Parameter estimation in uncertain differential equations based on the solution

The parameter estimation of uncertain differential equation is a significant subject in uncertainty theory. This paper introduces three methods for uncertain differential equations to estimate parameters. These three methods are based on different forms of solutions, and they are the solution of the...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 44; no. 11; pp. 9441 - 9452
Main Authors Sheng, Yuhong, Zhang, Nan
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 30.07.2021
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.7370

Cover

Loading…
Abstract The parameter estimation of uncertain differential equation is a significant subject in uncertainty theory. This paper introduces three methods for uncertain differential equations to estimate parameters. These three methods are based on different forms of solutions, and they are the solution of the linear uncertain differential equation, the solution of uncertain differential equation with the Euler scheme, and the solution of uncertain differential equation with the midpoint scheme. According to the correlation operation of the solution obeying the same distribution as that of the observed value, the unknown parameters can be obtained. Several numerical examples are used to illustrate the proposed parameter estimation methods.
AbstractList The parameter estimation of uncertain differential equation is a significant subject in uncertainty theory. This paper introduces three methods for uncertain differential equations to estimate parameters. These three methods are based on different forms of solutions, and they are the solution of the linear uncertain differential equation, the solution of uncertain differential equation with the Euler scheme, and the solution of uncertain differential equation with the midpoint scheme. According to the correlation operation of the solution obeying the same distribution as that of the observed value, the unknown parameters can be obtained. Several numerical examples are used to illustrate the proposed parameter estimation methods.
Author Sheng, Yuhong
Zhang, Nan
Author_xml – sequence: 1
  givenname: Yuhong
  surname: Sheng
  fullname: Sheng, Yuhong
  organization: Xinjiang University
– sequence: 2
  givenname: Nan
  orcidid: 0000-0002-7682-0414
  surname: Zhang
  fullname: Zhang, Nan
  email: 15735172372@163.com
  organization: Xinjiang University
BookMark eNp1kE1LAzEQhoNUsK2CP2HBi5etk2x2s3ssxS9o1YOeQ5qdYMp-tEkW6b83bT2JnmYYnpl5eSZk1PUdEnJNYUYB2F3bqpnIBJyRMYWqSikXxYiMgQpIOaP8gky83wBASSkbk5c35VSLAV2CPthWBdt3ie2SodPogopdbY1Bh12wqklwNxwRn6yVxzqJcPjExPfNcBhfknOjGo9XP3VKPh7u3xdP6fL18XkxX6aaVVkMgkYYkWso8ywvldBlCdxwJZgGXXChtOGZWjOerwuW14rVymhEKCud56B5NiU3p7tb1--GmFxu-sF18aVkOacsKyiISM1OlHa99w6N1DYc4wenbCMpyIMzGZ3Jg7O4cPtrYeuiE7f_C01P6JdtcP8vJ1er-ZH_BgNsfV8
CitedBy_id crossref_primary_10_1080_03610926_2024_2408578
crossref_primary_10_3233_JIFS_233634
crossref_primary_10_1007_s00362_023_01494_1
crossref_primary_10_1007_s00500_023_08317_3
crossref_primary_10_1007_s42488_023_00102_z
crossref_primary_10_1016_j_amc_2022_127084
crossref_primary_10_3233_JIFS_213503
Cites_doi 10.1007/s10700-014-9204-2
10.1007/978-3-540-73165-8_5
10.1007/s10700-012-9139-4
10.3233/IFS-130812
10.3233/IFS-120688
10.1016/j.asej.2014.10.021
10.1007/s00500-020-04951-3
10.3233/JIFS-162080
10.1016/j.amc.2016.11.012
10.1155/2014/369029
10.1007/s10700-019-09310-y
10.1109/TAC.1968.1099025
10.1016/0047-259X(75)90038-X
10.1109/TFUZZ.2019.2939984
10.1007/s10700-010-9073-2
10.1142/S0218488513400060
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.7370
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 9452
ExternalDocumentID 10_1002_mma_7370
MMA7370
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Xinjiang
  funderid: 2020D01C017
– fundername: National Natural Science Foundation of China
  funderid: U1703262; 12061072
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2930-4ef7f75c085358a7c8804f4a72c0c647acf43ab245b625da2dafcee089c550c43
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 11:55:02 EDT 2025
Tue Jul 01 00:19:13 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Wed Jan 22 16:29:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-4ef7f75c085358a7c8804f4a72c0c647acf43ab245b625da2dafcee089c550c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7682-0414
PQID 2541236107
PQPubID 1016386
PageCount 12
ParticipantIDs proquest_journals_2541236107
crossref_citationtrail_10_1002_mma_7370
crossref_primary_10_1002_mma_7370
wiley_primary_10_1002_mma_7370_MMA7370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 July 2021
PublicationDateYYYYMMDD 2021-07-30
PublicationDate_xml – month: 07
  year: 2021
  text: 30 July 2021
  day: 30
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1968; 13
1980; 25
2015; 14
2015; 6
2013; 25
2013; 21
2013; 12
1997; 15
2017; 33
2020; 28
2014; 26
2007
2020; 24
2014
2009; 3
2017; 298
2008; 2
2011; 8
1974; 2
2010; 9
2020; 19
1975; 5
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_24_1
e_1_2_8_14_1
e_1_2_8_15_1
Peng J (e_1_2_8_16_1) 2011; 8
Dietz HM (e_1_2_8_6_1) 1997; 15
Taraskin AF (e_1_2_8_4_1) 1974; 2
Bauer K (e_1_2_8_5_1) 1980; 25
Singh S (e_1_2_8_23_1) 2017; 298
Liu B (e_1_2_8_9_1) 2009; 3
e_1_2_8_3_1
e_1_2_8_2_1
Liu B (e_1_2_8_10_1) 2008; 2
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
Bishwal JP (e_1_2_8_7_1) 2007
References_xml – volume: 21
  start-page: 75
  issue: supp0l
  year: 2013
  end-page: 87
  article-title: Optimistic value model of uncertain optimal control
  publication-title: Int J Uncertain, Fuzziness Knowl‐Based Syst
– volume: 14
  start-page: 365
  issue: 3
  year: 2015
  end-page: 379
  article-title: Stability in mean for uncertain differential equation
  publication-title: Fuzzy Optim Decis Making
– volume: 19
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Parameter estimation in uncertain diffferential equations
  publication-title: Fuzzy Optim Decis Making
– volume: 15
  start-page: 211
  issue: 3
  year: 1997
  end-page: 228
  article-title: A class of minimum‐distance estimators for diffusion processes with ergodic properties
  publication-title: Stat Risk Model
– volume: 298
  start-page: 310
  year: 2017
  end-page: 321
  article-title: Numerical solution of nonlinear weakly singular partial integro‐differential equation via operational matrices
  publication-title: Appl Math Comput
– volume: 26
  start-page: 1263
  issue: 3
  year: 2014
  end-page: 1271
  article-title: Stability in ‐th moment for uncertain differential equation
  publication-title: J Intell Fuzzy Syst
– volume: 2
  start-page: 209
  year: 1974
  end-page: 224
  article-title: On the asymptotic normality of vector valued stochastic integrals and estimates of a multidimensional diffusion process
  publication-title: Theory Probab Math Stat
– volume: 3
  start-page: 3
  issue: 1
  year: 2009
  end-page: 10
  article-title: Some research problems in uncertainty theory
  publication-title: J Uncertain Syst
– year: 2007
– volume: 12
  start-page: 3
  issue: 1
  year: 2013
  end-page: 13
  article-title: Some stability theorems of uncertain differential equation
  publication-title: Fuzzy Optim Decis Making
– volume: 6
  start-page: 373
  issue: 1
  year: 2015
  end-page: 379
  article-title: Application of Chebyshev collocation method for solving two classes of non‐classical parabolic PDEs
  publication-title: Ain Shams Eng J
– volume: 2
  start-page: 3
  issue: 1
  year: 2008
  end-page: 16
  article-title: Fuzzy process, hybrid process and uncertain process
  publication-title: J Uncertain Syst
– volume: 25
  start-page: 429
  issue: 2
  year: 1980
  end-page: 431
  article-title: On asymptotic properties of estimates of the drift coefficient parameter of a diffusion processl
  publication-title: Theory Probab Appl
– volume: 24
  start-page: 9351
  year: 2020
  end-page: 9360
  article-title: Uncertain maximum likelihood estimation with application to uncertain regression analysis
  publication-title: Soft Comput
– volume: 13
  start-page: 646
  issue: 6
  year: 1968
  end-page: 655
  article-title: An innovations approach to least‐squares estimation‐Part 1: liner filtering in additive white noise
  publication-title: IEEE Trans Autom Control
– volume: 9
  start-page: 69
  issue: 1
  year: 2010
  end-page: 81
  article-title: Existence and uniqueness theorem for uncertain differential equations
  publication-title: Fuzzy Optim Decis Making
– volume: 5
  start-page: 206
  issue: 2
  year: 1975
  end-page: 226
  article-title: Theasymptotic equivalence of Bayes and maximum likelihood estimation
  publication-title: J Multivar Anal
– volume: 33
  start-page: 853
  issue: 2
  year: 2017
  end-page: 858
  article-title: Uncertain population model with age‐structure
  publication-title: J Intell Fuzzy Syst
– volume: 28
  start-page: 2651
  issue: 10
  year: 2020
  end-page: 2655
  article-title: Least squares estimation in uncertain differential equations
  publication-title: IEEE Trans Fuzzy Syst
– volume: 25
  start-page: 825
  issue: 3
  year: 2013
  end-page: 832
  article-title: A numerical method for solving uncertain differential equations
  publication-title: J Intell Fuzzy Syst
– volume: 8
  start-page: 18
  issue: 2
  year: 2011
  end-page: 26
  article-title: A new option pricing model for stocks in uncertainty markets
  publication-title: Int J Oper Res
– year: 2014
– ident: e_1_2_8_12_1
  doi: 10.1007/s10700-014-9204-2
– ident: e_1_2_8_8_1
  doi: 10.1007/978-3-540-73165-8_5
– ident: e_1_2_8_11_1
  doi: 10.1007/s10700-012-9139-4
– volume: 3
  start-page: 3
  issue: 1
  year: 2009
  ident: e_1_2_8_9_1
  article-title: Some research problems in uncertainty theory
  publication-title: J Uncertain Syst
– ident: e_1_2_8_13_1
  doi: 10.3233/IFS-130812
– volume: 15
  start-page: 211
  issue: 3
  year: 1997
  ident: e_1_2_8_6_1
  article-title: A class of minimum‐distance estimators for diffusion processes with ergodic properties
  publication-title: Stat Risk Model
– ident: e_1_2_8_15_1
  doi: 10.3233/IFS-120688
– ident: e_1_2_8_22_1
  doi: 10.1016/j.asej.2014.10.021
– ident: e_1_2_8_21_1
  doi: 10.1007/s00500-020-04951-3
– volume-title: Parameter Estimation in Stochastic Differential Equations
  year: 2007
  ident: e_1_2_8_7_1
– volume: 2
  start-page: 209
  year: 1974
  ident: e_1_2_8_4_1
  article-title: On the asymptotic normality of vector valued stochastic integrals and estimates of a multidimensional diffusion process
  publication-title: Theory Probab Math Stat
– ident: e_1_2_8_19_1
  doi: 10.3233/JIFS-162080
– volume: 298
  start-page: 310
  year: 2017
  ident: e_1_2_8_23_1
  article-title: Numerical solution of nonlinear weakly singular partial integro‐differential equation via operational matrices
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2016.11.012
– volume: 2
  start-page: 3
  issue: 1
  year: 2008
  ident: e_1_2_8_10_1
  article-title: Fuzzy process, hybrid process and uncertain process
  publication-title: J Uncertain Syst
– ident: e_1_2_8_24_1
  doi: 10.1155/2014/369029
– ident: e_1_2_8_17_1
  doi: 10.1007/s10700-019-09310-y
– ident: e_1_2_8_2_1
  doi: 10.1109/TAC.1968.1099025
– ident: e_1_2_8_3_1
  doi: 10.1016/0047-259X(75)90038-X
– ident: e_1_2_8_20_1
  doi: 10.1109/TFUZZ.2019.2939984
– ident: e_1_2_8_14_1
  doi: 10.1007/s10700-010-9073-2
– ident: e_1_2_8_18_1
  doi: 10.1142/S0218488513400060
– volume: 25
  start-page: 429
  issue: 2
  year: 1980
  ident: e_1_2_8_5_1
  article-title: On asymptotic properties of estimates of the drift coefficient parameter of a diffusion processl
  publication-title: Theory Probab Appl
– volume: 8
  start-page: 18
  issue: 2
  year: 2011
  ident: e_1_2_8_16_1
  article-title: A new option pricing model for stocks in uncertainty markets
  publication-title: Int J Oper Res
SSID ssj0008112
Score 2.2968848
Snippet The parameter estimation of uncertain differential equation is a significant subject in uncertainty theory. This paper introduces three methods for uncertain...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9441
SubjectTerms Differential equations
Parameter estimation
Parameter uncertainty
uncertain differential equation
uncertainty theory
Title Parameter estimation in uncertain differential equations based on the solution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7370
https://www.proquest.com/docview/2541236107
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCD7KQHdVNxOiWC-HHo1jZJ0x6HOIbQIeJg4KGkaQLiVj-6XfzrzWvaTUVBPPXyQtu8vLz3kpdfEDolmhAvpcqJBI8cygR1BFOhozUTgQozScuDwvEoGI7pzYRNqqpKOAtj-RDLBTewjHK-BgMXadFbQUNnM9HlhEO6DqVaEA_drchRoVdudAIdxqG-R2vurOv36oZfPdEqvPwcpJZeZrCFHurvs8UlT93FPO3K92_oxv_9wDbarIJP3LejpYnWVN5CG_GS3Fq0ULMy9gJfVETqyx00uhVQw2VUgAHKYU874sccG6doSwpwfdGKmTCmWL1agHiBwUlm2AibV-B6mO-i8eD6_mroVBcxONJEA6YDleaaM2nCM8JCwaUxeqqp4L50ZUC5kJoSkfqUpSadyoSfCW2crxtG0iRAkpI91Mifc7WPsKdYJDlg7BlsABKhXBUIkxZx7frSU210XislkRWlHC7LmCaWr-wnptsS6LY2OllKvlgyxw8ynVqvSWWbRWJS4hI54_I2OisV9Gv7JI778Dz4q-AhWveh6AUWf90OaszfFurIRC3z9Lgcnx_mh-lc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTwIxEIAnBg_qQQU1oqg1MT4OC_to6RJPRCWoLDEGEg4mm25pEyPgA7j4653uA9RoYjztZZrd7XQ6M318A3Dkac9zIqqsmuA1izJBLcGUb2nNRFX5fUnji8JBu9rs0pse6y3AeXYXJuFDzBbcjGXE87UxcLMgXZlTQ4dDUeYex3x90RT0NuULLu_n7Cjfibc6DR_Goq5DM_Ks7Vayll990TzA_Bymxn6msQYP2Rcmx0ueytNJVJbv3-CN__yFdVhN409STwZMHhbUqAArwQzeOi5APrX3MTlNodRnG9C-E-YYF2qBGC5HcuGRPI4I-sXkVAHJaq3gnDEg6jVhiI-J8ZN9gsL4CpKN9E3oNq46F00rrcVgSQwIsAeV5poziRGax3zBJdo91VRwV9qySrmQmnoicimLMKPqC7cvNPpf269JzIEk9bYgN3oeqW0gjmI1yQ3Jnpk9QE8oW1UFZkZc2650VBFOMq2EMgWVm3oZgzBBLLshdltouq0IhzPJlwTO8YNMKVNsmJrnOMSsOKbO2LwIx7GGfm0fBkHdPHf-KngAS81O0Apb1-3bXVh2zRkYsxZslyA3eZuqPQxiJtF-PFg_AHfU7XY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEIAHURA9qK2K1aoRxMdh230km-2xqKU-WopYKHhYstkExLZW21789U720aooiKe9TNjdTCYzk0y-ABx72vOciCqrJnjNokxQSzAVWFoz4asgljQ5KNxq-80uvemxXlZVac7CpHyI2YKbsYxkvjYGPop1dQ4NHQxEhXsc0_Ul6qOtmIDofo6OCpxkp9PgYSzqOjQHz9puNW_51RXN48vPUWriZhrr8Jh_YFpd8lyZTqKKfP_GbvzfH2zAWhZ9kno6XAqwoIZFWG3N0K3jIhQyax-TswxJfb4J7Y4wRVyoA2KoHOlxR_I0JOgV05oCkt-0gjNGn6jXlCA-JsZLxgSF8RUkH-db0G1cPVw0rewmBktiOIAdqDTXnEmMzzwWCC7R6qmmgrvSlj7lQmrqicilLMJ8KhZuLDR6XzuoScyAJPW2YXH4MlQ7QBzFapIbjj0zO4CeULbyBeZFXNuudFQJTnOlhDLDlJvbMvphClh2Q-y20HRbCY5mkqMUzfGDTDnXa5gZ5zjEnDhhzti8BCeJgn5tH7ZadfPc_avgISx3Lhvh3XX7dg9WXFMAYxaC7TIsTt6mah8jmEl0kAzVD94D7C4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+in+uncertain+differential+equations+based+on+the+solution&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Sheng%2C+Yuhong&rft.au=Zhang%2C+Nan&rft.date=2021-07-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=44&rft.issue=11&rft.spage=9441&rft.epage=9452&rft_id=info:doi/10.1002%2Fmma.7370&rft.externalDBID=10.1002%252Fmma.7370&rft.externalDocID=MMA7370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon