Toward quantitative SERS detection in low analyte concentration by investigating the immersion volume and time of SERS substrate in analyte solution

The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperatu...

Full description

Saved in:
Bibliographic Details
Published inJournal of Raman spectroscopy Vol. 53; no. 1; pp. 33 - 39
Main Authors Chen, Wei‐Liang, Lo, Chao‐Yuan, Huang, Yu‐Chun, Wang, Yu‐Chi, Chen, Wei‐Hung, Lin, Kuan‐Jiuh, Chang, Yu‐Ming
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperature and the immersion time. By varying the immersion time and immersion volume of a gold nanostructure array SERS substrate in malachite green solution, we find that the required immersion time to reach the equilibrium adsorption coverage increases with decreasing analyte concentration and volume. For a 6.5 mm × 6.5 mm SERS substrate immersed in 15 ml of 1.5 ppb malachite solution, it takes more than 7 days of immersion time for it to reach 63% of the equilibrium coverage in ambient environment. Furthermore, at low concentration and immersion volume, the solution concentration decreases during the adsorption process and causes deviation from the prediction of Langmuir isotherm. In this work, we demonstrate that for quantitative SERS measurement in low analyte concentration, it is critical to take the immersion volume and time into consideration and ensure the equilibrium adsorption coverage or SERS intensity is reached for accurate concentration determination. The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model. We demonstrate that for low analyte concentration and immersion volume, the time to reach equilibrium adsorption coverage can take many days and deviates from the Langmuir model prediction. It is therefore critical to take the immersion volume and time into consideration for quantitative SERS determination.
AbstractList The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperature and the immersion time. By varying the immersion time and immersion volume of a gold nanostructure array SERS substrate in malachite green solution, we find that the required immersion time to reach the equilibrium adsorption coverage increases with decreasing analyte concentration and volume. For a 6.5 mm × 6.5 mm SERS substrate immersed in 15 ml of 1.5 ppb malachite solution, it takes more than 7 days of immersion time for it to reach 63% of the equilibrium coverage in ambient environment. Furthermore, at low concentration and immersion volume, the solution concentration decreases during the adsorption process and causes deviation from the prediction of Langmuir isotherm. In this work, we demonstrate that for quantitative SERS measurement in low analyte concentration, it is critical to take the immersion volume and time into consideration and ensure the equilibrium adsorption coverage or SERS intensity is reached for accurate concentration determination.
The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperature and the immersion time. By varying the immersion time and immersion volume of a gold nanostructure array SERS substrate in malachite green solution, we find that the required immersion time to reach the equilibrium adsorption coverage increases with decreasing analyte concentration and volume. For a 6.5 mm × 6.5 mm SERS substrate immersed in 15 ml of 1.5 ppb malachite solution, it takes more than 7 days of immersion time for it to reach 63% of the equilibrium coverage in ambient environment. Furthermore, at low concentration and immersion volume, the solution concentration decreases during the adsorption process and causes deviation from the prediction of Langmuir isotherm. In this work, we demonstrate that for quantitative SERS measurement in low analyte concentration, it is critical to take the immersion volume and time into consideration and ensure the equilibrium adsorption coverage or SERS intensity is reached for accurate concentration determination.
The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model, in which the adsorption is influenced by several factors such as the temperature and the immersion time. By varying the immersion time and immersion volume of a gold nanostructure array SERS substrate in malachite green solution, we find that the required immersion time to reach the equilibrium adsorption coverage increases with decreasing analyte concentration and volume. For a 6.5 mm × 6.5 mm SERS substrate immersed in 15 ml of 1.5 ppb malachite solution, it takes more than 7 days of immersion time for it to reach 63% of the equilibrium coverage in ambient environment. Furthermore, at low concentration and immersion volume, the solution concentration decreases during the adsorption process and causes deviation from the prediction of Langmuir isotherm. In this work, we demonstrate that for quantitative SERS measurement in low analyte concentration, it is critical to take the immersion volume and time into consideration and ensure the equilibrium adsorption coverage or SERS intensity is reached for accurate concentration determination. The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic process and can be described by the Langmuir adsorption model. We demonstrate that for low analyte concentration and immersion volume, the time to reach equilibrium adsorption coverage can take many days and deviates from the Langmuir model prediction. It is therefore critical to take the immersion volume and time into consideration for quantitative SERS determination.
Author Lo, Chao‐Yuan
Chen, Wei‐Liang
Lin, Kuan‐Jiuh
Chen, Wei‐Hung
Chang, Yu‐Ming
Wang, Yu‐Chi
Huang, Yu‐Chun
Author_xml – sequence: 1
  givenname: Wei‐Liang
  orcidid: 0000-0001-9256-1435
  surname: Chen
  fullname: Chen, Wei‐Liang
  email: wechen@ntu.edu.tw
  organization: National Taiwan University
– sequence: 2
  givenname: Chao‐Yuan
  surname: Lo
  fullname: Lo, Chao‐Yuan
  organization: National Taiwan University
– sequence: 3
  givenname: Yu‐Chun
  surname: Huang
  fullname: Huang, Yu‐Chun
  organization: National Taiwan University
– sequence: 4
  givenname: Yu‐Chi
  surname: Wang
  fullname: Wang, Yu‐Chi
  organization: National Taiwan University
– sequence: 5
  givenname: Wei‐Hung
  surname: Chen
  fullname: Chen, Wei‐Hung
  organization: National Chung‐Hsing University
– sequence: 6
  givenname: Kuan‐Jiuh
  surname: Lin
  fullname: Lin, Kuan‐Jiuh
  organization: National Chung‐Hsing University
– sequence: 7
  givenname: Yu‐Ming
  surname: Chang
  fullname: Chang, Yu‐Ming
  email: ymchang@ntu.edu.tw
  organization: National Taiwan University
BookMark eNp1kN9OwyAYxYmZiXOa-Agk3njT-RXWsl6aZf7LEpNtXjeU0snSwQZ0S9_DB5ZuemP0gsDHOecXOJeop42WCN3EMIwByP3aumFKEjhD_RgyFo2SJOmhPlDGIhiN0wt06dwaALIsjfvoc2kO3JZ413Dtlede7SVeTOcLXEovhVdGY6VxbQ6Ya163XmJhtJDaW34Uizboe-m8WoULvcL-Q2K12UjrOnlv6mYjQ7bEXoWDqU501xSuQ8iO_kN2wdxBr9B5xWsnr7_3AXp_nC4nz9Hs7ell8jCLBMkoRGMuKIlFxTgvOBVVVVZFmfJCQkbSEQXJywJimhJWpQlJkoIJKBntBsEYJXSAbk_crTW7JvwhX5vGhse4nKQE2CgJK7juTi5hjXNWVvnWqg23bR5D3nWeh87zrvNgHf6yimOnpqtL1X8FolPgoGrZ_gvOX-eLo_8LaEeYEw
CitedBy_id crossref_primary_10_1016_j_colsurfa_2023_131661
crossref_primary_10_1021_acsanm_2c01904
crossref_primary_10_1021_acsnano_4c15183
crossref_primary_10_1002_jrs_6350
crossref_primary_10_3389_fchem_2024_1449161
crossref_primary_10_1021_acs_analchem_3c03259
crossref_primary_10_1039_D4CS00861H
crossref_primary_10_1038_s44310_025_00055_8
crossref_primary_10_1002_jrs_6522
crossref_primary_10_1002_jrs_6443
crossref_primary_10_1002_smll_202302531
crossref_primary_10_1088_2053_1591_ac3586
crossref_primary_10_1002_jrs_6678
Cites_doi 10.1038/srep32637
10.1021/ja506361d
10.1002/anie.201502171
10.1021/nn5058936
10.1021/acsami.9b09746
10.1117/12.870562
10.1021/acs.jpcc.8b00353
10.1021/la803357q
10.1364/OPEX.14.000847
10.1002/anie.201908154
10.1088/0957-4484/21/3/035302
10.1186/s11671-019-2946-6
10.1039/D0SC00809E
10.1021/acssensors.0c00398
10.1039/C6CP02752K
10.1039/C7FD00141J
10.1002/jrs.6008
10.3390/bios9020057
10.1039/c3ay41128a
10.1016/j.ces.2018.03.010
10.1021/acs.jpcc.0c09981
10.1038/s41467-019-11829-y
10.1007/s00216-011-5631-x
10.1039/c2cp44030j
10.1021/jp407105v
10.1021/ja210992b
10.1007/s11468-019-01084-8
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
DOI 10.1002/jrs.6250
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1097-4555
EndPage 39
ExternalDocumentID 10_1002_jrs_6250
JRS6250
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology of Taiwan
  funderid: 105‐2119‐M‐002 ‐046 ‐MY3; 108‐2112‐M‐002 ‐013 ‐MY3; 108‐2119‐M‐002 ‐026 ‐MY3
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
ID FETCH-LOGICAL-c2930-8ac321cf7aaba3cffdfbd6abe0926430eadb013627f65255b7c0d73f652c77323
IEDL.DBID DR2
ISSN 0377-0486
IngestDate Fri Jul 25 12:31:18 EDT 2025
Tue Jul 01 01:39:13 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Jan 22 16:27:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-8ac321cf7aaba3cffdfbd6abe0926430eadb013627f65255b7c0d73f652c77323
Notes Funding information
Ministry of Science and Technology of Taiwan, Grant/Award Numbers: 105‐2119‐M‐002 ‐046 ‐MY3, 108‐2112‐M‐002 ‐013 ‐MY3, 108‐2119‐M‐002 ‐026 ‐MY3
Wei‐Liang Chen and Chao‐Yuan Lo contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9256-1435
PQID 2620745074
PQPubID 1016368
PageCount 7
ParticipantIDs proquest_journals_2620745074
crossref_primary_10_1002_jrs_6250
crossref_citationtrail_10_1002_jrs_6250
wiley_primary_10_1002_jrs_6250_JRS6250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Journal of Raman spectroscopy
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 25
2018; 122
2019; 9
2019; 4
2018; 184
2019; 11
2019; 10
2021; 125
2006; 14
2019; 14
2015; 54
2020; 59
2020; 15
2020; 14
2020; 11
2016; 18
2015; 9
2021; 52
2013; 5
2012; 403
2014; 136
2016; 6
2010; 21
2020; 5
2013; 15
2012; 134
2013; 38
2013; 117
2010; 7845
2017; 205
Nijs B. (e_1_2_6_28_1) 2019; 4
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Grys D. B. (e_1_2_6_31_1) 2020; 14
e_1_2_6_21_1
e_1_2_6_20_1
Le Ru E. C. (e_1_2_6_2_1) 2013; 38
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 5
  start-page: 5609
  issue: 20
  year: 2013
  publication-title: Anal. Methods
– volume: 15
  start-page: 5301
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 1465
  year: 2020
  publication-title: Acs Sensors
– volume: 54
  start-page: 7308
  year: 2015
  publication-title: Angewandte Chem.‐Int. Ed.
– volume: 122
  start-page: 10205
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 134
  start-page: 2000
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 29177
  year: 2019
  publication-title: Appl. Mater. Int.
– volume: 184
  start-page: 141
  year: 2018
  publication-title: Chem. Eng. Sci.
– volume: 6
  start-page: 32637
  year: 2016
  publication-title: Sci. Rep.
– volume: 7845
  year: 2010
– volume: 38
  start-page: 631
  year: 2013
  publication-title: Bulletin
– volume: 52
  start-page: 412
  issue: 2
  year: 2021
  publication-title: J. Raman Spectrosc.
– volume: 403
  start-page: 27
  year: 2012
  publication-title: Anal. Bioanal. Chem.
– volume: 14
  start-page: 847
  year: 2006
  publication-title: Opt. Expr.
– volume: 205
  start-page: 547
  year: 2017
  publication-title: Faraday Discuss.
– volume: 14
  start-page: 118
  year: 2019
  publication-title: Nanosc. Res. Lett.
– volume: 25
  start-page: 1790
  year: 2009
  publication-title: Langmuir
– volume: 4
  start-page: 2988
  year: 2019
  publication-title: Sensors
– volume: 11
  start-page: 4563
  year: 2020
  publication-title: Chem. Sci.
– volume: 15
  start-page: 743
  year: 2020
  publication-title: Plasmonics
– volume: 10
  start-page: 3905
  year: 2019
  publication-title: Nat. Commun.
– volume: 136
  start-page: 10965
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 19613
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 59
  start-page: 5454
  year: 2020
  publication-title: Angewandte Chem.‐Int. Ed.
– volume: 21
  issue: 3
  year: 2010
  publication-title: Nanotechnology
– volume: 9
  start-page: 584
  year: 2015
  publication-title: Acs Nano
– volume: 9
  start-page: 57
  issue: 2
  year: 2019
  publication-title: Biosensors‐Basel
– volume: 125
  start-page: 3553
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 8689
  year: 2020
  publication-title: Nano
– volume: 117
  start-page: 22834
  year: 2013
  publication-title: J. Phys. Chem. C
– ident: e_1_2_6_16_1
  doi: 10.1038/srep32637
– ident: e_1_2_6_27_1
  doi: 10.1021/ja506361d
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.201502171
– ident: e_1_2_6_17_1
  doi: 10.1021/nn5058936
– ident: e_1_2_6_25_1
  doi: 10.1021/acsami.9b09746
– ident: e_1_2_6_19_1
  doi: 10.1117/12.870562
– ident: e_1_2_6_18_1
  doi: 10.1021/acs.jpcc.8b00353
– ident: e_1_2_6_11_1
  doi: 10.1021/la803357q
– ident: e_1_2_6_13_1
  doi: 10.1364/OPEX.14.000847
– ident: e_1_2_6_6_1
  doi: 10.1002/anie.201908154
– ident: e_1_2_6_22_1
  doi: 10.1088/0957-4484/21/3/035302
– ident: e_1_2_6_8_1
  doi: 10.1186/s11671-019-2946-6
– ident: e_1_2_6_21_1
  doi: 10.1039/D0SC00809E
– ident: e_1_2_6_9_1
  doi: 10.1021/acssensors.0c00398
– ident: e_1_2_6_15_1
  doi: 10.1039/C6CP02752K
– ident: e_1_2_6_14_1
  doi: 10.1039/C7FD00141J
– volume: 14
  start-page: 8689
  year: 2020
  ident: e_1_2_6_31_1
  publication-title: Nano
– ident: e_1_2_6_7_1
  doi: 10.1002/jrs.6008
– ident: e_1_2_6_3_1
  doi: 10.3390/bios9020057
– volume: 4
  start-page: 2988
  year: 2019
  ident: e_1_2_6_28_1
  publication-title: Sensors
– ident: e_1_2_6_23_1
  doi: 10.1039/c3ay41128a
– ident: e_1_2_6_24_1
– ident: e_1_2_6_29_1
  doi: 10.1016/j.ces.2018.03.010
– ident: e_1_2_6_30_1
  doi: 10.1021/acs.jpcc.0c09981
– ident: e_1_2_6_20_1
  doi: 10.1038/s41467-019-11829-y
– ident: e_1_2_6_5_1
  doi: 10.1007/s00216-011-5631-x
– volume: 38
  start-page: 631
  year: 2013
  ident: e_1_2_6_2_1
  publication-title: Bulletin
– ident: e_1_2_6_4_1
  doi: 10.1039/c2cp44030j
– ident: e_1_2_6_32_1
  doi: 10.1021/jp407105v
– ident: e_1_2_6_26_1
  doi: 10.1021/ja210992b
– ident: e_1_2_6_12_1
  doi: 10.1007/s11468-019-01084-8
SSID ssj0009961
Score 2.4131186
Snippet The strength of SERS signal depends on the amount of analyte adsorbed onto the hotspots of a SERS substrate immersed in solution. This adsorption is a dynamic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Adsorption
Equilibrium
Immersion
Langmuir isotherm
Malachite green
Quantitative analysis
Raman spectroscopy
SERS
Submerging
Substrates
Title Toward quantitative SERS detection in low analyte concentration by investigating the immersion volume and time of SERS substrate in analyte solution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6250
https://www.proquest.com/docview/2620745074
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1EEb24i-NGC6KnjJl0kh6P4oKIephREDyE9CYuZNRkEP0OP9iqTjKjoiAeQgi9kHRXVV4XVa8ANiOujVZWenhxj1I1PdnCDYl2QyVFbCJhKRv57Dw-vgxPrqKrKqqScmFKfoiBw400w9lrUvBU5jtD0tC757yJ4J2O6xSqRXioM2SOQhjviuVxITxilat5Z_1gpx749U80hJefQar7yxxNw3X9fmVwyX2zX8imevtG3fi_D5iBqQp8sr1SWmZhxGRzMLFf13ybg3EXEKryeXi_cPG07KmfZi4PDa0i6x52ukybwoVvZew2Yw-9F5YSr0lhmKIMyKyi4WXyFdsHHB7ZDUOkyW6dm5yaS6uIYzWj8vasZ8vZczRkjjCXZq9nrvVjAS6PDi_2j72qgoOnEEb4XjtVPGgpK9JUplxZq63UcSqNv4tAjPsoxuSHjQNh4wgPN1IoXwtOD0oIHvBFGM16mVkCFsZKBhIBiSS6G67bhvttbUWoAi7DUDRgu97NRFX05lRl4yEpiZmDBNc7ofVuwMag52NJ6fFDn9VaIJJKqfOEuPtFiAA6bMCW29lfxycnnS7dl__acQUmA0qscM6dVRgtnvtmDeFOIddhbO_g7LS77gT8A1xAAgE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRahceBRQl7ZgJB6nbFM7ibeHHlAf2j4Pu1uptxC_0EKVpU1WVfkd_Av-Cj-KGSfeBQQSlx44REnkhyLPePzZmfkG4FUqjDXaqQgvEVGoZqQ2USDpVqKVzGwqHUUjn5xm_bPk8Dw9X4BvIRam4YeYHbjRzPD2miY4HUhvzFlDP15VXUTvcetReWRvrnG_Vm0f7KJwX3O-vzfa6UdtSoFI47oWR71CC76pnSwKVQjtnHHKZIWy8RYiAxHjuNLBYMaly1JE20rq2EhBL1pKQSwHaO_vUAJxIurfHcy5qnDj4NPzCSkj4rELTLcx3whf-uvaNwe0P8Niv67tP4DvYUQad5ZP3WmtuvrLb2SR_8mQPYT7Lb5m75oJ8QgWbLkMSzshrd0y3PU-r7p6DF9H3mWYXU6L0ofaoeFnw73BkBlbew-1ko1LdjG5ZgVRt9SWaQryLFumYaZusHxGU1J-YAim2dj_CaDixvBjW8PqMT5MXNN7hbbacwJT76HnYAKewNmtDM9TWCwnpV0BlmRacYWYSxGjjzA9K-KecTLRXKgkkR14G9Qn1y2DOyUSucgb7mmeo3xzkm8HXs5qfm5YS_5QZy1oYN7arSqn9AQywT1C0oE3XpX-2j4_HAzp_uxfK76Apf7o5Dg_Pjg9WoV7nOJI_FnWGizWV1O7juiuVs_9rGLw_rZ18gcMaV-f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRTwuPAqIhQJG4nHKNrWdePfAAXW76gMqtNtKvaXxC21bZUuTVVV-B7-Cv8KfYsZJdgGBxKUHDlES-aHInhl_dma-AXiZCOus8TrCS0QUqhnpdZyQpC-NVqlLlKdo5A976daB3DlMDpfgWxsLU_NDzA_cSDOCvSYFP7N-bUEaenxedhG8x41D5a67vMDtWvl2e4Bz-4rz4eb-xlbUZBSIDC5rcdTLjeDrxqs817kw3luvbZprF_cRGIgYh5XOBVOufJog2NbKxFYJejFKCSI5QHN_TaZxn9JEDEYLqircN4TsfEKpiGjsWqLbmK-1X_rr0rfAsz-j4rCsDe_A93ZAam-Wk-6s0l3z5TeuyP9jxO7C7QZds3e1OtyDJVeswM2NNqndClwPHq-mvA9f94PDMPs8y4sQaIdmn403R2NmXRX80wo2Kdjp9ILlRNxSOWYoxLNoeIaZvsTyOUlJ8YkhlGaT8B-Aimuzj20tqyb4MPV17yVa6sAITL23PbcG4AEcXMnwPITlYlq4R8BkajTXiLg08fkI23Mi7lmvpOFCS6k68KaVnsw0_O2URuQ0q5mneYbzm9H8duDFvOZZzVnyhzqrrQBmjdUqM0pOoCTuEGQHXgdJ-mv7bGc0pvvjf634HG58HAyz99t7u0_gFqcgknCQtQrL1fnMPUVoV-lnQacYHF21SP4AhvFeTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+quantitative+SERS+detection+in+low+analyte+concentration+by+investigating+the+immersion+volume+and+time+of+SERS+substrate+in+analyte+solution&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Chen%2C+Wei%E2%80%90Liang&rft.au=Lo%2C+Chao%E2%80%90Yuan&rft.au=Huang%2C+Yu%E2%80%90Chun&rft.au=Wang%2C+Yu%E2%80%90Chi&rft.date=2022-01-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=53&rft.issue=1&rft.spage=33&rft.epage=39&rft_id=info:doi/10.1002%2Fjrs.6250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jrs_6250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon