Toward quantitative SERS detection in low analyte concentration by investigating the immersion volume and time of SERS substrate in analyte solution
The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperatu...
Saved in:
Published in | Journal of Raman spectroscopy Vol. 53; no. 1; pp. 33 - 39 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperature and the immersion time. By varying the immersion time and immersion volume of a gold nanostructure array SERS substrate in malachite green solution, we find that the required immersion time to reach the equilibrium adsorption coverage increases with decreasing analyte concentration and volume. For a 6.5 mm × 6.5 mm SERS substrate immersed in 15 ml of 1.5 ppb malachite solution, it takes more than 7 days of immersion time for it to reach 63% of the equilibrium coverage in ambient environment. Furthermore, at low concentration and immersion volume, the solution concentration decreases during the adsorption process and causes deviation from the prediction of Langmuir isotherm. In this work, we demonstrate that for quantitative SERS measurement in low analyte concentration, it is critical to take the immersion volume and time into consideration and ensure the equilibrium adsorption coverage or SERS intensity is reached for accurate concentration determination.
The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model. We demonstrate that for low analyte concentration and immersion volume, the time to reach equilibrium adsorption coverage can take many days and deviates from the Langmuir model prediction. It is therefore critical to take the immersion volume and time into consideration for quantitative SERS determination. |
---|---|
AbstractList | The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperature and the immersion time. By varying the immersion time and immersion volume of a gold nanostructure array SERS substrate in malachite green solution, we find that the required immersion time to reach the equilibrium adsorption coverage increases with decreasing analyte concentration and volume. For a 6.5 mm × 6.5 mm SERS substrate immersed in 15 ml of 1.5 ppb malachite solution, it takes more than 7 days of immersion time for it to reach 63% of the equilibrium coverage in ambient environment. Furthermore, at low concentration and immersion volume, the solution concentration decreases during the adsorption process and causes deviation from the prediction of Langmuir isotherm. In this work, we demonstrate that for quantitative SERS measurement in low analyte concentration, it is critical to take the immersion volume and time into consideration and ensure the equilibrium adsorption coverage or SERS intensity is reached for accurate concentration determination. The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperature and the immersion time. By varying the immersion time and immersion volume of a gold nanostructure array SERS substrate in malachite green solution, we find that the required immersion time to reach the equilibrium adsorption coverage increases with decreasing analyte concentration and volume. For a 6.5 mm × 6.5 mm SERS substrate immersed in 15 ml of 1.5 ppb malachite solution, it takes more than 7 days of immersion time for it to reach 63% of the equilibrium coverage in ambient environment. Furthermore, at low concentration and immersion volume, the solution concentration decreases during the adsorption process and causes deviation from the prediction of Langmuir isotherm. In this work, we demonstrate that for quantitative SERS measurement in low analyte concentration, it is critical to take the immersion volume and time into consideration and ensure the equilibrium adsorption coverage or SERS intensity is reached for accurate concentration determination. The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperature and the immersion time. By varying the immersion time and immersion volume of a gold nanostructure array SERS substrate in malachite green solution, we find that the required immersion time to reach the equilibrium adsorption coverage increases with decreasing analyte concentration and volume. For a 6.5 mm × 6.5 mm SERS substrate immersed in 15 ml of 1.5 ppb malachite solution, it takes more than 7 days of immersion time for it to reach 63% of the equilibrium coverage in ambient environment. Furthermore, at low concentration and immersion volume, the solution concentration decreases during the adsorption process and causes deviation from the prediction of Langmuir isotherm. In this work, we demonstrate that for quantitative SERS measurement in low analyte concentration, it is critical to take the immersion volume and time into consideration and ensure the equilibrium adsorption coverage or SERS intensity is reached for accurate concentration determination. The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model. We demonstrate that for low analyte concentration and immersion volume, the time to reach equilibrium adsorption coverage can take many days and deviates from the Langmuir model prediction. It is therefore critical to take the immersion volume and time into consideration for quantitative SERS determination. |
Author | Lo, Chao‐Yuan Chen, Wei‐Liang Lin, Kuan‐Jiuh Chen, Wei‐Hung Chang, Yu‐Ming Wang, Yu‐Chi Huang, Yu‐Chun |
Author_xml | – sequence: 1 givenname: Wei‐Liang orcidid: 0000-0001-9256-1435 surname: Chen fullname: Chen, Wei‐Liang email: wechen@ntu.edu.tw organization: National Taiwan University – sequence: 2 givenname: Chao‐Yuan surname: Lo fullname: Lo, Chao‐Yuan organization: National Taiwan University – sequence: 3 givenname: Yu‐Chun surname: Huang fullname: Huang, Yu‐Chun organization: National Taiwan University – sequence: 4 givenname: Yu‐Chi surname: Wang fullname: Wang, Yu‐Chi organization: National Taiwan University – sequence: 5 givenname: Wei‐Hung surname: Chen fullname: Chen, Wei‐Hung organization: National Chung‐Hsing University – sequence: 6 givenname: Kuan‐Jiuh surname: Lin fullname: Lin, Kuan‐Jiuh organization: National Chung‐Hsing University – sequence: 7 givenname: Yu‐Ming surname: Chang fullname: Chang, Yu‐Ming email: ymchang@ntu.edu.tw organization: National Taiwan University |
BookMark | eNp1kN9OwyAYxYmZiXOa-Agk3njT-RXWsl6aZf7LEpNtXjeU0snSwQZ0S9_DB5ZuemP0gsDHOecXOJeop42WCN3EMIwByP3aumFKEjhD_RgyFo2SJOmhPlDGIhiN0wt06dwaALIsjfvoc2kO3JZ413Dtlede7SVeTOcLXEovhVdGY6VxbQ6Ya163XmJhtJDaW34Uizboe-m8WoULvcL-Q2K12UjrOnlv6mYjQ7bEXoWDqU501xSuQ8iO_kN2wdxBr9B5xWsnr7_3AXp_nC4nz9Hs7ell8jCLBMkoRGMuKIlFxTgvOBVVVVZFmfJCQkbSEQXJywJimhJWpQlJkoIJKBntBsEYJXSAbk_crTW7JvwhX5vGhse4nKQE2CgJK7juTi5hjXNWVvnWqg23bR5D3nWeh87zrvNgHf6yimOnpqtL1X8FolPgoGrZ_gvOX-eLo_8LaEeYEw |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_131661 crossref_primary_10_1021_acsanm_2c01904 crossref_primary_10_1021_acsnano_4c15183 crossref_primary_10_1002_jrs_6350 crossref_primary_10_3389_fchem_2024_1449161 crossref_primary_10_1021_acs_analchem_3c03259 crossref_primary_10_1039_D4CS00861H crossref_primary_10_1038_s44310_025_00055_8 crossref_primary_10_1002_jrs_6522 crossref_primary_10_1002_jrs_6443 crossref_primary_10_1002_smll_202302531 crossref_primary_10_1088_2053_1591_ac3586 crossref_primary_10_1002_jrs_6678 |
Cites_doi | 10.1038/srep32637 10.1021/ja506361d 10.1002/anie.201502171 10.1021/nn5058936 10.1021/acsami.9b09746 10.1117/12.870562 10.1021/acs.jpcc.8b00353 10.1021/la803357q 10.1364/OPEX.14.000847 10.1002/anie.201908154 10.1088/0957-4484/21/3/035302 10.1186/s11671-019-2946-6 10.1039/D0SC00809E 10.1021/acssensors.0c00398 10.1039/C6CP02752K 10.1039/C7FD00141J 10.1002/jrs.6008 10.3390/bios9020057 10.1039/c3ay41128a 10.1016/j.ces.2018.03.010 10.1021/acs.jpcc.0c09981 10.1038/s41467-019-11829-y 10.1007/s00216-011-5631-x 10.1039/c2cp44030j 10.1021/jp407105v 10.1021/ja210992b 10.1007/s11468-019-01084-8 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 |
DOI | 10.1002/jrs.6250 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1097-4555 |
EndPage | 39 |
ExternalDocumentID | 10_1002_jrs_6250 JRS6250 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of Taiwan funderid: 105‐2119‐M‐002 ‐046 ‐MY3; 108‐2112‐M‐002 ‐013 ‐MY3; 108‐2119‐M‐002 ‐026 ‐MY3 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 |
ID | FETCH-LOGICAL-c2930-8ac321cf7aaba3cffdfbd6abe0926430eadb013627f65255b7c0d73f652c77323 |
IEDL.DBID | DR2 |
ISSN | 0377-0486 |
IngestDate | Fri Jul 25 12:31:18 EDT 2025 Tue Jul 01 01:39:13 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Jan 22 16:27:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-8ac321cf7aaba3cffdfbd6abe0926430eadb013627f65255b7c0d73f652c77323 |
Notes | Funding information Ministry of Science and Technology of Taiwan, Grant/Award Numbers: 105‐2119‐M‐002 ‐046 ‐MY3, 108‐2112‐M‐002 ‐013 ‐MY3, 108‐2119‐M‐002 ‐026 ‐MY3 Wei‐Liang Chen and Chao‐Yuan Lo contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9256-1435 |
PQID | 2620745074 |
PQPubID | 1016368 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2620745074 crossref_primary_10_1002_jrs_6250 crossref_citationtrail_10_1002_jrs_6250 wiley_primary_10_1002_jrs_6250_JRS6250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Journal of Raman spectroscopy |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 25 2018; 122 2019; 9 2019; 4 2018; 184 2019; 11 2019; 10 2021; 125 2006; 14 2019; 14 2015; 54 2020; 59 2020; 15 2020; 14 2020; 11 2016; 18 2015; 9 2021; 52 2013; 5 2012; 403 2014; 136 2016; 6 2010; 21 2020; 5 2013; 15 2012; 134 2013; 38 2013; 117 2010; 7845 2017; 205 Nijs B. (e_1_2_6_28_1) 2019; 4 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 Grys D. B. (e_1_2_6_31_1) 2020; 14 e_1_2_6_21_1 e_1_2_6_20_1 Le Ru E. C. (e_1_2_6_2_1) 2013; 38 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 5 start-page: 5609 issue: 20 year: 2013 publication-title: Anal. Methods – volume: 15 start-page: 5301 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 1465 year: 2020 publication-title: Acs Sensors – volume: 54 start-page: 7308 year: 2015 publication-title: Angewandte Chem.‐Int. Ed. – volume: 122 start-page: 10205 year: 2018 publication-title: J. Phys. Chem. C – volume: 134 start-page: 2000 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 29177 year: 2019 publication-title: Appl. Mater. Int. – volume: 184 start-page: 141 year: 2018 publication-title: Chem. Eng. Sci. – volume: 6 start-page: 32637 year: 2016 publication-title: Sci. Rep. – volume: 7845 year: 2010 – volume: 38 start-page: 631 year: 2013 publication-title: Bulletin – volume: 52 start-page: 412 issue: 2 year: 2021 publication-title: J. Raman Spectrosc. – volume: 403 start-page: 27 year: 2012 publication-title: Anal. Bioanal. Chem. – volume: 14 start-page: 847 year: 2006 publication-title: Opt. Expr. – volume: 205 start-page: 547 year: 2017 publication-title: Faraday Discuss. – volume: 14 start-page: 118 year: 2019 publication-title: Nanosc. Res. Lett. – volume: 25 start-page: 1790 year: 2009 publication-title: Langmuir – volume: 4 start-page: 2988 year: 2019 publication-title: Sensors – volume: 11 start-page: 4563 year: 2020 publication-title: Chem. Sci. – volume: 15 start-page: 743 year: 2020 publication-title: Plasmonics – volume: 10 start-page: 3905 year: 2019 publication-title: Nat. Commun. – volume: 136 start-page: 10965 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 19613 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 59 start-page: 5454 year: 2020 publication-title: Angewandte Chem.‐Int. Ed. – volume: 21 issue: 3 year: 2010 publication-title: Nanotechnology – volume: 9 start-page: 584 year: 2015 publication-title: Acs Nano – volume: 9 start-page: 57 issue: 2 year: 2019 publication-title: Biosensors‐Basel – volume: 125 start-page: 3553 year: 2021 publication-title: J. Phys. Chem. C – volume: 14 start-page: 8689 year: 2020 publication-title: Nano – volume: 117 start-page: 22834 year: 2013 publication-title: J. Phys. Chem. C – ident: e_1_2_6_16_1 doi: 10.1038/srep32637 – ident: e_1_2_6_27_1 doi: 10.1021/ja506361d – ident: e_1_2_6_10_1 doi: 10.1002/anie.201502171 – ident: e_1_2_6_17_1 doi: 10.1021/nn5058936 – ident: e_1_2_6_25_1 doi: 10.1021/acsami.9b09746 – ident: e_1_2_6_19_1 doi: 10.1117/12.870562 – ident: e_1_2_6_18_1 doi: 10.1021/acs.jpcc.8b00353 – ident: e_1_2_6_11_1 doi: 10.1021/la803357q – ident: e_1_2_6_13_1 doi: 10.1364/OPEX.14.000847 – ident: e_1_2_6_6_1 doi: 10.1002/anie.201908154 – ident: e_1_2_6_22_1 doi: 10.1088/0957-4484/21/3/035302 – ident: e_1_2_6_8_1 doi: 10.1186/s11671-019-2946-6 – ident: e_1_2_6_21_1 doi: 10.1039/D0SC00809E – ident: e_1_2_6_9_1 doi: 10.1021/acssensors.0c00398 – ident: e_1_2_6_15_1 doi: 10.1039/C6CP02752K – ident: e_1_2_6_14_1 doi: 10.1039/C7FD00141J – volume: 14 start-page: 8689 year: 2020 ident: e_1_2_6_31_1 publication-title: Nano – ident: e_1_2_6_7_1 doi: 10.1002/jrs.6008 – ident: e_1_2_6_3_1 doi: 10.3390/bios9020057 – volume: 4 start-page: 2988 year: 2019 ident: e_1_2_6_28_1 publication-title: Sensors – ident: e_1_2_6_23_1 doi: 10.1039/c3ay41128a – ident: e_1_2_6_24_1 – ident: e_1_2_6_29_1 doi: 10.1016/j.ces.2018.03.010 – ident: e_1_2_6_30_1 doi: 10.1021/acs.jpcc.0c09981 – ident: e_1_2_6_20_1 doi: 10.1038/s41467-019-11829-y – ident: e_1_2_6_5_1 doi: 10.1007/s00216-011-5631-x – volume: 38 start-page: 631 year: 2013 ident: e_1_2_6_2_1 publication-title: Bulletin – ident: e_1_2_6_4_1 doi: 10.1039/c2cp44030j – ident: e_1_2_6_32_1 doi: 10.1021/jp407105v – ident: e_1_2_6_26_1 doi: 10.1021/ja210992b – ident: e_1_2_6_12_1 doi: 10.1007/s11468-019-01084-8 |
SSID | ssj0009961 |
Score | 2.4131186 |
Snippet | The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 33 |
SubjectTerms | Adsorption Equilibrium Immersion Langmuir isotherm Malachite green Quantitative analysis Raman spectroscopy SERS Submerging Substrates |
Title | Toward quantitative SERS detection in low analyte concentration by investigating the immersion volume and time of SERS substrate in analyte solution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6250 https://www.proquest.com/docview/2620745074 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1EEb24i-NGC6KnjJl0kh6P4oKIephREDyE9CYuZNRkEP0OP9iqTjKjoiAeQgi9kHRXVV4XVa8ANiOujVZWenhxj1I1PdnCDYl2QyVFbCJhKRv57Dw-vgxPrqKrKqqScmFKfoiBw400w9lrUvBU5jtD0tC757yJ4J2O6xSqRXioM2SOQhjviuVxITxilat5Z_1gpx749U80hJefQar7yxxNw3X9fmVwyX2zX8imevtG3fi_D5iBqQp8sr1SWmZhxGRzMLFf13ybg3EXEKryeXi_cPG07KmfZi4PDa0i6x52ukybwoVvZew2Yw-9F5YSr0lhmKIMyKyi4WXyFdsHHB7ZDUOkyW6dm5yaS6uIYzWj8vasZ8vZczRkjjCXZq9nrvVjAS6PDi_2j72qgoOnEEb4XjtVPGgpK9JUplxZq63UcSqNv4tAjPsoxuSHjQNh4wgPN1IoXwtOD0oIHvBFGM16mVkCFsZKBhIBiSS6G67bhvttbUWoAi7DUDRgu97NRFX05lRl4yEpiZmDBNc7ofVuwMag52NJ6fFDn9VaIJJKqfOEuPtFiAA6bMCW29lfxycnnS7dl__acQUmA0qscM6dVRgtnvtmDeFOIddhbO_g7LS77gT8A1xAAgE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRahceBRQl7ZgJB6nbFM7ibeHHlAf2j4Pu1uptxC_0EKVpU1WVfkd_Av-Cj-KGSfeBQQSlx44REnkhyLPePzZmfkG4FUqjDXaqQgvEVGoZqQ2USDpVqKVzGwqHUUjn5xm_bPk8Dw9X4BvIRam4YeYHbjRzPD2miY4HUhvzFlDP15VXUTvcetReWRvrnG_Vm0f7KJwX3O-vzfa6UdtSoFI47oWR71CC76pnSwKVQjtnHHKZIWy8RYiAxHjuNLBYMaly1JE20rq2EhBL1pKQSwHaO_vUAJxIurfHcy5qnDj4NPzCSkj4rELTLcx3whf-uvaNwe0P8Niv67tP4DvYUQad5ZP3WmtuvrLb2SR_8mQPYT7Lb5m75oJ8QgWbLkMSzshrd0y3PU-r7p6DF9H3mWYXU6L0ofaoeFnw73BkBlbew-1ko1LdjG5ZgVRt9SWaQryLFumYaZusHxGU1J-YAim2dj_CaDixvBjW8PqMT5MXNN7hbbacwJT76HnYAKewNmtDM9TWCwnpV0BlmRacYWYSxGjjzA9K-KecTLRXKgkkR14G9Qn1y2DOyUSucgb7mmeo3xzkm8HXs5qfm5YS_5QZy1oYN7arSqn9AQywT1C0oE3XpX-2j4_HAzp_uxfK76Apf7o5Dg_Pjg9WoV7nOJI_FnWGizWV1O7juiuVs_9rGLw_rZ18gcMaV-f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRTwuPAqIhQJG4nHKNrWdePfAAXW76gMqtNtKvaXxC21bZUuTVVV-B7-Cv8KfYsZJdgGBxKUHDlES-aHInhl_dma-AXiZCOus8TrCS0QUqhnpdZyQpC-NVqlLlKdo5A976daB3DlMDpfgWxsLU_NDzA_cSDOCvSYFP7N-bUEaenxedhG8x41D5a67vMDtWvl2e4Bz-4rz4eb-xlbUZBSIDC5rcdTLjeDrxqs817kw3luvbZprF_cRGIgYh5XOBVOufJog2NbKxFYJejFKCSI5QHN_TaZxn9JEDEYLqircN4TsfEKpiGjsWqLbmK-1X_rr0rfAsz-j4rCsDe_A93ZAam-Wk-6s0l3z5TeuyP9jxO7C7QZds3e1OtyDJVeswM2NNqndClwPHq-mvA9f94PDMPs8y4sQaIdmn403R2NmXRX80wo2Kdjp9ILlRNxSOWYoxLNoeIaZvsTyOUlJ8YkhlGaT8B-Aimuzj20tqyb4MPV17yVa6sAITL23PbcG4AEcXMnwPITlYlq4R8BkajTXiLg08fkI23Mi7lmvpOFCS6k68KaVnsw0_O2URuQ0q5mneYbzm9H8duDFvOZZzVnyhzqrrQBmjdUqM0pOoCTuEGQHXgdJ-mv7bGc0pvvjf634HG58HAyz99t7u0_gFqcgknCQtQrL1fnMPUVoV-lnQacYHF21SP4AhvFeTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+quantitative+SERS+detection+in+low+analyte+concentration+by+investigating+the+immersion+volume+and+time+of+SERS+substrate+in+analyte+solution&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Chen%2C+Wei%E2%80%90Liang&rft.au=Lo%2C+Chao%E2%80%90Yuan&rft.au=Huang%2C+Yu%E2%80%90Chun&rft.au=Wang%2C+Yu%E2%80%90Chi&rft.date=2022-01-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=53&rft.issue=1&rft.spage=33&rft.epage=39&rft_id=info:doi/10.1002%2Fjrs.6250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jrs_6250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon |