Robust control for a class of nonlinear systems with input constraints based on actor‐critic learning
This article focuses on establishing a general robust actor‐critic online learning control structure for disturbed nonlinear continuous systems with input constraints. It enriches the existing studies for the robustness of input constraint systems. First, the problem of robust controller design is s...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 34; no. 12; pp. 7635 - 7654 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article focuses on establishing a general robust actor‐critic online learning control structure for disturbed nonlinear continuous systems with input constraints. It enriches the existing studies for the robustness of input constraint systems. First, the problem of robust controller design is successfully transformed into optimal controller design, and this process is proven, in which a particular nonquadratic discount cost function is defined. Then, build two neural networks (NNs) to estimate the cost function together and update each other. In the update process of actor NN, a robust term related to the state is introduced, which can guarantee the system's stability during the online learning process, and the state information is more fully utilized. Furthermore, using Lyapunov's direct method, it is proved that the estimated weights of the closed‐loop optimal control system and the actor‐critic NNs are uniformly ultimately bounded (UUB). It also provides extended discussions and a simulation example to demonstrate the robustness verification results of the novel algorithm. |
---|---|
AbstractList | This article focuses on establishing a general robust actor‐critic online learning control structure for disturbed nonlinear continuous systems with input constraints. It enriches the existing studies for the robustness of input constraint systems. First, the problem of robust controller design is successfully transformed into optimal controller design, and this process is proven, in which a particular nonquadratic discount cost function is defined. Then, build two neural networks (NNs) to estimate the cost function together and update each other. In the update process of actor NN, a robust term related to the state is introduced, which can guarantee the system's stability during the online learning process, and the state information is more fully utilized. Furthermore, using Lyapunov's direct method, it is proved that the estimated weights of the closed‐loop optimal control system and the actor‐critic NNs are uniformly ultimately bounded (UUB). It also provides extended discussions and a simulation example to demonstrate the robustness verification results of the novel algorithm. |
Author | Li, Dongdong Dong, Jiuxiang |
Author_xml | – sequence: 1 givenname: Dongdong orcidid: 0000-0002-8814-146X surname: Li fullname: Li, Dongdong organization: Northeastern University – sequence: 2 givenname: Jiuxiang orcidid: 0000-0002-0318-3004 surname: Dong fullname: Dong, Jiuxiang email: dongjiuxiang@ise.neu.edu.cn organization: Northeastern University |
BookMark | eNp1kMtKQzEQhoMo2FbBRwi4cXNqLueWpRRvUBSKrsOcNKemnCY1SSnd-Qg-o09iTutKdDHMwHzfDPxDdGyd1QhdUDKmhLBrb9W4pIIcoQElQmSUcXHcz7nIasH4KRqGsCQk7Vg-QIuZazYhYuVs9K7DrfMYsOogBOxanI53xmrwOOxC1KuAtya-YWPXm70TogdjY8ANBD3HzmJQ0fmvj0_lTTQKd8m1xi7O0EkLXdDnP32EXu9uXyYP2fT5_nFyM80UE5xkBdMNrXiqgquibKAQlSqgLXRJc94Sqpu8bOZVVXJasZoKKHMmALiotCCU8BG6PNxde_e-0SHKpdt4m15KTqqyoHUu6kSND5TyLgSvW6lMhGj6EMB0khLZhylTmLIPMwlXv4S1Nyvwu7_Q7IBuTad3_3Jy9jTZ898DUYaE |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3214849 crossref_primary_10_1109_TAES_2023_3332062 crossref_primary_10_1016_j_ins_2023_119577 crossref_primary_10_1109_TAES_2023_3346804 crossref_primary_10_1002_rnc_7710 crossref_primary_10_1109_TSMC_2023_3320653 crossref_primary_10_1109_ACCESS_2023_3297503 |
Cites_doi | 10.1002/rnc.5557 10.1109/TCYB.2016.2643687 10.1109/TNNLS.2019.2933467 10.1016/j.ins.2020.07.055 10.1002/rnc.4895 10.1016/j.automatica.2004.11.034 10.1016/j.neucom.2019.06.069 10.1109/TNNLS.2017.2761718 10.1109/TSMC.2020.2970040 10.1109/TNNLS.2020.3006850 10.1002/rnc.4404 10.1016/j.automatica.2013.09.043 10.1109/TCYB.2014.2357896 10.1016/j.automatica.2021.109687 10.1109/TSMC.2018.2876125 10.1002/rnc.5419 10.1109/TPWRS.2016.2537984 10.1109/TCYB.2017.2761878 10.1109/TCYB.2019.2903117 10.1016/j.ins.2020.11.057 10.23919/ACC.1993.4793094 10.1002/rnc.4069 10.1109/TSMCB.2012.2203336 10.1002/rnc.4650 10.1016/j.neucom.2021.07.058 10.1109/TSMC.2020.3042876 10.1109/TNNLS.2015.2441749 10.1016/j.automatica.2016.05.008 10.1002/acs.2348 10.1016/j.automatica.2020.109265 10.1109/TNNLS.2021.3085767 10.1002/rnc.5403 10.1002/rnc.5831 10.1109/70.660845 10.1002/rnc.5950 10.1109/TNNLS.2015.2472974 10.1109/TNN.2003.813823 10.1109/TCYB.2015.2417170 10.1002/rnc.5668 10.1002/rnc.5341 10.1016/j.automatica.2014.05.011 10.1109/TCYB.2019.2921057 10.1002/rnc.5410 10.1016/j.ins.2016.07.051 10.1002/rnc.5687 10.1109/TCYB.2017.2712188 10.1109/TSMC.2016.2642118 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.6190 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 7654 |
ExternalDocumentID | 10_1002_rnc_6190 RNC6190 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61873056; 61621004; 61420106016 – fundername: Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China funderid: 2013ZCX01 – fundername: Fundamental Research Funds for the Central Universities in China funderid: N2004001; N2004002; N182608004 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2930-52eb173b1753c56ba597c5af5e6143f01eb46bd7763172819a6429aa397e90103 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Wed Aug 13 04:28:50 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Tue Jul 01 01:03:10 EDT 2025 Wed Jun 11 08:26:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-52eb173b1753c56ba597c5af5e6143f01eb46bd7763172819a6429aa397e90103 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Numbers: 61873056; 61621004; 61420106016; Fundamental Research Funds for the Central Universities in China, Grant/Award Numbers: N2004001; N2004002; N182608004; Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China, Grant/Award Number: 2013ZCX01 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8814-146X 0000-0002-0318-3004 |
PQID | 3076518498 |
PQPubID | 1026344 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3076518498 crossref_citationtrail_10_1002_rnc_6190 crossref_primary_10_1002_rnc_6190 wiley_primary_10_1002_rnc_6190_RNC6190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 28 2019; 50 2017; 48 2019; 31 2017; 47 2021; 543 2021; 129 2016; 32 2003; 14 2005; 41 2016; 72 2020; 122 2017; 29 2016; 369 1992 2020; 32 2021; 462 2014; 28 1996; 14 2019; 361 2021; 51 2014; 44 2015; 45 2015; 26 2021; 32 2021; 31 2015; 27 2020; 30 2021 2020 2021; 554 2019; 29 2018; 30 2018; 50 2022; 32 2014; 50 2012; 43 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 Wang X (e_1_2_11_18_1) 2021; 32 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 Qin J (e_1_2_11_46_1) 2018; 30 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Werbos P (e_1_2_11_2_1) 1992 e_1_2_11_50_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Yuan X (e_1_2_11_41_1) 2020 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Zhang H (e_1_2_11_10_1) 2019; 50 |
References_xml | – volume: 31 start-page: 1941 issue: 6 year: 2021 end-page: 1963 article-title: Hamiltonian‐driven adaptive dynamic programming for mixed H2/H performance using sum‐of‐squares publication-title: Int J Robust Nonlinear Control – volume: 32 start-page: 2330 issue: 4 year: 2022 end-page: 2343 article-title: Robust control for uncertain impulsive systems with input constraints and external disturbance publication-title: Int J Robust Nonlinear Control – volume: 51 start-page: 142 issue: 1 year: 2021 end-page: 160 article-title: Adaptive dynamic programming for control: a survey and recent advances publication-title: IEEE Trans Syst Man Cybern Syst – volume: 50 start-page: 3433 issue: 8 year: 2019 end-page: 3443 article-title: Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation publication-title: IEEE Trans Cybern – volume: 14 start-page: 900 issue: 4 year: 2003 end-page: 918 article-title: Neural‐network control of nonaffine nonlinear system with zero dynamics by state and output feedback publication-title: IEEE Trans Neural Netw – volume: 28 start-page: 232 issue: 3‐5 year: 2014 end-page: 254 article-title: Online solution of nonquadratic two‐player zero‐sum games arising in the H control of constrained input systems publication-title: Int J Adapt Control Signal Process – volume: 361 start-page: 229 year: 2019 end-page: 242 article-title: Reliable control of cyber‐physical systems under sensor and actuator attacks: an identifier‐critic based integral sliding‐mode control approach publication-title: Neurocomputing – volume: 43 start-page: 206 issue: 1 year: 2012 end-page: 216 article-title: Near‐optimal control for nonzero‐sum differential games of continuous‐time nonlinear systems using single‐network ADP publication-title: IEEE Trans Cybern – volume: 48 start-page: 500 issue: 2 year: 2017 end-page: 509 article-title: Policy iteration for optimal control of polynomial nonlinear systems via sum of squares programming publication-title: IEEE Trans Cybern – start-page: 1 issue: 99 year: 2021 end-page: 9 article-title: Robust adaptive control for a small unmanned helicopter using reinforcement learning publication-title: IEEE Trans Neural Netw Learn Syst – volume: 47 start-page: 1602 year: 2017 end-page: 1612 article-title: Event‐based constrained robust control of affine systems incorporating an adaptive critic mechanism publication-title: IEEE Trans Syst Man Cybern Syst – start-page: 493 year: 1992 end-page: 525 – volume: 50 start-page: 1 issue: 99 year: 2019 end-page: 16 article-title: Event‐driven guaranteed cost control design for nonlinear systems with actuator faults via reinforcement learning algorithm publication-title: IEEE Trans Syst Man Cybern Syst – volume: 462 start-page: 309 year: 2021 end-page: 319 article-title: Online event‐triggered adaptive critic design for multi‐player zero‐sum games of partially unknown nonlinear systems with input constraints publication-title: Neurocomputing – volume: 129 year: 2021 article-title: A novel adaptive dynamic programming based on tracking error for nonlinear discrete‐time systems publication-title: Automatica – volume: 29 start-page: 849 issue: 4 year: 2019 end-page: 866 article-title: Robust adaptive fault‐tolerant tracking control for uncertain linear systems with time‐varying performance bounds publication-title: Int J Robust Nonlinear Control – volume: 31 start-page: 1 issue: 99 year: 2019 end-page: 11 article-title: Reinforcement learning‐based optimal stabilization for unknown nonlinear systems subject to inputs with uncertain constraints publication-title: IEEE Trans Neural Netw Learn Syst – volume: 369 start-page: 731 year: 2016 end-page: 747 article-title: Data‐based robust adaptive control for a class of unknown nonlinear constrained‐input systems via integral reinforcement learning publication-title: Inf Sci Int J – volume: 32 start-page: 581 issue: 1 year: 2016 end-page: 589 article-title: An event‐triggered approach for load frequency control with supplementary ADP publication-title: IEEE Trans Power Syst – volume: 50 start-page: 193 issue: 1 year: 2014 end-page: 202 article-title: Integral reinforcement learning and experience replay for adaptive optimal control of partially‐unknown constrained‐input continuous‐time systems ‐ ScienceDirect publication-title: Automatica – volume: 72 start-page: 37 year: 2016 end-page: 45 article-title: Output‐feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming publication-title: Automatica – volume: 31 start-page: 2593 issue: 7 year: 2021 end-page: 2613 article-title: Event‐driven adaptive near‐optimal tracking control of the robot in aircraft skin inspection publication-title: Int J Robust Nonlinear Control – volume: 32 start-page: 2760 issue: 5 year: 2021 end-page: 2779 article-title: Neural‐network‐based control for discrete‐time nonlinear systems with denial‐of‐service attack: the adaptive event‐triggered case publication-title: Int J Robust Nonlinear Control – volume: 28 start-page: 3189 issue: 9 year: 2018 end-page: 3211 article-title: Robust adaptive control for a class of semi‐strict feedback systems with state and input constraints publication-title: Int J Robust Nonlinear Control – year: 2020 article-title: ADP‐based robust resilient control of partially unknown nonlinear systems via cooperative interaction design publication-title: IEEE Trans Syst Man Cybern Syst – volume: 27 start-page: 165 issue: 1 year: 2015 end-page: 177 article-title: Adaptive actor–critic design‐based integral sliding‐mode control for partially unknown nonlinear systems with input disturbances publication-title: IEEE Trans Neural Netw Learn Syst – volume: 14 start-page: 69 issue: 1 year: 1996 end-page: 77 article-title: An optimal control approach to robust control of robot manipulators publication-title: IEEE Trans Robot Autom – volume: 29 start-page: 2614 issue: 6 year: 2017 end-page: 2624 article-title: Learning‐based adaptive optimal tracking control of strict‐feedback nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst – volume: 30 start-page: 1 year: 2018 end-page: 12 article-title: Optimal synchronization control of multi‐agent systems with input saturation via off‐policy reinforcement learning publication-title: IEEE Trans Neural Netw Learn Syst – volume: 31 start-page: 5602 issue: 12 year: 2021 end-page: 5617 article-title: H∞ optimal control of unknown linear systems by adaptive dynamic programming with applications to time‐delay systems publication-title: Int J Robust Nonlinear Control – volume: 48 start-page: 3197 issue: 11 year: 2017 end-page: 3207 article-title: Optimal robust output containment of unknown heterogeneous multi‐agent system using off‐policy reinforcement learning publication-title: IEEE Trans Cybern – volume: 45 start-page: 1372 issue: 7 year: 2015 end-page: 1385 article-title: Reinforcement‐learning‐based robust controller design for continuous‐time uncertain nonlinear systems subject to input constraints publication-title: IEEE Trans Cybern – volume: 41 start-page: 779 issue: 5 year: 2005 end-page: 791 article-title: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach publication-title: Automatica – volume: 44 start-page: 2834 issue: 12 year: 2014 end-page: 2847 article-title: Neural‐network‐based online HJB solution for optimal robust guaranteed cost control of continuous‐time uncertain nonlinear systems publication-title: IEEE Trans Cybern – volume: 31 start-page: 7280 issue: 15 year: 2021 end-page: 7297 article-title: An event‐triggered integer‐mixed adaptive dynamic programming for switched nonlinear systems with bounded inputs publication-title: Int J Robust Nonlinear Control – volume: 30 start-page: 2625 issue: 7 year: 2020 end-page: 2643 article-title: Adaptive composite suboptimal control for linear singularly perturbed systems with unknown slow dynamics publication-title: Int J Robust Nonlinear Control – volume: 29 start-page: 4828 issue: 14 year: 2019 end-page: 4844 article-title: Data‐driven optimal event‐triggered consensus control for unknown nonlinear multi‐agent systems with control constraints publication-title: Int J Robust Nonlinear Control – volume: 50 start-page: 1780 issue: 7 year: 2014 end-page: 1792 article-title: Optimal tracking control of nonlinear partially‐unknown constrained‐input systems using integral reinforcement learning publication-title: Automatica – volume: 32 start-page: 2584 issue: 6 year: 2020 end-page: 2594 article-title: Robust neurooptimal control for a robot via adaptive dynamic programming publication-title: IEEE Trans Neural Netw Learn Syst – volume: 543 start-page: 273 year: 2021 end-page: 295 article-title: Event‐triggered reinforcement learning H control design for constrained‐input nonlinear systems subject to actuator failures publication-title: Inf Sci – volume: 31 start-page: 7480 issue: 15 year: 2021 end-page: 7497 article-title: Adaptive dynamic programming‐based event‐triggered optimal tracking control publication-title: Int J Robust Nonlinear Control – volume: 47 start-page: 3429 issue: 10 year: 2017 end-page: 3451 article-title: Adaptive critic nonlinear robust control: a survey publication-title: IEEE Trans Cybern – volume: 50 start-page: 3448 issue: 9 year: 2018 end-page: 3455 article-title: Robust adaptive fault‐tolerant tracking control for uncertain linear systems with actuator failures based on the closed‐loop reference model publication-title: IEEE Trans Syst Man Cybern Syst – volume: 26 start-page: 2550 issue: 10 year: 2015 end-page: 2562 article-title: H∞ tracking control of completely unknown continuous‐time systems via off‐policy reinforcement learning publication-title: IEEE Trans Neural Netw Learn Systems – start-page: 1 issue: 99 year: 2020 end-page: 12 article-title: Solver‐critic: a reinforcement learning method for discrete‐time‐constrained‐input systems publication-title: IEEE Trans Cybern – volume: 122 year: 2020 article-title: Optimal dynamic control allocation with guaranteed constraints and online reinforcement learning publication-title: Automatica – volume: 31 start-page: 2509 issue: 7 year: 2021 end-page: 2525 article-title: Robust tracking control of quadrotor via on‐policy adaptive dynamic programming publication-title: Int J Robust Nonlinear Control – volume: 50 start-page: 193 issue: 1 year: 2014 end-page: 202 article-title: Integral reinforcement learning and experience replay for adaptive optimal control of partially‐unknown constrained‐input continuous‐time systems publication-title: Automatica – volume: 50 start-page: 2740 issue: 6 year: 2019 end-page: 2748 article-title: Intelligent critic control with robustness guarantee of disturbed nonlinear plants publication-title: IEEE Trans Cybern – volume: 31 start-page: 2572 issue: 7 year: 2021 end-page: 2592 article-title: Event‐triggered guaranteed cost fault‐tolerant optimal tracking control for uncertain nonlinear system via adaptive dynamic programming publication-title: Int J Robust Nonlinear Control – volume: 554 start-page: 84 year: 2021 end-page: 98 article-title: Optimal tracking control based on reinforcement learning value iteration algorithm for time‐delayed nonlinear systems with external disturbances and input constraints publication-title: Inf Sci – ident: e_1_2_11_9_1 doi: 10.1002/rnc.5557 – ident: e_1_2_11_6_1 doi: 10.1109/TCYB.2016.2643687 – ident: e_1_2_11_37_1 doi: 10.1109/TNNLS.2019.2933467 – ident: e_1_2_11_11_1 doi: 10.1016/j.ins.2020.07.055 – ident: e_1_2_11_19_1 doi: 10.1002/rnc.4895 – ident: e_1_2_11_51_1 doi: 10.1016/j.automatica.2004.11.034 – ident: e_1_2_11_17_1 doi: 10.1016/j.neucom.2019.06.069 – ident: e_1_2_11_5_1 doi: 10.1109/TNNLS.2017.2761718 – ident: e_1_2_11_25_1 doi: 10.1109/TSMC.2020.2970040 – ident: e_1_2_11_30_1 doi: 10.1109/TNNLS.2020.3006850 – ident: e_1_2_11_22_1 doi: 10.1002/rnc.4404 – ident: e_1_2_11_49_1 doi: 10.1016/j.automatica.2013.09.043 – ident: e_1_2_11_47_1 doi: 10.1109/TCYB.2014.2357896 – ident: e_1_2_11_4_1 doi: 10.1016/j.automatica.2021.109687 – ident: e_1_2_11_21_1 doi: 10.1109/TSMC.2018.2876125 – ident: e_1_2_11_24_1 doi: 10.1002/rnc.5419 – ident: e_1_2_11_16_1 doi: 10.1109/TPWRS.2016.2537984 – ident: e_1_2_11_32_1 doi: 10.1109/TCYB.2017.2761878 – volume: 50 start-page: 1 issue: 99 year: 2019 ident: e_1_2_11_10_1 article-title: Event‐driven guaranteed cost control design for nonlinear systems with actuator faults via reinforcement learning algorithm publication-title: IEEE Trans Syst Man Cybern Syst – ident: e_1_2_11_28_1 doi: 10.1109/TCYB.2019.2903117 – ident: e_1_2_11_42_1 doi: 10.1016/j.ins.2020.11.057 – ident: e_1_2_11_52_1 doi: 10.23919/ACC.1993.4793094 – start-page: 1 issue: 99 year: 2020 ident: e_1_2_11_41_1 article-title: Solver‐critic: a reinforcement learning method for discrete‐time‐constrained‐input systems publication-title: IEEE Trans Cybern – ident: e_1_2_11_34_1 doi: 10.1002/rnc.4069 – ident: e_1_2_11_48_1 doi: 10.1109/TSMCB.2012.2203336 – ident: e_1_2_11_20_1 doi: 10.1002/rnc.4650 – ident: e_1_2_11_38_1 doi: 10.1016/j.neucom.2021.07.058 – ident: e_1_2_11_3_1 doi: 10.1109/TSMC.2020.3042876 – ident: e_1_2_11_7_1 doi: 10.1109/TNNLS.2015.2441749 – ident: e_1_2_11_29_1 doi: 10.1016/j.automatica.2016.05.008 – ident: e_1_2_11_53_1 doi: 10.1002/acs.2348 – ident: e_1_2_11_44_1 doi: 10.1016/j.automatica.2020.109265 – ident: e_1_2_11_31_1 doi: 10.1109/TNNLS.2021.3085767 – start-page: 493 volume-title: Handbook of Intelligent Control: Neural Fuzzy and Adaptive Approaches year: 1992 ident: e_1_2_11_2_1 – ident: e_1_2_11_15_1 doi: 10.1002/rnc.5403 – volume: 32 start-page: 2760 issue: 5 year: 2021 ident: e_1_2_11_18_1 article-title: Neural‐network‐based control for discrete‐time nonlinear systems with denial‐of‐service attack: the adaptive event‐triggered case publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.5831 – ident: e_1_2_11_23_1 doi: 10.1109/70.660845 – ident: e_1_2_11_33_1 doi: 10.1002/rnc.5950 – ident: e_1_2_11_26_1 doi: 10.1109/TNNLS.2015.2472974 – ident: e_1_2_11_36_1 doi: 10.1016/j.automatica.2013.09.043 – ident: e_1_2_11_50_1 doi: 10.1109/TNN.2003.813823 – ident: e_1_2_11_39_1 doi: 10.1109/TCYB.2015.2417170 – ident: e_1_2_11_13_1 doi: 10.1002/rnc.5668 – ident: e_1_2_11_8_1 doi: 10.1002/rnc.5341 – ident: e_1_2_11_35_1 doi: 10.1016/j.automatica.2014.05.011 – ident: e_1_2_11_45_1 doi: 10.1109/TCYB.2019.2921057 – volume: 30 start-page: 1 year: 2018 ident: e_1_2_11_46_1 article-title: Optimal synchronization control of multi‐agent systems with input saturation via off‐policy reinforcement learning publication-title: IEEE Trans Neural Netw Learn Syst – ident: e_1_2_11_14_1 doi: 10.1002/rnc.5410 – ident: e_1_2_11_43_1 doi: 10.1016/j.ins.2016.07.051 – ident: e_1_2_11_12_1 doi: 10.1002/rnc.5687 – ident: e_1_2_11_27_1 doi: 10.1109/TCYB.2017.2712188 – ident: e_1_2_11_40_1 doi: 10.1109/TSMC.2016.2642118 |
SSID | ssj0009924 |
Score | 2.449798 |
Snippet | This article focuses on establishing a general robust actor‐critic online learning control structure for disturbed nonlinear continuous systems with input... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7635 |
SubjectTerms | actor‐critic neural networks adaptive dynamic programming Algorithms Control systems design Controllers Cost function Distance learning input constraints Liapunov direct method Machine learning Neural networks Nonlinear systems Optimal control Robust control |
Title | Robust control for a class of nonlinear systems with input constraints based on actor‐critic learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.6190 https://www.proquest.com/docview/3076518498 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfspMe_C1Op0QQPXXr2qRbjzIcQ3CH4WDgoSRdO0Rpx9pePPkn-Df6l_he0m5TFMRToSQ0TfKSzwsv3wdw2ZYR99D1sQiWLS5j21I-5xa-7-AMQ0QQdBv5fugNxvxuIiZlVCXdhTH6EMsDN7IMvV6TgUuVtVaioQu0H6R_ctcpVIt4aLRSjvJ9k88WAdjqIsRUurO206oqft2JVni5Dql6l-nvwGPVPhNc8twsctUMX79JN_7vB3Zhu4RPdmNmyx5sRMk-bK1JEh7AbJSqIstZGcLOkGmZZCExNktjlpgPywUzEtAZo4Nc9pTMC10n0ykn8ozR7jhlacJ0Pp-Pt_dQ51RgZZaK2SGM-7cPvYFVJmOwQiQCGx1WXNU7riJlz1B4SqInEgoZiwg3eDe225Hinpp2cL2ilFdtX6Jn40uJvBNRCIh7BDVsY3QMDK3emQovRjRFGLOlioUULudOjHhn-7IO19XABGGpVE6tfwmMxrITYNcF1HV1uFiWnBt1jh_KNKqxDUr7zAJc2TyBzq3frcOVHqRf6wejYY-eJ38teAqbDpKPiRJsQC1fFNEZkkuuzvUc_QSjyOqi |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfQw_qwd_idGoE0VO3rk27FU8yHFO3HcYGOwgh6dohSjfW9uLJP8G_0b_El6TdpiiIp0JJaJq8l3xeSL4P4KLKA-pi6GNIWDYoD01DeJQa-L6GFoaI4MjbyJ2u2xrQ-6EzLMB1fhdG60PMN9ykZ6j5Wjq43JCuLFRDZ-hAiP8Yr6_KhN4qnuottKM8T2e0RQQ26ogxufKsaVXyml_XogVgLmOqWmeaW_CYt1AfL3kup4ko-6_fxBv_-QvbsJnxJ7nRBrMDhSDahY0lVcI9GPcmIo0Tkp1iJ4i1hBNfYjaZhCTSX-YzolWgYyL3cslTNE1VnVhlnUhiIhfIEZlERKX0-Xh791VaBZIlqhjvw6B522-0jCwfg-EjFJgYs-LEXrOFFPf0HVdwDEZ8h4dOgGu8HZrVQFBXjGo4ZcmsV1WPY3DjcY7IE8hTIPYBrGAbg0Mg6PjWyHFDpFPkMZOL0OGOTakVIuGZHi_CVT4yzM_EymXrX5iWWbYYdh2TXVeE83nJqRbo-KFMKR9clrlozHByQ6upU69ehEs1Sr_WZ71uQz6P_lrwDNZa_U6bte-6D8ewbiEI6UODJVhJZmlwgiCTiFNlsJ9IOO69 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dSsMwFMeDKIhe-C1Op0YQverWtUm3XsrmmF9DhoOBFyFpmyFKN9b2xisfwWf0STxJ2m2KgnhVKAlNk5zkd8LJ_yB0WuMR8cD1sRQsW4RL2xI-IRa8r8MMA0Sg6jbyXdfr9Mn1gA7yqEp1F8boQ0wP3JRl6PVaGfg4lNWZaOgE7AfoH9z1JeLZDTWjW72ZdJTvm4S2QMBWAyimEJ61nWpR8-tWNOPLeUrV20x7HT0WDTTRJc-VLBWV4PWbduP__mADreX0iS_MdNlEC1G8hVbnNAm30bA3ElmS4jyGHQPUYo4DBdl4JHFsPswn2GhAJ1id5OKneJzpOonOOZEmWG2PIR7FWCf0-Xh7D3RSBZynqRjuoH778qHZsfJsDFYASGCDxwrLet0VStozoJ7g4IoElEsawQ7vSrsWCeKJsA4Llsp5VfM5uDY-5wA8kYoBcXfRIrQx2kMYzN4JqSeBTYHGbC4k5dQlxJHAd7bPS-i8GBgW5FLlqvUvzIgsOwy6jqmuK6GTacmxkef4oUy5GFuWG2jCYGnzKHi3fqOEzvQg_Vqf9bpN9dz_a8FjtHzfarPbq-7NAVpxgIJMxGAZLaaTLDoEiknFkZ6un6vA7XU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+control+for+a+class+of+nonlinear+systems+with+input+constraints+based+on+actor%E2%80%90critic+learning&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Li%2C+Dongdong&rft.au=Dong%2C+Jiuxiang&rft.date=2024-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=34&rft.issue=12&rft.spage=7635&rft.epage=7654&rft_id=info:doi/10.1002%2Frnc.6190&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |