Parameter estimation in uncertain differential equations based on the solution
The parameter estimation of uncertain differential equation is a significant subject in uncertainty theory. This paper introduces three methods for uncertain differential equations to estimate parameters. These three methods are based on different forms of solutions, and they are the solution of the...
Saved in:
Published in | Mathematical methods in the applied sciences Vol. 44; no. 11; pp. 9441 - 9452 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Freiburg
Wiley Subscription Services, Inc
30.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0170-4214 1099-1476 |
DOI | 10.1002/mma.7370 |
Cover
Loading…
Abstract | The parameter estimation of uncertain differential equation is a significant subject in uncertainty theory. This paper introduces three methods for uncertain differential equations to estimate parameters. These three methods are based on different forms of solutions, and they are the solution of the linear uncertain differential equation, the solution of uncertain differential equation with the Euler scheme, and the solution of uncertain differential equation with the midpoint scheme. According to the correlation operation of the solution obeying the same distribution as that of the observed value, the unknown parameters can be obtained. Several numerical examples are used to illustrate the proposed parameter estimation methods. |
---|---|
AbstractList | The parameter estimation of uncertain differential equation is a significant subject in uncertainty theory. This paper introduces three methods for uncertain differential equations to estimate parameters. These three methods are based on different forms of solutions, and they are the solution of the linear uncertain differential equation, the solution of uncertain differential equation with the Euler scheme, and the solution of uncertain differential equation with the midpoint scheme. According to the correlation operation of the solution obeying the same distribution as that of the observed value, the unknown parameters can be obtained. Several numerical examples are used to illustrate the proposed parameter estimation methods. |
Author | Sheng, Yuhong Zhang, Nan |
Author_xml | – sequence: 1 givenname: Yuhong surname: Sheng fullname: Sheng, Yuhong organization: Xinjiang University – sequence: 2 givenname: Nan orcidid: 0000-0002-7682-0414 surname: Zhang fullname: Zhang, Nan email: 15735172372@163.com organization: Xinjiang University |
BookMark | eNp1kE1LAzEQhoNUsK2CP2HBi5etk2x2s3ssxS9o1YOeQ5qdYMp-tEkW6b83bT2JnmYYnpl5eSZk1PUdEnJNYUYB2F3bqpnIBJyRMYWqSikXxYiMgQpIOaP8gky83wBASSkbk5c35VSLAV2CPthWBdt3ie2SodPogopdbY1Bh12wqklwNxwRn6yVxzqJcPjExPfNcBhfknOjGo9XP3VKPh7u3xdP6fL18XkxX6aaVVkMgkYYkWso8ywvldBlCdxwJZgGXXChtOGZWjOerwuW14rVymhEKCud56B5NiU3p7tb1--GmFxu-sF18aVkOacsKyiISM1OlHa99w6N1DYc4wenbCMpyIMzGZ3Jg7O4cPtrYeuiE7f_C01P6JdtcP8vJ1er-ZH_BgNsfV8 |
CitedBy_id | crossref_primary_10_1080_03610926_2024_2408578 crossref_primary_10_3233_JIFS_233634 crossref_primary_10_1007_s00362_023_01494_1 crossref_primary_10_1007_s00500_023_08317_3 crossref_primary_10_1007_s42488_023_00102_z crossref_primary_10_1016_j_amc_2022_127084 crossref_primary_10_3233_JIFS_213503 |
Cites_doi | 10.1007/s10700-014-9204-2 10.1007/978-3-540-73165-8_5 10.1007/s10700-012-9139-4 10.3233/IFS-130812 10.3233/IFS-120688 10.1016/j.asej.2014.10.021 10.1007/s00500-020-04951-3 10.3233/JIFS-162080 10.1016/j.amc.2016.11.012 10.1155/2014/369029 10.1007/s10700-019-09310-y 10.1109/TAC.1968.1099025 10.1016/0047-259X(75)90038-X 10.1109/TFUZZ.2019.2939984 10.1007/s10700-010-9073-2 10.1142/S0218488513400060 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.7370 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 9452 |
ExternalDocumentID | 10_1002_mma_7370 MMA7370 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Xinjiang funderid: 2020D01C017 – fundername: National Natural Science Foundation of China funderid: U1703262; 12061072 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c2930-4ef7f75c085358a7c8804f4a72c0c647acf43ab245b625da2dafcee089c550c43 |
IEDL.DBID | DR2 |
ISSN | 0170-4214 |
IngestDate | Fri Jul 25 11:55:02 EDT 2025 Tue Jul 01 00:19:13 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Wed Jan 22 16:29:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-4ef7f75c085358a7c8804f4a72c0c647acf43ab245b625da2dafcee089c550c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7682-0414 |
PQID | 2541236107 |
PQPubID | 1016386 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2541236107 crossref_citationtrail_10_1002_mma_7370 crossref_primary_10_1002_mma_7370 wiley_primary_10_1002_mma_7370_MMA7370 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 July 2021 |
PublicationDateYYYYMMDD | 2021-07-30 |
PublicationDate_xml | – month: 07 year: 2021 text: 30 July 2021 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1968; 13 1980; 25 2015; 14 2015; 6 2013; 25 2013; 21 2013; 12 1997; 15 2017; 33 2020; 28 2014; 26 2007 2020; 24 2014 2009; 3 2017; 298 2008; 2 2011; 8 1974; 2 2010; 9 2020; 19 1975; 5 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_24_1 e_1_2_8_14_1 e_1_2_8_15_1 Peng J (e_1_2_8_16_1) 2011; 8 Dietz HM (e_1_2_8_6_1) 1997; 15 Taraskin AF (e_1_2_8_4_1) 1974; 2 Bauer K (e_1_2_8_5_1) 1980; 25 Singh S (e_1_2_8_23_1) 2017; 298 Liu B (e_1_2_8_9_1) 2009; 3 e_1_2_8_3_1 e_1_2_8_2_1 Liu B (e_1_2_8_10_1) 2008; 2 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 Bishwal JP (e_1_2_8_7_1) 2007 |
References_xml | – volume: 21 start-page: 75 issue: supp0l year: 2013 end-page: 87 article-title: Optimistic value model of uncertain optimal control publication-title: Int J Uncertain, Fuzziness Knowl‐Based Syst – volume: 14 start-page: 365 issue: 3 year: 2015 end-page: 379 article-title: Stability in mean for uncertain differential equation publication-title: Fuzzy Optim Decis Making – volume: 19 start-page: 1 year: 2020 end-page: 12 article-title: Parameter estimation in uncertain diffferential equations publication-title: Fuzzy Optim Decis Making – volume: 15 start-page: 211 issue: 3 year: 1997 end-page: 228 article-title: A class of minimum‐distance estimators for diffusion processes with ergodic properties publication-title: Stat Risk Model – volume: 298 start-page: 310 year: 2017 end-page: 321 article-title: Numerical solution of nonlinear weakly singular partial integro‐differential equation via operational matrices publication-title: Appl Math Comput – volume: 26 start-page: 1263 issue: 3 year: 2014 end-page: 1271 article-title: Stability in ‐th moment for uncertain differential equation publication-title: J Intell Fuzzy Syst – volume: 2 start-page: 209 year: 1974 end-page: 224 article-title: On the asymptotic normality of vector valued stochastic integrals and estimates of a multidimensional diffusion process publication-title: Theory Probab Math Stat – volume: 3 start-page: 3 issue: 1 year: 2009 end-page: 10 article-title: Some research problems in uncertainty theory publication-title: J Uncertain Syst – year: 2007 – volume: 12 start-page: 3 issue: 1 year: 2013 end-page: 13 article-title: Some stability theorems of uncertain differential equation publication-title: Fuzzy Optim Decis Making – volume: 6 start-page: 373 issue: 1 year: 2015 end-page: 379 article-title: Application of Chebyshev collocation method for solving two classes of non‐classical parabolic PDEs publication-title: Ain Shams Eng J – volume: 2 start-page: 3 issue: 1 year: 2008 end-page: 16 article-title: Fuzzy process, hybrid process and uncertain process publication-title: J Uncertain Syst – volume: 25 start-page: 429 issue: 2 year: 1980 end-page: 431 article-title: On asymptotic properties of estimates of the drift coefficient parameter of a diffusion processl publication-title: Theory Probab Appl – volume: 24 start-page: 9351 year: 2020 end-page: 9360 article-title: Uncertain maximum likelihood estimation with application to uncertain regression analysis publication-title: Soft Comput – volume: 13 start-page: 646 issue: 6 year: 1968 end-page: 655 article-title: An innovations approach to least‐squares estimation‐Part 1: liner filtering in additive white noise publication-title: IEEE Trans Autom Control – volume: 9 start-page: 69 issue: 1 year: 2010 end-page: 81 article-title: Existence and uniqueness theorem for uncertain differential equations publication-title: Fuzzy Optim Decis Making – volume: 5 start-page: 206 issue: 2 year: 1975 end-page: 226 article-title: Theasymptotic equivalence of Bayes and maximum likelihood estimation publication-title: J Multivar Anal – volume: 33 start-page: 853 issue: 2 year: 2017 end-page: 858 article-title: Uncertain population model with age‐structure publication-title: J Intell Fuzzy Syst – volume: 28 start-page: 2651 issue: 10 year: 2020 end-page: 2655 article-title: Least squares estimation in uncertain differential equations publication-title: IEEE Trans Fuzzy Syst – volume: 25 start-page: 825 issue: 3 year: 2013 end-page: 832 article-title: A numerical method for solving uncertain differential equations publication-title: J Intell Fuzzy Syst – volume: 8 start-page: 18 issue: 2 year: 2011 end-page: 26 article-title: A new option pricing model for stocks in uncertainty markets publication-title: Int J Oper Res – year: 2014 – ident: e_1_2_8_12_1 doi: 10.1007/s10700-014-9204-2 – ident: e_1_2_8_8_1 doi: 10.1007/978-3-540-73165-8_5 – ident: e_1_2_8_11_1 doi: 10.1007/s10700-012-9139-4 – volume: 3 start-page: 3 issue: 1 year: 2009 ident: e_1_2_8_9_1 article-title: Some research problems in uncertainty theory publication-title: J Uncertain Syst – ident: e_1_2_8_13_1 doi: 10.3233/IFS-130812 – volume: 15 start-page: 211 issue: 3 year: 1997 ident: e_1_2_8_6_1 article-title: A class of minimum‐distance estimators for diffusion processes with ergodic properties publication-title: Stat Risk Model – ident: e_1_2_8_15_1 doi: 10.3233/IFS-120688 – ident: e_1_2_8_22_1 doi: 10.1016/j.asej.2014.10.021 – ident: e_1_2_8_21_1 doi: 10.1007/s00500-020-04951-3 – volume-title: Parameter Estimation in Stochastic Differential Equations year: 2007 ident: e_1_2_8_7_1 – volume: 2 start-page: 209 year: 1974 ident: e_1_2_8_4_1 article-title: On the asymptotic normality of vector valued stochastic integrals and estimates of a multidimensional diffusion process publication-title: Theory Probab Math Stat – ident: e_1_2_8_19_1 doi: 10.3233/JIFS-162080 – volume: 298 start-page: 310 year: 2017 ident: e_1_2_8_23_1 article-title: Numerical solution of nonlinear weakly singular partial integro‐differential equation via operational matrices publication-title: Appl Math Comput doi: 10.1016/j.amc.2016.11.012 – volume: 2 start-page: 3 issue: 1 year: 2008 ident: e_1_2_8_10_1 article-title: Fuzzy process, hybrid process and uncertain process publication-title: J Uncertain Syst – ident: e_1_2_8_24_1 doi: 10.1155/2014/369029 – ident: e_1_2_8_17_1 doi: 10.1007/s10700-019-09310-y – ident: e_1_2_8_2_1 doi: 10.1109/TAC.1968.1099025 – ident: e_1_2_8_3_1 doi: 10.1016/0047-259X(75)90038-X – ident: e_1_2_8_20_1 doi: 10.1109/TFUZZ.2019.2939984 – ident: e_1_2_8_14_1 doi: 10.1007/s10700-010-9073-2 – ident: e_1_2_8_18_1 doi: 10.1142/S0218488513400060 – volume: 25 start-page: 429 issue: 2 year: 1980 ident: e_1_2_8_5_1 article-title: On asymptotic properties of estimates of the drift coefficient parameter of a diffusion processl publication-title: Theory Probab Appl – volume: 8 start-page: 18 issue: 2 year: 2011 ident: e_1_2_8_16_1 article-title: A new option pricing model for stocks in uncertainty markets publication-title: Int J Oper Res |
SSID | ssj0008112 |
Score | 2.2968848 |
Snippet | The parameter estimation of uncertain differential equation is a significant subject in uncertainty theory. This paper introduces three methods for uncertain... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9441 |
SubjectTerms | Differential equations Parameter estimation Parameter uncertainty uncertain differential equation uncertainty theory |
Title | Parameter estimation in uncertain differential equations based on the solution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7370 https://www.proquest.com/docview/2541236107 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCD7KQHdVNxOiWC-HHo1jZJ0x6HOIbQIeJg4KGkaQLiVj-6XfzrzWvaTUVBPPXyQtu8vLz3kpdfEDolmhAvpcqJBI8cygR1BFOhozUTgQozScuDwvEoGI7pzYRNqqpKOAtj-RDLBTewjHK-BgMXadFbQUNnM9HlhEO6DqVaEA_drchRoVdudAIdxqG-R2vurOv36oZfPdEqvPwcpJZeZrCFHurvs8UlT93FPO3K92_oxv_9wDbarIJP3LejpYnWVN5CG_GS3Fq0ULMy9gJfVETqyx00uhVQw2VUgAHKYU874sccG6doSwpwfdGKmTCmWL1agHiBwUlm2AibV-B6mO-i8eD6_mroVBcxONJEA6YDleaaM2nCM8JCwaUxeqqp4L50ZUC5kJoSkfqUpSadyoSfCW2crxtG0iRAkpI91Mifc7WPsKdYJDlg7BlsABKhXBUIkxZx7frSU210XislkRWlHC7LmCaWr-wnptsS6LY2OllKvlgyxw8ynVqvSWWbRWJS4hI54_I2OisV9Gv7JI778Dz4q-AhWveh6AUWf90OaszfFurIRC3z9Lgcnx_mh-lc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTwIxEIAnBg_qQQU1oqg1MT4OC_to6RJPRCWoLDEGEg4mm25pEyPgA7j4653uA9RoYjztZZrd7XQ6M318A3Dkac9zIqqsmuA1izJBLcGUb2nNRFX5fUnji8JBu9rs0pse6y3AeXYXJuFDzBbcjGXE87UxcLMgXZlTQ4dDUeYex3x90RT0NuULLu_n7Cjfibc6DR_Goq5DM_Ks7Vayll990TzA_Bymxn6msQYP2Rcmx0ueytNJVJbv3-CN__yFdVhN409STwZMHhbUqAArwQzeOi5APrX3MTlNodRnG9C-E-YYF2qBGC5HcuGRPI4I-sXkVAHJaq3gnDEg6jVhiI-J8ZN9gsL4CpKN9E3oNq46F00rrcVgSQwIsAeV5poziRGax3zBJdo91VRwV9qySrmQmnoicimLMKPqC7cvNPpf269JzIEk9bYgN3oeqW0gjmI1yQ3Jnpk9QE8oW1UFZkZc2650VBFOMq2EMgWVm3oZgzBBLLshdltouq0IhzPJlwTO8YNMKVNsmJrnOMSsOKbO2LwIx7GGfm0fBkHdPHf-KngAS81O0Apb1-3bXVh2zRkYsxZslyA3eZuqPQxiJtF-PFg_AHfU7XY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEIAHURA9qK2K1aoRxMdh230km-2xqKU-WopYKHhYstkExLZW21789U720aooiKe9TNjdTCYzk0y-ABx72vOciCqrJnjNokxQSzAVWFoz4asgljQ5KNxq-80uvemxXlZVac7CpHyI2YKbsYxkvjYGPop1dQ4NHQxEhXsc0_Ul6qOtmIDofo6OCpxkp9PgYSzqOjQHz9puNW_51RXN48vPUWriZhrr8Jh_YFpd8lyZTqKKfP_GbvzfH2zAWhZ9kno6XAqwoIZFWG3N0K3jIhQyax-TswxJfb4J7Y4wRVyoA2KoHOlxR_I0JOgV05oCkt-0gjNGn6jXlCA-JsZLxgSF8RUkH-db0G1cPVw0rewmBktiOIAdqDTXnEmMzzwWCC7R6qmmgrvSlj7lQmrqicilLMJ8KhZuLDR6XzuoScyAJPW2YXH4MlQ7QBzFapIbjj0zO4CeULbyBeZFXNuudFQJTnOlhDLDlJvbMvphClh2Q-y20HRbCY5mkqMUzfGDTDnXa5gZ5zjEnDhhzti8BCeJgn5tH7ZadfPc_avgISx3Lhvh3XX7dg9WXFMAYxaC7TIsTt6mah8jmEl0kAzVD94D7C4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+in+uncertain+differential+equations+based+on+the+solution&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Sheng%2C+Yuhong&rft.au=Zhang%2C+Nan&rft.date=2021-07-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=44&rft.issue=11&rft.spage=9441&rft.epage=9452&rft_id=info:doi/10.1002%2Fmma.7370&rft.externalDBID=10.1002%252Fmma.7370&rft.externalDocID=MMA7370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |