Using neural network super‐twisting sliding mode to improve power control of a dual‐rotor wind turbine system in normal and unbalanced grid fault modes

Summary According to recent research work, increasing electric power generation is one of the significant advantages of the dual‐rotor wind turbine (DRWT) compared to the other types for the same wind speed. In this research work, a modified super‐twisting sliding mode control (STSMC) based on the n...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of circuit theory and applications Vol. 52; no. 9; pp. 4323 - 4347
Main Authors Yahdou, Adil, Djilali, Abdelkadir Belhadj, Bounadja, Elhadj, Benbouhenni, Habib
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.09.2024
Subjects
Online AccessGet full text
ISSN0098-9886
1097-007X
DOI10.1002/cta.3960

Cover

Abstract Summary According to recent research work, increasing electric power generation is one of the significant advantages of the dual‐rotor wind turbine (DRWT) compared to the other types for the same wind speed. In this research work, a modified super‐twisting sliding mode control (STSMC) based on the neural network (NN) is suggested to regulate the stator powers of a DRWT‐based doubly‐fed induction generator (DFIG) in normal and unbalanced grid fault modes. The design of this strategy involves replacing the gains of conventional STSMC with the NN algorithm to enhance robustness, mitigate the impact of unbalanced grid voltage, and consequently improve the quality of the generated power of DRWT‐based DFIG. This forms the primary contribution of this work. The suggested strategy is compared with vector control (VC) and conventional STSMC in terms of reference tracking, power ripples, response dynamics, harmonic distortion of stator current, and the effect of an unbalanced grid fault. Finally, the utility and effectiveness of the designed controller are confirmed through computer simulations. Furthermore, when the grid is subjected to a 20% voltage drop, the results demonstrate that the suggested strategy reduced the total harmonic distortion (THD) value of the stator current by 12.92% compared to VC and by 9.29% compared to conventional STSMC. This paper presents a modified super‐twisting sliding mode control (STSMC) strategy based on neural network (NN) algorithms to regulate the stator powers of a dual‐rotor wind turbine with a doubly‐fed induction generator in both normal and unbalanced grid fault modes. The strategy involves replacing the conventional STSMC gains with NN algorithms, resulting in very positive outcomes, including improved current quality, perfect stator power tracking, reduced stator power ripples, and excellent robustness.
AbstractList According to recent research work, increasing electric power generation is one of the significant advantages of the dual‐rotor wind turbine (DRWT) compared to the other types for the same wind speed. In this research work, a modified super‐twisting sliding mode control (STSMC) based on the neural network (NN) is suggested to regulate the stator powers of a DRWT‐based doubly‐fed induction generator (DFIG) in normal and unbalanced grid fault modes. The design of this strategy involves replacing the gains of conventional STSMC with the NN algorithm to enhance robustness, mitigate the impact of unbalanced grid voltage, and consequently improve the quality of the generated power of DRWT‐based DFIG. This forms the primary contribution of this work. The suggested strategy is compared with vector control (VC) and conventional STSMC in terms of reference tracking, power ripples, response dynamics, harmonic distortion of stator current, and the effect of an unbalanced grid fault. Finally, the utility and effectiveness of the designed controller are confirmed through computer simulations. Furthermore, when the grid is subjected to a 20% voltage drop, the results demonstrate that the suggested strategy reduced the total harmonic distortion (THD) value of the stator current by 12.92% compared to VC and by 9.29% compared to conventional STSMC.
Summary According to recent research work, increasing electric power generation is one of the significant advantages of the dual‐rotor wind turbine (DRWT) compared to the other types for the same wind speed. In this research work, a modified super‐twisting sliding mode control (STSMC) based on the neural network (NN) is suggested to regulate the stator powers of a DRWT‐based doubly‐fed induction generator (DFIG) in normal and unbalanced grid fault modes. The design of this strategy involves replacing the gains of conventional STSMC with the NN algorithm to enhance robustness, mitigate the impact of unbalanced grid voltage, and consequently improve the quality of the generated power of DRWT‐based DFIG. This forms the primary contribution of this work. The suggested strategy is compared with vector control (VC) and conventional STSMC in terms of reference tracking, power ripples, response dynamics, harmonic distortion of stator current, and the effect of an unbalanced grid fault. Finally, the utility and effectiveness of the designed controller are confirmed through computer simulations. Furthermore, when the grid is subjected to a 20% voltage drop, the results demonstrate that the suggested strategy reduced the total harmonic distortion (THD) value of the stator current by 12.92% compared to VC and by 9.29% compared to conventional STSMC. This paper presents a modified super‐twisting sliding mode control (STSMC) strategy based on neural network (NN) algorithms to regulate the stator powers of a dual‐rotor wind turbine with a doubly‐fed induction generator in both normal and unbalanced grid fault modes. The strategy involves replacing the conventional STSMC gains with NN algorithms, resulting in very positive outcomes, including improved current quality, perfect stator power tracking, reduced stator power ripples, and excellent robustness.
Author Yahdou, Adil
Bounadja, Elhadj
Benbouhenni, Habib
Djilali, Abdelkadir Belhadj
Author_xml – sequence: 1
  givenname: Adil
  orcidid: 0000-0002-1047-3843
  surname: Yahdou
  fullname: Yahdou, Adil
  email: a.yahdou@univ-chlef.dz
  organization: Hassiba Benbouali University of Chlef
– sequence: 2
  givenname: Abdelkadir Belhadj
  surname: Djilali
  fullname: Djilali, Abdelkadir Belhadj
  organization: Hassiba Benbouali University of Chlef
– sequence: 3
  givenname: Elhadj
  orcidid: 0000-0002-3002-4316
  surname: Bounadja
  fullname: Bounadja, Elhadj
  organization: Hassiba Benbouali University of Chlef
– sequence: 4
  givenname: Habib
  orcidid: 0000-0001-8253-4863
  surname: Benbouhenni
  fullname: Benbouhenni, Habib
  organization: Nişantaşı University
BookMark eNp1kM1q3DAUhUWZQGeSQB5B0E03nl75Z2wtw9AmhUA3M5CdkaXroFSWppJcM7s-Qvd5uzxJ5UxXIYELZ3G_cw_3rMjCOouEXDFYM4D8i4xiXfANfCBLBrzOAOr7BVkC8CbjTbP5SFYhPAJAkxd8SZ72QdsHanH0wiSJk_M_aRgP6J___I2TDnHeB6PVrINTSKOjejh49xvpwU3oqXQ2emeo66mgahQmWb2LztNJW0Xj6DttkYZjiDhQbal1fkhxIi1H2wkjrERFH7xWtBejiS854YKc9cIEvPyv52T_7etue5vd_bj5vr2-y2TOC8g2UDVQIRN9uYGO1x1UNZZ9mXNRsEbVOUqUXcMlK7Hrq4alwZ7zUvECQajinHw63U0__RoxxPbRjd6myLZIFZYMWJUn6vOJkt6F4LFvD14Pwh9bBu1cfZuqb-fqE7p-hUodRdRzTUKbtwzZyTBpg8d3D7fb3fUL_w_SwZv6
CitedBy_id crossref_primary_10_1038_s41598_025_87832_9
crossref_primary_10_1109_ACCESS_2024_3434534
crossref_primary_10_1038_s41598_024_67194_4
crossref_primary_10_1080_15325008_2024_2332401
crossref_primary_10_1002_ese3_1976
crossref_primary_10_1016_j_egyr_2024_02_051
crossref_primary_10_1016_j_engappai_2025_110484
crossref_primary_10_1002_cta_4253
crossref_primary_10_1002_cta_4373
crossref_primary_10_1038_s41598_024_81281_6
crossref_primary_10_1002_cta_4460
crossref_primary_10_1016_j_egyr_2024_02_047
crossref_primary_10_1016_j_egyr_2024_04_049
Cites_doi 10.1109/ROSE.2019.8790423
10.1080/00051144.2022.2065801
10.1016/j.oceaneng.2023.114944
10.1016/j.engappai.2021.104361
10.1016/j.egyr.2022.11.136
10.1016/j.egyr.2022.02.235
10.1007/s11071‐012‐0556‐2
10.1038/s41598‐022‐15960‐7
10.1016/j.ijepes.2022.108273
10.1109/TIA.2021.3087119
10.1002/rnc.4927
10.1002/cta.3511
10.1016/j.isatra.2018.11.021
10.1109/TPEL.2020.3028545
10.1016/j.compeleceng.2021.107485
10.1109/TCSII.2021.3051904
10.1016/j.conengprac.2022.105064
10.1016/j.renene.2012.06.010
10.1016/j.jfranklin.2011.06.019
10.1049/iet‐rpg.2018.5002
10.1007/s10846‐013‐9843‐5
10.1038/s41598‐023‐40870‐7
10.1109/TCSI.2020.3039850
10.1016/j.ijepes.2021.107416
10.1109/LCSYS.2020.3005327
10.1016/j.renene.2017.06.083
10.1016/j.simpat.2012.03.001
10.1016/j.isatra.2010.03.010
10.18280/ejee.220604
10.1109/CISTEM.2018.8613409
10.1016/j.matcom.2018.05.014
10.1016/j.epsr.2022.108829
10.1016/j.ast.2013.05.005
10.1109/TPWRS.2020.3043891
10.1016/j.energy.2020.118871
10.1016/j.egyr.2022.07.092
10.1002/ep.12878
10.1002/we.2269
10.3390/en14154437
10.1109/ICJECE.2022.3223510
10.1016/j.egyr.2021.08.183
10.1002/cta.3625
10.1109/TAC.2017.2776747
10.1007/s00034‐010‐9237‐x
10.3390/electronics11010116
10.3390/en14185877
10.1109/TCYB.2014.2313028
10.1016/j.ijepes.2012.12.014
10.1109/TIA.2014.2328711
10.1109/TSTE.2022.3166217
10.1631/jzus.2006.A1757
10.1109/TPEL.2020.2986893
10.1002/cta.3023
10.1109/2943.999610
10.18280/jesa.530507
10.1002/cta.3542
10.1109/TCYB.2017.2771497
10.1002/we.2500
10.1016/j.isatra.2023.02.013
10.3390/app9061124
10.1049/iet‐cta.2013.0394
10.1007/978‐3‐642‐84379‐2
10.1002/asjc.2202
10.1109/ACCESS.2023.3335902
10.3311/PPee.13726
10.1002/acs.758
10.1016/j.isatra.2013.01.004
10.1016/j.epsr.2010.08.011
10.1049/iet‐epa.2020.0485
10.3906/elk‐1510‐89
10.1109/IECON.2006.347300
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/cta.3960
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-007X
EndPage 4347
ExternalDocumentID 10_1002_cta_3960
CTA3960
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c2930-605805e1af460b97b057e4f429a318d72ececb89c14ebf581581ef994d93e0ad3
IEDL.DBID DR2
ISSN 0098-9886
IngestDate Fri Jul 25 12:19:32 EDT 2025
Tue Jul 01 02:55:47 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Wed Aug 20 07:24:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-605805e1af460b97b057e4f429a318d72ececb89c14ebf581581ef994d93e0ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3002-4316
0000-0002-1047-3843
0000-0001-8253-4863
PQID 3097410152
PQPubID 996369
PageCount 25
ParticipantIDs proquest_journals_3097410152
crossref_primary_10_1002_cta_3960
crossref_citationtrail_10_1002_cta_3960
wiley_primary_10_1002_cta_3960_CTA3960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of circuit theory and applications
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 134
2021; 68
2019; 13
2020; 14
2003; 17
2022; 63
2020; 167
2013; 7
2017; 114
2013; 6
2021; 36
2012; 70
2022; 121
2020; 53
2019; 63
2019; 22
2019; 23
2013; 52
2023; 138
2023; 214
2012; 25
2018; 37
2023; 51
2021; 49
2021; 7
2019; 9
2021; 5
2023; 13
2023; 280
2023; 11
2013; 49
2017; 25
2021; 104
2015; 51
2022; 51
2011; 81
2002; 8
2006; 7
2011; 30
2020; 35
2018; 63
1992
2021; 96
2016; 16
2012; 349
2014; 44
2021; 14
2021; 57
2022; 142
2023; 46
2010; 49
2020; 30
2021; 214
2019; 87
2022; 8
2013; 30
2022; 12
2022; 13
2019; 49
2019
2016; 61
2020; 23
2020; 22
2012; 48
2022; 11
2014; 74
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Benbouhenni H (e_1_2_8_73_1) 2022; 11
e_1_2_8_70_1
Yahdou A (e_1_2_8_62_1) 2016; 16
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Boudjema Z (e_1_2_8_65_1) 2013; 6
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
Amrane F (e_1_2_8_64_1) 2016; 61
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 48
  start-page: 473
  year: 2012
  end-page: 481
  article-title: Comparison of fault‐ride‐through capability of dual and single‐rotor wind turbines
  publication-title: Renew Energy
– volume: 134
  year: 2022
  article-title: Nonlinear MPC for DFIG‐based wind power generation under unbalanced grid conditions
  publication-title: Int J Electr Power Energy Syst
– volume: 25
  start-page: 106
  year: 2012
  end-page: 117
  article-title: A second order sliding mode control design of a switched reluctance motor using super twisting algorithm
  publication-title: Simul Model Pract Theory
– volume: 8
  start-page: 3600
  year: 2022
  end-page: 3613
  article-title: Modified super twisting algorithm based sliding mode control for LVRT enhancement of DFIG driven wind system
  publication-title: Energy Rep
– volume: 104
  year: 2021
  article-title: Disturbance‐observer based prescribed‐performance fuzzy sliding mode control for PMSM in electric vehicles
  publication-title: Eng Appl Artif Intel
– volume: 7
  start-page: 5815
  year: 2021
  end-page: 5833
  article-title: Enhanced control technique for a sensor‐less wind driven doubly fed induction generator for energy conversion purpose
  publication-title: Energy Rep
– volume: 35
  start-page: 12110
  issue: 11
  year: 2020
  end-page: 12121
  article-title: Adaptive speed control of PMSM drive system based a new sliding‐mode reaching law
  publication-title: IEEE T Power Electr
– volume: 36
  start-page: 5784
  issue: 5
  year: 2021
  end-page: 5793
  article-title: FPGA‐based sliding‐mode predictive control for PMSM speed regulation system using an adaptive ultralocal model
  publication-title: IEEE T Power Electr
– volume: 68
  start-page: 1297
  issue: 3
  year: 2021
  end-page: 1307
  article-title: Robust H∞ adaptive sliding mode fault tolerant control for T‐S fuzzy fractional order systems with mismatched disturbances
  publication-title: IEEE T Circuits Syst
– volume: 14
  start-page: 1
  issue: 15
  year: 2021
  end-page: 17
  article-title: A synergetic sliding mode controller applied to direct field‐oriented control of induction generator‐based variable speed dual‐rotor wind turbines
  publication-title: Energies
– volume: 7
  start-page: 2188
  issue: 18
  year: 2013
  end-page: 2196
  article-title: New approach to second‐order sliding mode control design
  publication-title: IET Control Theory Appl
– volume: 37
  start-page: 2124
  issue: 6
  year: 2018
  end-page: 2131
  article-title: Fractional order sliding mode controller design for large scale variable speed wind turbine for power optimization
  publication-title: Environ Prog Sustain
– volume: 36
  start-page: 2866
  issue: 4
  year: 2021
  end-page: 2876
  article-title: Fixed‐time fractional‐order sliding mode controller for multimachine power systems
  publication-title: IEEE Trans Power Syst
– volume: 96
  year: 2021
  article-title: Neuro‐adaptive singularity‐free finite‐time attitude tracking control of quadrotor UAVs
  publication-title: Comput Electr Eng
– volume: 49
  start-page: 261
  issue: 1
  year: 2019
  end-page: 272
  article-title: Fault tolerant sliding mode predictive control for uncertain steer‐by‐wire system
  publication-title: IEEE T Cybernetics
– volume: 63
  start-page: 178
  issue: 3
  year: 2019
  end-page: 190
  article-title: Super‐twisting sliding mode control of a doubly‐fed induction generator based on the SVM strategy
  publication-title: Period Polytech Electr Eng Comp Sci
– volume: 17
  start-page: 501
  issue: 6
  year: 2003
  end-page: 508
  article-title: Sliding mode neural network control of an induction motor drive
  publication-title: Int J Adapt Control Signal Process
– volume: 9
  start-page: 1124
  issue: 6
  year: 2019
  article-title: Multi‐resonant‐based sliding mode control of DFIG‐based wind system under unbalanced and harmonic network conditions
  publication-title: Appl Sci
– volume: 280
  year: 2023
  article-title: Numerical study of aerodynamic performance of horizontal axis dual‐rotor wind turbine under atmospheric boundary layers
  publication-title: Ocean Eng
– volume: 11
  start-page: 8
  issue: 3
  year: 2022
  end-page: 15
  article-title: Intelligent control scheme of asynchronous generator‐based dual‐rotor wind power system under different working conditions
  publication-title: Majlesi J Energy Manag
– volume: 8
  start-page: 1154
  year: 2022
  end-page: 1169
  article-title: Comparative energy performance analysis of four wind turbines with counter‐rotating rotors in steady‐state regime
  publication-title: Energy Rep
– volume: 51
  start-page: 2163
  issue: 5
  year: 2023
  end-page: 2185
  article-title: An improved robust coupled sliding mode control strategy for solar photovoltaic‐based single‐phase inverters
  publication-title: Int J Circuit Theory Appl
– volume: 57
  start-page: 5001
  issue: 5
  year: 2021
  end-page: 5012
  article-title: Dual converter connecting open‐end doubly fed induction generator to a DC‐microgrid
  publication-title: IEEE Trans Ind Appl
– volume: 6
  start-page: 7
  issue: 2
  year: 2013
  end-page: 14
  article-title: Fuzzy sliding mode control of a doubly fed induction generator for energy conversion
  publication-title: Carpath J Electr Comp Eng
– volume: 13
  start-page: 1566
  issue: 3
  year: 2022
  end-page: 1579
  article-title: Sliding‐mode control algorithm for DFIG synchronization to unbalanced and harmonically distorted grids
  publication-title: IEEE Trans Sustain Energy
– volume: 81
  start-page: 254
  issue: 2
  year: 2011
  end-page: 262
  article-title: A novel control scheme for DFIG‐based wind energy systems under unbalanced grid conditions
  publication-title: Electr Pow Syst Res
– volume: 63
  start-page: 718
  issue: 4
  year: 2022
  end-page: 731
  article-title: New direct power synergetic‐SMC technique based PWM for DFIG integrated to a variable speed dual‐rotor wind power
  publication-title: Automatika
– volume: 214
  year: 2023
  article-title: Self‐adapting PI controller for grid‐connected DFIG wind turbines based on recurrent neural network optimization control under unbalanced grid faults
  publication-title: Electr Pow Syst Res
– volume: 11
  start-page: 29
  issue: 2
  year: 2023
  end-page: 37
  article-title: Comparative study of sliding mode control with synergetic control for rotor side inverter of the DFIG for multi‐rotor wind power systems
  publication-title: Majlesi J Mechatron Syst
– volume: 51
  start-page: 1858
  issue: 4
  year: 2022
  end-page: 1878
  article-title: Third‐order super‐twisting control of a double stator asynchronous generator integrated in a wind turbine system under single‐phase open fault
  publication-title: Int J Circuit Theory Appl
– volume: 8
  start-page: 26
  issue: 3
  year: 2002
  end-page: 33
  article-title: Doubly fed induction generator systems for wind turbines
  publication-title: IEEE Ind Appl Mag
– volume: 49
  start-page: 234
  year: 2013
  end-page: 242
  article-title: Optimal tracking and robust power control of the DFIG wind turbine
  publication-title: Int J Electr Power Energy Syst
– volume: 12
  issue: 1
  year: 2022
  article-title: Robust sliding‐Backstepping mode control of a wind system based on the DFIG generator
  publication-title: Sci Rep
– volume: 14
  start-page: 2537
  issue: 12
  year: 2020
  end-page: 2546
  article-title: Backstepping sliding mode control of induction motor based on disturbance observer
  publication-title: IET Electr Power Appl
– volume: 51
  start-page: 3710
  issue: 8
  year: 2023
  end-page: 3729
  article-title: An improved DC link voltage control with double frequency second‐order generalized integrator for enhanced power quality of grid‐interfaced DFIG system
  publication-title: Int J Circuit Theory Appl
– volume: 138
  start-page: 720
  year: 2023
  end-page: 734
  article-title: An adaptive fuzzy logic control technique for LVRT enhancement of a grid‐integrated DFIG‐based wind energy conversion system
  publication-title: ISA Trans
– volume: 30
  start-page: 629
  issue: 3
  year: 2011
  end-page: 641
  article-title: Sliding mode control for linear systems with time‐varying input and state delays
  publication-title: Circuits, Syst Signal Process
– volume: 52
  start-page: 342
  issue: 3
  year: 2013
  end-page: 350
  article-title: Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems
  publication-title: ISA Trans
– volume: 13
  issue: 1
  year: 2023
  article-title: Synergetic‐PI controller based on genetic algorithm for DPC‐PWM strategy of a multi‐rotor wind power system
  publication-title: Sci Rep
– volume: 22
  start-page: 49
  issue: 1
  year: 2019
  end-page: 64
  article-title: Fractional‐order sliding mode control for hybrid drive wind power generation system with disturbances in the grid
  publication-title: Wind Energy
– volume: 11
  start-page: 8
  issue: 4
  year: 2022
  end-page: 15
  article-title: Backstepping control for multi‐rotor wind power systems
  publication-title: Majlesi J Energy Manag
– volume: 70
  start-page: 1563
  issue: 2
  year: 2012
  end-page: 1573
  article-title: Adaptive sliding mode control of dynamic system using RBF neural network
  publication-title: Nonlinear Dynam
– volume: 25
  start-page: 965
  issue: 2
  year: 2017
  end-page: 975
  article-title: A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system
  publication-title: Turk J Elec Eng & Comp Sci
– volume: 142
  year: 2022
  article-title: A control strategy for DFIG‐based systems operating under unbalanced grid voltage conditions
  publication-title: Int J Electr Power Energy Syst
– volume: 87
  start-page: 200
  year: 2019
  end-page: 216
  article-title: Development of an adaptive radial basis function neural network estimator‐based continuous sliding mode control for uncertain nonlinear systems
  publication-title: ISA Trans
– volume: 49
  start-page: 1959
  issue: 7
  year: 2021
  end-page: 1986
  article-title: Second‐order sliding mode control of wind turbines to enhance the fault‐ride through capability under unbalanced grid faults
  publication-title: Int J Circuit Theory Appl
– year: 1992
– volume: 74
  start-page: 931
  issue: 3
  year: 2014
  end-page: 944
  article-title: Sliding mode neuro adaptive control in trajectory tracking for mobile robots
  publication-title: J Intell Robot Syst
– volume: 7
  start-page: 1757
  issue: 10
  year: 2006
  end-page: 1764
  article-title: Dynamic modelling and robust current control of wind‐turbine driven DFIG during external AC voltage dip
  publication-title: J Zhejiang Univ Sci a
– volume: 114
  start-page: 644
  year: 2017
  end-page: 654
  article-title: Development and experimental verification of counter‐rotating dual rotor/dual generator wind turbine: generating, yawing and furling
  publication-title: Renew Energy
– volume: 14
  start-page: 1
  issue: 18
  year: 2021
  end-page: 20
  article-title: Third‐order sliding mode applied to the direct field‐oriented control of the asynchronous generator for variable‐speed contra‐rotating wind turbine generation systems
  publication-title: Energies
– volume: 46
  start-page: 35
  issue: 1
  year: 2023
  end-page: 43
  article-title: A self‐regulating virtual synchronous generator control of doubly fed induction generator‐wind farms
  publication-title: Can J Electr Comput Eng
– volume: 30
  start-page: 3110
  issue: 8
  year: 2020
  end-page: 3133
  article-title: Robust adaptive backstepping sliding mode control for motion mode decoupling of two‐axle vehicles with active kinetic dynamic suspension systems
  publication-title: Int J Robust Nonlin
– volume: 349
  start-page: 1337
  issue: 4
  year: 2012
  end-page: 1349
  article-title: Sliding mode controller design for linear systems with unmeasured states
  publication-title: J Franklin Inst
– volume: 68
  start-page: 2518
  issue: 7
  year: 2021
  end-page: 2522
  article-title: A novel variable exponential discrete time sliding mode reaching law
  publication-title: IEEE Trans Circuits Syst
– volume: 30
  start-page: 1
  issue: 1
  year: 2013
  end-page: 7
  article-title: Backstepping based adaptive sliding mode control for space craft attitude maneuvers
  publication-title: Aerosp Sci Technol
– volume: 5
  start-page: 839
  issue: 3
  year: 2021
  end-page: 844
  article-title: A passivity based sliding mode controller for simple port‐Hamiltonian systems
  publication-title: IEEE Control Syst Lett
– volume: 167
  start-page: 308
  year: 2020
  end-page: 324
  article-title: Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system
  publication-title: Math Comput Simul
– volume: 63
  start-page: 2715
  issue: 8
  year: 2018
  end-page: 2721
  article-title: Passivity‐based asynchronous sliding mode control for delayed singular Markovian jump systems
  publication-title: IEEE T Automat Contr
– start-page: 1
  year: 2019
  end-page: 7
– volume: 61
  start-page: 263
  issue: 3
  year: 2016
  end-page: 268
  article-title: A novel direct power control for grid‐connected doubly fed induction generator based on hybrid artificial intelligent control with space vector modulation
  publication-title: Rev Sci Techn Electrotechn et Energ
– volume: 23
  start-page: 1564
  issue: 7
  year: 2020
  end-page: 1577
  article-title: SSCI mitigation of grid‐connected DFIG wind turbines with fractional order sliding mode controller
  publication-title: Wind Energy
– volume: 121
  year: 2022
  article-title: Extreme‐learning‐machine‐based robust integral terminal sliding mode control of bicycle robot
  publication-title: Control Eng Pract
– volume: 23
  start-page: 362
  issue: 1
  year: 2019
  end-page: 373
  article-title: Adaptive gains to super‐twisting technique for sliding mode design
  publication-title: Asian J Control
– volume: 16
  start-page: 11
  year: 2016
  article-title: Second order sliding mode control of a dual‐rotor wind turbine system by employing a matrix converter
  publication-title: J Electr Eng
– volume: 214
  year: 2021
  article-title: Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine
  publication-title: Energy
– volume: 49
  start-page: 394
  issue: 3
  year: 2010
  end-page: 405
  article-title: Second‐order sliding mode control with experimental application
  publication-title: ISA Trans
– volume: 11
  start-page: 116
  issue: 1
  year: 2022
  article-title: FPGA in the loop implementation for observer sliding mode control of DFIG‐generators for wind turbines
  publication-title: Electronics
– volume: 44
  start-page: 2658
  issue: 12
  year: 2014
  end-page: 2669
  article-title: Universal fuzzy integral sliding‐mode controllers for stochastic nonlinear systems
  publication-title: IEEE Trans Cybern
– volume: 53
  start-page: 645
  issue: 5
  year: 2020
  end-page: 651
  article-title: Improved vector control of a counter‐rotating wind turbine system using adaptive backstepping sliding mode
  publication-title: J Eur des Syst Autom
– volume: 22
  start-page: 427
  issue: 6
  year: 2020
  end-page: 434
  article-title: Using adaptive second order sliding mode to improve power control of a counter‐rotating wind turbine under grid disturbances
  publication-title: Eur J Electr Eng
– volume: 51
  start-page: 692
  issue: 1
  year: 2015
  end-page: 701
  article-title: Adaptive fuzzy sliding‐mode control into chattering‐free IM drive
  publication-title: IEEE Trans Ind Appl
– volume: 13
  start-page: 618
  issue: 4
  year: 2019
  end-page: 632
  article-title: Real‐time neural sliding mode field oriented control for a DFIG‐based wind turbine under balanced and unbalanced grid conditions
  publication-title: IET Renew Power Gener
– ident: e_1_2_8_50_1
  doi: 10.1109/ROSE.2019.8790423
– ident: e_1_2_8_53_1
  doi: 10.1080/00051144.2022.2065801
– ident: e_1_2_8_4_1
  doi: 10.1016/j.oceaneng.2023.114944
– ident: e_1_2_8_18_1
  doi: 10.1016/j.engappai.2021.104361
– ident: e_1_2_8_74_1
  doi: 10.1016/j.egyr.2022.11.136
– ident: e_1_2_8_59_1
  doi: 10.1016/j.egyr.2022.02.235
– ident: e_1_2_8_51_1
  doi: 10.1007/s11071‐012‐0556‐2
– ident: e_1_2_8_75_1
  doi: 10.1038/s41598‐022‐15960‐7
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ijepes.2022.108273
– ident: e_1_2_8_7_1
  doi: 10.1109/TIA.2021.3087119
– ident: e_1_2_8_42_1
  doi: 10.1002/rnc.4927
– ident: e_1_2_8_22_1
  doi: 10.1002/cta.3511
– ident: e_1_2_8_23_1
  doi: 10.1016/j.isatra.2018.11.021
– ident: e_1_2_8_45_1
  doi: 10.1109/TPEL.2020.3028545
– ident: e_1_2_8_52_1
  doi: 10.1016/j.compeleceng.2021.107485
– ident: e_1_2_8_40_1
  doi: 10.1109/TCSII.2021.3051904
– ident: e_1_2_8_48_1
  doi: 10.1016/j.conengprac.2022.105064
– ident: e_1_2_8_54_1
  doi: 10.1016/j.renene.2012.06.010
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jfranklin.2011.06.019
– volume: 11
  start-page: 8
  issue: 3
  year: 2022
  ident: e_1_2_8_73_1
  article-title: Intelligent control scheme of asynchronous generator‐based dual‐rotor wind power system under different working conditions
  publication-title: Majlesi J Energy Manag
– ident: e_1_2_8_29_1
  doi: 10.1049/iet‐rpg.2018.5002
– ident: e_1_2_8_49_1
  doi: 10.1007/s10846‐013‐9843‐5
– ident: e_1_2_8_76_1
  doi: 10.1038/s41598‐023‐40870‐7
– ident: e_1_2_8_47_1
  doi: 10.1109/TCSI.2020.3039850
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ijepes.2021.107416
– ident: e_1_2_8_44_1
  doi: 10.1109/LCSYS.2020.3005327
– ident: e_1_2_8_3_1
  doi: 10.1016/j.renene.2017.06.083
– ident: e_1_2_8_26_1
  doi: 10.1016/j.simpat.2012.03.001
– ident: e_1_2_8_21_1
  doi: 10.1016/j.isatra.2010.03.010
– ident: e_1_2_8_58_1
  doi: 10.18280/ejee.220604
– volume: 61
  start-page: 263
  issue: 3
  year: 2016
  ident: e_1_2_8_64_1
  article-title: A novel direct power control for grid‐connected doubly fed induction generator based on hybrid artificial intelligent control with space vector modulation
  publication-title: Rev Sci Techn Electrotechn et Energ
– ident: e_1_2_8_60_1
  doi: 10.1109/CISTEM.2018.8613409
– ident: e_1_2_8_70_1
  doi: 10.1016/j.matcom.2018.05.014
– ident: e_1_2_8_11_1
  doi: 10.1016/j.epsr.2022.108829
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ast.2013.05.005
– ident: e_1_2_8_34_1
  doi: 10.1109/TPWRS.2020.3043891
– ident: e_1_2_8_63_1
  doi: 10.1016/j.energy.2020.118871
– ident: e_1_2_8_2_1
  doi: 10.1016/j.egyr.2022.07.092
– ident: e_1_2_8_36_1
  doi: 10.1002/ep.12878
– ident: e_1_2_8_37_1
  doi: 10.1002/we.2269
– ident: e_1_2_8_69_1
  doi: 10.3390/en14154437
– ident: e_1_2_8_6_1
  doi: 10.1109/ICJECE.2022.3223510
– ident: e_1_2_8_71_1
  doi: 10.1016/j.egyr.2021.08.183
– ident: e_1_2_8_8_1
  doi: 10.1002/cta.3625
– ident: e_1_2_8_43_1
  doi: 10.1109/TAC.2017.2776747
– ident: e_1_2_8_20_1
  doi: 10.1007/s00034‐010‐9237‐x
– ident: e_1_2_8_72_1
  doi: 10.3390/electronics11010116
– ident: e_1_2_8_68_1
  doi: 10.3390/en14185877
– ident: e_1_2_8_30_1
  doi: 10.1109/TCYB.2014.2313028
– ident: e_1_2_8_56_1
  doi: 10.1016/j.ijepes.2012.12.014
– ident: e_1_2_8_31_1
  doi: 10.1109/TIA.2014.2328711
– ident: e_1_2_8_13_1
  doi: 10.1109/TSTE.2022.3166217
– ident: e_1_2_8_15_1
  doi: 10.1631/jzus.2006.A1757
– ident: e_1_2_8_39_1
  doi: 10.1109/TPEL.2020.2986893
– ident: e_1_2_8_32_1
  doi: 10.1002/cta.3023
– ident: e_1_2_8_14_1
  doi: 10.1109/2943.999610
– ident: e_1_2_8_16_1
  doi: 10.18280/jesa.530507
– ident: e_1_2_8_19_1
  doi: 10.1002/cta.3542
– ident: e_1_2_8_46_1
  doi: 10.1109/TCYB.2017.2771497
– volume: 6
  start-page: 7
  issue: 2
  year: 2013
  ident: e_1_2_8_65_1
  article-title: Fuzzy sliding mode control of a doubly fed induction generator for energy conversion
  publication-title: Carpath J Electr Comp Eng
– ident: e_1_2_8_5_1
– ident: e_1_2_8_35_1
  doi: 10.1002/we.2500
– ident: e_1_2_8_57_1
  doi: 10.1016/j.isatra.2023.02.013
– ident: e_1_2_8_66_1
  doi: 10.3390/app9061124
– ident: e_1_2_8_33_1
  doi: 10.1049/iet‐cta.2013.0394
– ident: e_1_2_8_27_1
  doi: 10.1007/978‐3‐642‐84379‐2
– ident: e_1_2_8_38_1
  doi: 10.1002/asjc.2202
– ident: e_1_2_8_77_1
  doi: 10.1109/ACCESS.2023.3335902
– volume: 16
  start-page: 11
  year: 2016
  ident: e_1_2_8_62_1
  article-title: Second order sliding mode control of a dual‐rotor wind turbine system by employing a matrix converter
  publication-title: J Electr Eng
– ident: e_1_2_8_67_1
  doi: 10.3311/PPee.13726
– ident: e_1_2_8_28_1
  doi: 10.1002/acs.758
– ident: e_1_2_8_24_1
  doi: 10.1016/j.isatra.2013.01.004
– ident: e_1_2_8_9_1
  doi: 10.1016/j.epsr.2010.08.011
– ident: e_1_2_8_41_1
  doi: 10.1049/iet‐epa.2020.0485
– ident: e_1_2_8_55_1
  doi: 10.3906/elk‐1510‐89
– ident: e_1_2_8_61_1
  doi: 10.1109/IECON.2006.347300
SSID ssj0008239
Score 2.4484658
Snippet Summary According to recent research work, increasing electric power generation is one of the significant advantages of the dual‐rotor wind turbine (DRWT)...
According to recent research work, increasing electric power generation is one of the significant advantages of the dual‐rotor wind turbine (DRWT) compared to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4323
SubjectTerms Algorithms
Directional control
doubly‐fed induction generator
dual‐rotor wind turbine
Electric power grids
Harmonic distortion
Induction generators
neural network
Neural networks
Power control
Rotors
Sliding mode control
Stators
super‐twisting sliding mode control
Twisting
Unbalance
unbalanced grid
vector control
Voltage drop
Wind speed
Wind turbines
Title Using neural network super‐twisting sliding mode to improve power control of a dual‐rotor wind turbine system in normal and unbalanced grid fault modes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcta.3960
https://www.proquest.com/docview/3097410152
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlp_TQpi-6SRomUNqTE1uWvdYxbLKEQHooCQR6MHqMy5LFu-zaLPTUn5B7_l1-SWb8yKYlhVAw-KAZbEsjzTfy6BshPofkQnTkfCATYwM1RBloa7PAcokrlXovm3Jv59_S00t1dpVcdVmVfBam5Yd42HDjmdGs1zzBjV0erklDXWUoYE85XI_ilGnzj7-vmaMyGeueLlNnWdrzzobysFf80xOt4eVjkNp4mfFr8aN_vza55PqgruyB-_UXdeP_fcCWeNWBTzhqreWNeIHlW_HyESXhO3Hb5BAA01ySZNkmicOynuPi7vdNteIlgdoJnbLTAy6kA9UMJs3eBMKci65Bl_8OswIM8GEvUl3MKLqH1aT0QF6O4nGElkUaJiWUjJynYKixLi1nWzr08HMx8VCYelo1z1m-F5fjk4vRadAVcAgcmQCFpWGShQlGplBpaPXQEjhEVZALNLSU-KFEh85m2kUKbZFkEV1YaK28jjE0Pv4gNspZiR8FkHaKhn-bGlRDn2qZJYRdtItj5ROpBuJrP5i569jNucjGNG95mWVO3Z1zdw_E_oPkvGX0eEJmt7eHvJvTyzwOKfaiFSyRA_GlGdh_6uejiyO-bz9XcEdsSkJLbfLartioFjV-IrRT2b3Gru8BW_sAWQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Cekh7SJs-qNukmUJpT0rk1UrWklNIG9w2yaE4kENB7EvFxMjGlgj01J_Qe_9dfklm9IiT0EApCHTYGSTtzu58s5r9BuBdSC5E9a0LRKxNIAdeBMqYNDBc4komzom63NvxSTI8lV_O4rMV2OvOwjT8ENcbbjwz6vWaJzhvSO8uWUNtqSliTyhefyAJZ3Dk9fHbkjsqFZHqCDNVmiYd82wodjvN275oCTBvwtTazxw-hu_dGzbpJec7VWl27M875I3_-QlPYL3Fn7jfGMwGrPjiKTy6wUr4DP7UaQTITJckWTR54rioZn5--et3ecGrArUTQGW_h1xLB8spjuvtCY8zrruGbQo8TnPUyOe9SHU-pQAfL8aFQ3J0FJJ7bIikcVxgweB5gpoaq8JwwqX1Dn_Mxw5zXU3K-jmL53B6-Gl0MAzaGg6BJSugyDSM0zD2fZ3LJDRqYAgfepmTF9S0mriB8NZbkyrbl97kcdqny-dKSaciH2oXvYDVYlr4l4CknXjNf061lwOXKJHGBF-UjSLpYiF78KEbzcy2BOdcZ2OSNdTMIqPuzri7e_D2WnLWkHr8RWazM4isndaLLAop_KJFLBY9eF-P7L362cFon--v_lVwG9aGo-Oj7OjzydfX8FAQeGpy2TZhtZxXfovAT2ne1EZ-BU8pBHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEF-KQmkfqrUtXqt2hNI-RXObTS77KOphq5VSFIQ-hP0zkcMjd9wlCH3yI_jeb9dP4kz-eLa0UAqBPOwMSXZnd36zmf2NEO9CciG673wgY2MDNUAZaGvTwHKJK5V4L-tyb59Pk6Nz9ekivmizKvksTMMPcb_hxjOjXq95gk99vrsgDXWloYA9oXB9WSUEJBgQfV1QR6Uy0h1fpk7TpCOeDeVup_mrK1rgy4cotXYzwxXxrXvBJrvkaqcq7Y77_ht34_99wap41qJP2GvM5bl4hMWaePqAk_CF-FEnEQDzXJJk0WSJw7ya4uznzW15zWsCtRM8Za8HXEkHygmM6s0JhClXXYM2AR4mORjg016kOptQeA_Xo8IDuTkKyBEaGmkYFVAwdB6DocaqsJxu6dDD5WzkITfVuKyfM38pzoeHZ_tHQVvBIXBkAxSXhnEaxtg3OQ2R1QNL6BBVTj7Q0FriBxIdOptq11do8zjt04W51srrCEPjo1diqZgUuC6AtBM0_N_UoBr4RMs0JvCiXRQpH0vVEx-6wcxcS2_OVTbGWUPMLDPq7oy7uye27yWnDaXHH2Q2OnvI2kk9z6KQgi9awmLZE-_rgf2rfrZ_tsf31_8q-FY8_nIwzE4-nh6_EU8kIacmkW1DLJWzCjcJ-ZR2qzbxO1IGAyc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+neural+network+super%E2%80%90twisting+sliding+mode+to+improve+power+control+of+a+dual%E2%80%90rotor+wind+turbine+system+in+normal+and+unbalanced+grid+fault+modes&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=Yahdou%2C+Adil&rft.au=Djilali%2C+Abdelkadir+Belhadj&rft.au=Bounadja%2C+Elhadj&rft.au=Benbouhenni%2C+Habib&rft.date=2024-09-01&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=52&rft.issue=9&rft.spage=4323&rft.epage=4347&rft_id=info:doi/10.1002%2Fcta.3960&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cta_3960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon