_j_oceaneng_2024_120182 crossref_primary_10_1155_2023_8897653 crossref_primary_10_1016_j_engstruct_2024_119247 crossref_primary_10_1016_j_egyr_2024_03_014 crossref_primary_10_1007_s11071_025_10963_1 crossref_primary_10_1007_s40430_024_04789_y crossref_primary_10_1016_j_engstruct_2023_115801 crossref_primary_10_1016_j_ymssp_2024_111407 crossref_primary_10_1016_j_oceaneng_2024_120273 crossref_primary_10_1016_j_engstruct_2023_116732 crossref_primary_10_1016_j_istruc_2024_106790 crossref_primary_10_1155_2024_5549289 crossref_primary_10_1016_j_ymssp_2024_112277 |
Cites_doi | 10.1016/j.soildyn.2019.03.008 10.1061/(ASCE)ST.1943-541X.0001018 10.2172/947422 10.1016/j.ymssp.2017.01.010 10.2172/15014831 10.1016/j.oceaneng.2020.108045 10.1016/j.jsv.2020.115233 10.1016/j.renene.2020.05.181 10.1016/j.soildyn.2014.03.006 10.1016/j.oceaneng.2018.04.041 10.1016/j.soildyn.2015.12.011 10.1002/eqe.3268 10.1002/eqe.3416 10.1016/j.engstruct.2020.111422 10.1002/we.2576 10.1177/1077546313495911 10.1016/j.jsv.2007.11.018 10.1016/j.marstruc.2021.102961 10.1016/j.engstruct.2020.110673 10.1016/j.engstruct.2008.09.001 10.1002/we.2063 10.1016/j.ymssp.2017.12.011 10.1016/j.ymssp.2019.04.047 10.1080/15732479.2013.792098 10.1115/1.4027462 10.1016/j.jsv.2018.02.052 10.1016/j.engstruct.2017.12.001 10.1080/15732479.2018.1550096 10.1016/j.engstruct.2018.10.053 10.1007/s11803-015-0006-5 10.1002/we.426 10.1007/s11071-014-1256-x 10.1016/j.engstruct.2018.09.063 10.1016/j.soildyn.2020.106466 10.1002/we.249 10.1016/j.jsv.2017.12.026 10.1016/j.ymssp.2018.08.026 10.1002/stc.2200 10.1016/j.engstruct.2017.03.006 10.1007/s11071-006-9167-0 10.1016/j.engstruct.2015.03.007 10.1016/j.engstruct.2014.04.045 10.1016/j.rser.2020.109710 10.1115/1.1345524 10.1016/j.engstruct.2016.07.008 10.1016/j.engstruct.2019.109294 10.1002/we.1588 10.1680/geng.11.00015 10.1016/j.engstruct.2018.11.020 10.1016/j.ijnonlinmec.2013.02.004 10.1002/eqe.2677 10.1061/(ASCE)EM.1943-7889.0000824 10.1002/tal.1692 10.1002/we.2281 10.1016/j.soildyn.2019.05.007 10.1016/j.jsv.2021.116144 10.1061/(ASCE)ST.1943-541X.0000978 10.1002/stc.2117 10.1016/j.engstruct.2014.07.020 10.1016/j.jsv.2016.11.003 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.2990 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_2990 STC2990 |
Genre | article |
GrantInformation_xml | – fundername: Guangdong Natural Resources Department funderid: [2019]019 – fundername: Research Grants Council of Hong Kong funderid: C7038‐20G; N_PolyU533/17 – fundername: National Natural Science Foundation of China funderid: 52108479 – fundername: Hong Kong Polytechnic University funderid: BBW8; ZE2L; ZVX6; P0031763 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2930-94fdce17e5d7286b5f24c917cb5cde5aee7969cab890176cc2d74306c0093fde3 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Sat Sep 06 11:44:53 EDT 2025 Tue Jul 01 04:05:46 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Wed Jan 22 16:24:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-94fdce17e5d7286b5f24c917cb5cde5aee7969cab890176cc2d74306c0093fde3 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Number: 52108479; Guangdong Natural Resources Department, Grant/Award Number: [2019]019; Hong Kong Polytechnic University, Grant/Award Numbers: BBW8, ZE2L, ZVX6, P0031763; Research Grants Council of Hong Kong, Grant/Award Numbers: C7038‐20G, N_PolyU533/17 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2617-3378 0000-0003-3839-9259 |
PQID | 2700436920 |
PQPubID | 2034347 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2700436920 crossref_primary_10_1002_stc_2990 crossref_citationtrail_10_1002_stc_2990 wiley_primary_10_1002_stc_2990_STC2990 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2021; 24 2015; 141 2018; 160 2013; 21 2020; 121 2019; 15 2013; 166 2019; 125 1973 2011; 14 2019; 129 2014; 63 2019; 123 2019; 121 2018; 177 2021; 77 1990 2013; 10 2019; 22 2013; 52 2020; 215 2020; 49 2020; 217 2016; 83 2008; 313 2018; 419 2014; 17 2019; 196 2016; 45 2021; 505 2017; 20 2015; 14 2020; 140 2018; 105 2011 2010 2015; 94 2021; 227 2018; 423 2015; 10 2009 2005 2008; 11 1993 2016; 126 2021; 50 2008; 51 2001; 68 2018; 25 2019; 180 2017; 91 2009; 31 2020; 473 2020 2018; 157 2020; 159 2019 2018 2020; 26 2017; 141 2014; 140 2014; 73 2017; 389 2019; 178 2014; 77 2014; 76 2020; 29 e_1_2_10_23_1 e_1_2_10_46_1 ASCE/AWEA (e_1_2_10_64_1) 2011 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Global Wind Energy Council (GWEC) (e_1_2_10_3_1) 2018 e_1_2_10_72_1 e_1_2_10_4_1 Soong TT (e_1_2_10_56_1) 1993 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Zuo H (e_1_2_10_53_1) 2020; 26 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 Chen J (e_1_2_10_18_1) 2019 e_1_2_10_24_1 e_1_2_10_45_1 Hasselmann K (e_1_2_10_69_1) 1973 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Ma R (e_1_2_10_70_1) 2019 e_1_2_10_71_1 e_1_2_10_52_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 Det Norske Veritas (DNV) (e_1_2_10_59_1) 2010 e_1_2_10_12_1 e_1_2_10_35_1 Roberts JB (e_1_2_10_54_1) 1990 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 IEC 61400–1 (e_1_2_10_68_1) 2005 e_1_2_10_31_1 e_1_2_10_50_1 Global Wind Energy Council (GWEC) (e_1_2_10_2_1) 2020 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – year: 2011 – volume: 77 start-page: 34 year: 2014 end-page: 48 article-title: Large‐scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation publication-title: Eng Struct – year: 2009 – volume: 83 start-page: 18 year: 2016 end-page: 32 article-title: Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI publication-title: Soil Dyn Earthq Eng – volume: 389 start-page: 52 year: 2017 end-page: 72 article-title: Response attenuation in a large‐scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers publication-title: J Sound Vib – volume: 227 year: 2021 article-title: Influences of ground motion parameters and structural damping on the optimum design of inerter‐based tuned mass dampers publication-title: Eng Struct – volume: 17 start-page: 519 issue: 4 year: 2014 end-page: 547 article-title: Verification of aero‐elastic offshore wind turbine design codes under IEA Wind Task XXIII publication-title: Wind Energy – year: 2005 – volume: 11 start-page: 305 issue: 4 year: 2008 end-page: 317 article-title: Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence publication-title: Wind Energy – volume: 157 start-page: 42 year: 2018 end-page: 62 article-title: Dynamic analyses of operating offshore wind turbines including soil‐structure interaction publication-title: Eng Struct – volume: 24 start-page: 323 year: 2021 end-page: 344 article-title: Effects of soil‐structure interaction on the design of tuned mass damper to control the seismic response of wind turbine towers with gravity base publication-title: Wind Energy – volume: 51 start-page: 31 issue: 1–2 year: 2008 end-page: 46 article-title: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes publication-title: Nonlinear Dyn – volume: 129 start-page: 449 year: 2019 end-page: 454 article-title: An inerter‐enhanced nonlinear energy sink publication-title: Mech Syst Signal Process – volume: 141 issue: 1 year: 2015 article-title: Track nonlinear energy sink for rapid response reduction in building structures publication-title: J Eng Mech – volume: 94 start-page: 9 year: 2015 end-page: 15 article-title: Experimental study of track nonlinear energy sinks for dynamic response reduction publication-title: Eng Struct – year: 2019 article-title: Experimental research on design parameters of basin tuned and particle damper for wind turbine tower on shaker publication-title: Struct Control Health Monit – volume: 14 start-page: 55 issue: 1 year: 2015 end-page: 75 article-title: Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD publication-title: Earthq Eng Eng Vib – volume: 10 issue: 1 year: 2015 article-title: Asymmetric magnet‐based nonlinear energy sink publication-title: J Comput Nonlinear Dyn – year: 2019 article-title: A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea publication-title: Struct Control Health Monit – year: 2018 – volume: 423 start-page: 18 year: 2018 end-page: 49 article-title: Nonlinear dissipative devices in structural vibration control: A review publication-title: J Sound Vib – year: 1990 – volume: 10 start-page: 1087 issue: 8 year: 2013 end-page: 1100 article-title: Theoretical study and experimental verification of vibration control of offshore wind turbines by a ball vibration absorber publication-title: Struct Infrastruct Eng – volume: 159 start-page: 1224 year: 2020 end-page: 1242 article-title: Study on the aerodynamic damping for the seismic analysis of wind turbines in operation publication-title: Renew Energy – volume: 15 start-page: 269 issue: 2 year: 2019 end-page: 284 article-title: Mitigation of tower and out‐of‐plane blade vibrations of offshore monopile wind turbines by using multiple tuned mass dampers publication-title: Struct Infrastruct Eng – volume: 50 start-page: 1628 year: 2021 end-page: 1650 article-title: Effectiveness and robustness of an asymmetric nonlinear energy sink‐inerter for dynamic response mitigation publication-title: Earthq Eng Struct Dyn – volume: 121 start-page: 151 year: 2019 end-page: 167 article-title: Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines publication-title: Soil Dyn Earthq Eng – volume: 505 year: 2021 article-title: Vibration damping of an offshore wind turbine by optimally calibrated pendulum absorber with shunted electromagnetic transducer publication-title: J Sound Vib – volume: 180 start-page: 29 year: 2019 end-page: 39 article-title: Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system publication-title: Eng Struct – volume: 126 start-page: 417 year: 2016 end-page: 431 article-title: Performance evaluation of full‐scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real‐time hybrid testing publication-title: Eng Struct – volume: 31 start-page: 358 issue: 2 year: 2009 end-page: 368 article-title: Tuned liquid column dampers in offshore wind turbines for structural control publication-title: Eng Struct – volume: 105 start-page: 338 year: 2018 end-page: 360 article-title: Bi‐directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper publication-title: Mech Syst Signal Process – volume: 21 start-page: 1875 issue: 10 year: 2013 end-page: 1885 article-title: Spherical tuned liquid damper for vibration control in wind turbines publication-title: J Vib Control – volume: 26 start-page: 435 issue: 4 year: 2020 end-page: 449 article-title: Simultaneous out‐of‐plane and in‐plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers publication-title: Smart Struct Syst – volume: 140 year: 2020 article-title: Robust design optimization for SMA based nonlinear energy sink with negative stiffness and friction publication-title: Soil Dyn Earthq Eng – year: 1993 – volume: 91 start-page: 198 year: 2017 end-page: 214 article-title: Identification of aerodynamic damping in wind turbines using time‐frequency analysis publication-title: Mech Syst Signal Process – volume: 49 start-page: 863 issue: 9 year: 2020 end-page: 883 article-title: Dynamic analysis of track nonlinear energy sinks subjected to simple and stochastic excitations publication-title: Earthq Eng Struct Dyn – volume: 166 start-page: 159 issue: 2 year: 2013 end-page: 169 article-title: Dynamics of offshore wind turbines supported on two foundations publication-title: Proc Insti Civil Eng‐Geotechn Eng – volume: 419 start-page: 103 year: 2018 end-page: 122 article-title: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs) publication-title: J Sound Vib – year: 2018 article-title: Vibration control using double‐response damper and site measurements on wind turbine publication-title: Struct Control Health Monit – volume: 217 year: 2020 article-title: Frequency change and accumulated inclination of offshore wind turbine jacket structure with piles in sand under cyclic loadings publication-title: Ocean Eng – volume: 20 start-page: 783 year: 2017 end-page: 796 article-title: Active tuned mass damper for damping of offshore wind turbine vibrations publication-title: Wind Energy – volume: 140 issue: 6 year: 2014 article-title: Experimental testing and numerical simulation of a six‐story structure incorporating two‐degree‐of‐freedom nonlinear energy sink publication-title: J Struct Eng – volume: 160 start-page: 449 year: 2018 end-page: 460 article-title: Multiple tuned mass damper for multi‐mode vibration reduction of offshore wind turbine under seismic excitation publication-title: Ocean Eng – volume: 68 start-page: 34 issue: 1 year: 2001 end-page: 41 article-title: Energy pumping in nonlinear mechanical oscillators: part I‐dynamics of the underlying Hamiltonian systems publication-title: J Appl Mech – volume: 22 start-page: 239 year: 2019 end-page: 256 article-title: Real‐time hybrid aeroelastic simulation of wind turbines with various types of full‐scale tuned liquid dampers publication-title: Wind Energy – volume: 125 start-page: 52 year: 2019 end-page: 64 article-title: Nonlinear energy sink with inerter publication-title: Mech Syst Signal Process – volume: 52 start-page: 96 year: 2013 end-page: 109 article-title: Numerical and experimental investigation of a highly effective single‐sided vibro‐impact non‐linear energy sink for shock mitigation publication-title: Int J Non‐linear Mech – year: 1973 – volume: 77 year: 2021 article-title: Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect publication-title: Marine Struct – volume: 177 start-page: 198 year: 2018 end-page: 209 article-title: Load mitigation for a barge‐type floating offshore wind turbine via inerter‐based passive structural control publication-title: Eng Struct – volume: 29 issue: 2 year: 2020 article-title: Multi‐objective design and performance investigation of a high‐rise building with track nonlinear energy sinks publication-title: Struct Design Tall Special Build – volume: 25 year: 2018 article-title: Mitigation of offshore wind turbine responses under wind and wave loading: Considering soil effects and damage publication-title: Struct Control Health Monit – volume: 45 start-page: 635 issue: 4 year: 2016 end-page: 652 article-title: Numerical and experimental study of the performance of a single‐sided vibro‐impact track nonlinear energy sink publication-title: Earthq Eng Struct Dyn – volume: 196 year: 2019 article-title: Studies on application of scissor‐jack braced viscous damper system in wind turbines under seismic and wind loads publication-title: Eng Struct – year: 2010 – volume: 73 start-page: 54 year: 2014 end-page: 61 article-title: The impact of passive tuned mass dampers and wind‐wave misalignment on offshore wind turbine loads publication-title: Eng Struct – volume: 473 year: 2020 article-title: A magnetic Bi‐stable nonlinear energy sink for structural seismic control publication-title: J Sound Vib – volume: 178 start-page: 472 year: 2019 end-page: 483 article-title: Fatigue damage mitigation of offshore wind turbines under real wind and wave conditions publication-title: Eng Struct – volume: 313 start-page: 57 issue: 1–2 year: 2008 end-page: 76 article-title: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Experimental results publication-title: J Sound Vib – volume: 140 issue: 11 year: 2014 article-title: Aerodynamic damping and seismic response of horizontal axis wind turbine towers publication-title: J Struct Eng – year: 2020 – volume: 76 start-page: 1905 issue: 4 year: 2014 end-page: 1920 article-title: Highly efficient nonlinear energy sink publication-title: Nonlinear Dyn – volume: 121 year: 2020 article-title: A state‐of‐the‐art review on the vibration mitigation of wind turbines publication-title: Renew Sustain Energy Rev – volume: 14 start-page: 373 issue: 3 year: 2011 end-page: 388 article-title: Passive structural control of offshore wind turbines publication-title: Wind Energy – volume: 63 start-page: 19 year: 2014 end-page: 35 article-title: Dynamic analysis of offshore wind turbine in clay considering soil‐monopile‐tower interaction publication-title: Soil Dyn Earthq Eng – volume: 215 year: 2020 article-title: Seismic response mitigation of building structures with a novel vibro‐impact dual‐mass damper publication-title: Eng Struct – volume: 141 start-page: 303 year: 2017 end-page: 315 article-title: Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards publication-title: Eng Struct – volume: 123 start-page: 435 year: 2019 end-page: 448 article-title: Development of a two‐phased nonlinear mass damper for displacement mitigation in base‐isolated structures publication-title: Soil Dyn Earthq Eng – ident: e_1_2_10_58_1 doi: 10.1016/j.soildyn.2019.03.008 – ident: e_1_2_10_63_1 doi: 10.1061/(ASCE)ST.1943-541X.0001018 – ident: e_1_2_10_57_1 doi: 10.2172/947422 – ident: e_1_2_10_62_1 doi: 10.1016/j.ymssp.2017.01.010 – ident: e_1_2_10_65_1 doi: 10.2172/15014831 – ident: e_1_2_10_31_1 doi: 10.1016/j.oceaneng.2020.108045 – ident: e_1_2_10_41_1 doi: 10.1016/j.jsv.2020.115233 – ident: e_1_2_10_61_1 doi: 10.1016/j.renene.2020.05.181 – ident: e_1_2_10_66_1 doi: 10.1016/j.soildyn.2014.03.006 – ident: e_1_2_10_25_1 doi: 10.1016/j.oceaneng.2018.04.041 – start-page: e2368 year: 2019 ident: e_1_2_10_70_1 article-title: A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea publication-title: Struct Control Health Monit – ident: e_1_2_10_67_1 doi: 10.1016/j.soildyn.2015.12.011 – ident: e_1_2_10_55_1 doi: 10.1002/eqe.3268 – ident: e_1_2_10_45_1 doi: 10.1002/eqe.3416 – ident: e_1_2_10_28_1 doi: 10.1016/j.engstruct.2020.111422 – ident: e_1_2_10_10_1 doi: 10.1002/we.2576 – ident: e_1_2_10_14_1 doi: 10.1177/1077546313495911 – ident: e_1_2_10_39_1 doi: 10.1016/j.jsv.2007.11.018 – ident: e_1_2_10_11_1 doi: 10.1016/j.marstruc.2021.102961 – ident: e_1_2_10_51_1 doi: 10.1016/j.engstruct.2020.110673 – ident: e_1_2_10_15_1 doi: 10.1016/j.engstruct.2008.09.001 – ident: e_1_2_10_5_1 doi: 10.1002/we.2063 – ident: e_1_2_10_20_1 doi: 10.1016/j.ymssp.2017.12.011 – ident: e_1_2_10_46_1 doi: 10.1016/j.ymssp.2019.04.047 – ident: e_1_2_10_19_1 doi: 10.1080/15732479.2013.792098 – ident: e_1_2_10_40_1 doi: 10.1115/1.4027462 – ident: e_1_2_10_42_1 doi: 10.1016/j.jsv.2018.02.052 – volume-title: Random vibration of mechanical and structural systems year: 1993 ident: e_1_2_10_56_1 – ident: e_1_2_10_71_1 doi: 10.1016/j.engstruct.2017.12.001 – ident: e_1_2_10_72_1 doi: 10.1080/15732479.2018.1550096 – ident: e_1_2_10_21_1 doi: 10.1016/j.engstruct.2018.10.053 – ident: e_1_2_10_16_1 doi: 10.1007/s11803-015-0006-5 – ident: e_1_2_10_8_1 doi: 10.1002/we.426 – ident: e_1_2_10_35_1 doi: 10.1007/s11071-014-1256-x – ident: e_1_2_10_26_1 doi: 10.1016/j.engstruct.2018.09.063 – ident: e_1_2_10_43_1 doi: 10.1016/j.soildyn.2020.106466 – ident: e_1_2_10_7_1 doi: 10.1002/we.249 – ident: e_1_2_10_6_1 doi: 10.1016/j.jsv.2017.12.026 – ident: e_1_2_10_44_1 doi: 10.1016/j.ymssp.2018.08.026 – ident: e_1_2_10_17_1 doi: 10.1002/stc.2200 – ident: e_1_2_10_24_1 doi: 10.1016/j.engstruct.2017.03.006 – ident: e_1_2_10_34_1 doi: 10.1007/s11071-006-9167-0 – volume-title: DNV‐RP‐C205: environmental conditions and environmental loads year: 2010 ident: e_1_2_10_59_1 – ident: e_1_2_10_50_1 doi: 10.1016/j.engstruct.2015.03.007 – ident: e_1_2_10_9_1 doi: 10.1016/j.engstruct.2014.04.045 – start-page: e2440 year: 2019 ident: e_1_2_10_18_1 article-title: Experimental research on design parameters of basin tuned and particle damper for wind turbine tower on shaker publication-title: Struct Control Health Monit – ident: e_1_2_10_4_1 doi: 10.1016/j.rser.2020.109710 – ident: e_1_2_10_32_1 doi: 10.1115/1.1345524 – ident: e_1_2_10_12_1 doi: 10.1016/j.engstruct.2016.07.008 – ident: e_1_2_10_22_1 doi: 10.1016/j.engstruct.2019.109294 – volume-title: Recommended practice for compliance of large land‐based wind turbine support structures year: 2011 ident: e_1_2_10_64_1 – ident: e_1_2_10_60_1 doi: 10.1002/we.1588 – ident: e_1_2_10_30_1 doi: 10.1680/geng.11.00015 – ident: e_1_2_10_27_1 doi: 10.1016/j.engstruct.2018.11.020 – ident: e_1_2_10_36_1 doi: 10.1016/j.ijnonlinmec.2013.02.004 – volume-title: Global Wind Report 2019 year: 2020 ident: e_1_2_10_2_1 – volume-title: Random vibration and statistical linearization year: 1990 ident: e_1_2_10_54_1 – ident: e_1_2_10_52_1 doi: 10.1002/eqe.2677 – volume-title: Global Wind Report‐Annual Market Update 2017 year: 2018 ident: e_1_2_10_3_1 – ident: e_1_2_10_47_1 doi: 10.1061/(ASCE)EM.1943-7889.0000824 – ident: e_1_2_10_49_1 doi: 10.1002/tal.1692 – ident: e_1_2_10_13_1 doi: 10.1002/we.2281 – ident: e_1_2_10_48_1 doi: 10.1016/j.soildyn.2019.05.007 – ident: e_1_2_10_23_1 doi: 10.1016/j.jsv.2021.116144 – ident: e_1_2_10_33_1 doi: 10.1061/(ASCE)ST.1943-541X.0000978 – volume-title: Measurements of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) year: 1973 ident: e_1_2_10_69_1 – ident: e_1_2_10_29_1 doi: 10.1002/stc.2117 – ident: e_1_2_10_38_1 doi: 10.1016/j.engstruct.2014.07.020 – ident: e_1_2_10_37_1 doi: 10.1016/j.jsv.2016.11.003 – volume: 26 start-page: 435 issue: 4 year: 2020 ident: e_1_2_10_53_1 article-title: Simultaneous out‐of‐plane and in‐plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers publication-title: Smart Struct Syst – volume-title: Wind turbines‐Part 1: Design requirements year: 2005 ident: e_1_2_10_68_1 |
SSID | ssj0026285 |
Score | 2.448226 |
Snippet | Summary
Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively.... Modern offshore wind turbines (OWTs) are constructed with increasingly long blades and slender towers to capture wind resources more effectively. Consequently,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Broadband Control methods Damping Finite element method Mathematical analysis Offshore energy sources offshore wind turbine Polynomials Robustness (mathematics) sea wave Three dimensional models track nonlinear energy sink Turbines Vibration Vibration control Vibration isolators Vibrations wind Wind power Wind speed Wind turbines |
Title | Wind‐ and sea wave‐induced response mitigations of offshore wind turbines using track nonlinear energy sinks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2990 https://www.proquest.com/docview/2700436920 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iL_rgXbyOCKJP1a5LsvZxbIqI-qAOBz6UXFWmc7Sbgk_-BH-jv8RzepkXFEQolLQnNE3OSU6S73whZEtoISLDEaejucekUZ4KmfHAM6-6UDLcvEO0xak4bLOjDu8UqEqMhcn5IUYLbmgZWX-NBi5VuvdBGpoiAyH0pdD9VmsCafNbZyPmqAAjAzOqVMY9UFle8s76wV6Z8etI9OFefnZSs1HmYIZcleXLwSXd3eFA7ernb9SN__uBWTJdOJ-0kWvLHBmzvXky9YmScIH0L2GS_vbySmXPUDAD-iQfLaThKSiBoUmOqbX0_jZn54AEfXBwufTmIbH0CSQpjGMK8fQUYfXXdJBI3aW9vNAyoTYLOKQpbh4vkvbB_kXz0CtOZfA0uAa-FzFntK3WLTf1IBSKu4BpmPRpxbWxXFpbj0SkpQrB1agjLNuAl-ILjYsnztjaEhmHD9plQgPQCMd8K0IBsxrGolAqwTT3lRNMutoK2SlbKNYFZTmenHEX52TLQQx1GGMdrpDNkWQ_p-n4QWa9bOS4MNQ0xn13VhNRAK-3s9b6NX98ftHE--pfBdfIZIDBEhkibZ2MD5Kh3QAXZqAqZKLROjk-r2RK-w5AsvMW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4tcKAcyqOtuuVlJASnQMja3kQ9VQtoeR5gERwqRX62aGF3lV1A4sRP6G_kl3Qm2SxQUQkhRYqc2Ipjz9jf2DOfAValkTKxgvx0jAi4sjrQMbcBIvMtHytOm3fkbXEsm2d8_0JcVOB7GQtT8EOMFtxIM_LxmhScFqQ3n1hD-0RBiIPpGExwxBlkeW2fjLijIooNzMlSuQhQaEXJPBtGm2XJl3PRE8B8DlPzeWZ3Gn6WNSzcS9obNwO9Ye7_IW985y_MwMch_mQ_CoGZhYrrzMHUM1bCT9A7Rzv98eEPUx3LUBPYnbp1mManKAeWZYVbrWPXlwVBByZY1-Pl-7-7mWN3mJPhVKbJpZ6RZ_0vNsiUabNOUWuVMZfHHLI-7R9_hrPdnVajGQwPZggMooMwSLi3xm3VnbD1KJZa-IgbtPuMFsY6oZyrJzIxSseINurkmW0RqITS0PqJt672Bcbxg-4rsAiFwvPQyViiYcN5EistuRGh9pIrX6vCetlFqRmyltPhGVdpwbccpdiGKbVhFVZGOXsFU8creRbKXk6HutpPaeud12QS4eu1vLv-Wz49bTXo_u2tGZdhstk6OkwP944P5uFDRLETuYPaAowPshu3iIhmoJdyyf0LuvH1oQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZSsQwFA06guiDu7gbQfSpTu0kmfZRRodxQcQFBR9KVhV1HDozCj75CX6jX-K9XcYFBREKJW1C0-QmOUnOPSFkVWghIsORp6O5x6RRngqZ8QCZb7pQMty8Q7bFoWicsb0LfpGzKtEXJtOH6C24YctI-2ts4C3jyh-ioW1UIIS-tJ8MMAFAAgHRcU86KkDXwFQrlXEPbJYXwrN-UC5Sfh2KPvDlZ5SaDjP1UXJZZDBjl9xudDtqQz9_02783x-MkZEcfdKtzFzGSZ9tTpDhT5qEk6R1DrP0t5dXKpuGQjugT_LRQhieghUYmmSkWkvvbzJ5DgjQBweXa18_JJY-QUwKA5lCQj1FXv0V7SRS39JmlmmZUJt6HNI27h5PkbP6zmmt4eXHMngasIHvRcwZbTerlptqEArFXcA0zPq04tpYLq2tRiLSUoWANarIyzYAU3yhcfXEGVuZJiX4oJ0hNACTcMy3IhQwrWEsCqUSTHNfOcGkq8yS9aKGYp1rluPRGXdxprYcxFCGMZbhLFnpxWxlOh0_xFkoKjnOW2o7xo13VhFRAK_X0tr6NX18clrD-9xfIy6TwaPtenywe7g_T4YCdJxI2WkLpNRJunYR4ExHLaV2-w71mfRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind%E2%80%90+and+sea+wave%E2%80%90induced+response+mitigations+of+offshore+wind+turbines+using+track+nonlinear+energy+sinks&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Zuo%2C+Haoran&rft.au=Zhang%2C+Jian&rft.au=Guo%E2%80%90Kai+Yuan&rft.au=Zhu%2C+Songye&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fstc.2990&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |