Influence of yarn structure and coating on the mechanical performance of continuous viscose fiber/epoxy composites

The present study investigated the effect of selected structural parameters on the mechanical performance of regenerated cellulose composites. The experimental setup comprised continuous viscose (rayon) yarns embedded in a matrix of epoxy resin. Mechanical and microscopic characterizations involved...

Full description

Saved in:
Bibliographic Details
Published inPolymer composites Vol. 43; no. 2; pp. 1012 - 1021
Main Authors Ungerer, Bernhard, Müller, Ulrich, Pramreiter, Maximilian, Herrero Acero, Enrique, Veigel, Stefan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2022
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present study investigated the effect of selected structural parameters on the mechanical performance of regenerated cellulose composites. The experimental setup comprised continuous viscose (rayon) yarns embedded in a matrix of epoxy resin. Mechanical and microscopic characterizations involved comparing the following: yarns consisting of untwisted filaments and twisted warp and weft yarns taken from a plain weave fabric, yarns with and without avivage (fiber finish), as well as yarns with and without an acrylic coating. During the epoxy treatment, samples were either prestressed or laid horizontally to preserve the original yarn structure. Tensile tests revealed that yarn crimp had a significant impact on the strength properties of composite specimens, a higher crimp ratio leading to a decrease in performance. Applying prestress to crimped yarns has proven to be an effective way to enable straight alignment in the loading direction, which is essential for the design of stiffness‐ and strength‐optimized yarn composites. Unlike an avivage, which did not markedly affect the mechanical properties of composite yarns, the application of an acrylic coating prior to resin impregnation was found to provide significantly increased extensibility and more ductile fracture behavior.
AbstractList The present study investigated the effect of selected structural parameters on the mechanical performance of regenerated cellulose composites. The experimental setup comprised continuous viscose (rayon) yarns embedded in a matrix of epoxy resin. Mechanical and microscopic characterizations involved comparing the following: yarns consisting of untwisted filaments and twisted warp and weft yarns taken from a plain weave fabric, yarns with and without avivage (fiber finish), as well as yarns with and without an acrylic coating. During the epoxy treatment, samples were either prestressed or laid horizontally to preserve the original yarn structure. Tensile tests revealed that yarn crimp had a significant impact on the strength properties of composite specimens, a higher crimp ratio leading to a decrease in performance. Applying prestress to crimped yarns has proven to be an effective way to enable straight alignment in the loading direction, which is essential for the design of stiffness‐ and strength‐optimized yarn composites. Unlike an avivage, which did not markedly affect the mechanical properties of composite yarns, the application of an acrylic coating prior to resin impregnation was found to provide significantly increased extensibility and more ductile fracture behavior.
Abstract The present study investigated the effect of selected structural parameters on the mechanical performance of regenerated cellulose composites. The experimental setup comprised continuous viscose (rayon) yarns embedded in a matrix of epoxy resin. Mechanical and microscopic characterizations involved comparing the following: yarns consisting of untwisted filaments and twisted warp and weft yarns taken from a plain weave fabric, yarns with and without avivage (fiber finish), as well as yarns with and without an acrylic coating. During the epoxy treatment, samples were either prestressed or laid horizontally to preserve the original yarn structure. Tensile tests revealed that yarn crimp had a significant impact on the strength properties of composite specimens, a higher crimp ratio leading to a decrease in performance. Applying prestress to crimped yarns has proven to be an effective way to enable straight alignment in the loading direction, which is essential for the design of stiffness‐ and strength‐optimized yarn composites. Unlike an avivage, which did not markedly affect the mechanical properties of composite yarns, the application of an acrylic coating prior to resin impregnation was found to provide significantly increased extensibility and more ductile fracture behavior.
Author Herrero Acero, Enrique
Ungerer, Bernhard
Pramreiter, Maximilian
Veigel, Stefan
Müller, Ulrich
Author_xml – sequence: 1
  givenname: Bernhard
  orcidid: 0000-0002-0488-8890
  surname: Ungerer
  fullname: Ungerer, Bernhard
  email: bernhard.ungerer@boku.ac.at
  organization: University of Natural Resources and Life Sciences Vienna
– sequence: 2
  givenname: Ulrich
  surname: Müller
  fullname: Müller, Ulrich
  organization: University of Natural Resources and Life Sciences Vienna
– sequence: 3
  givenname: Maximilian
  surname: Pramreiter
  fullname: Pramreiter, Maximilian
  organization: University of Natural Resources and Life Sciences Vienna
– sequence: 4
  givenname: Enrique
  surname: Herrero Acero
  fullname: Herrero Acero, Enrique
  organization: Glanzstoff Management GmbH
– sequence: 5
  givenname: Stefan
  surname: Veigel
  fullname: Veigel, Stefan
  organization: University of Natural Resources and Life Sciences Vienna
BookMark eNp10D1PwzAQBmALFYm2IPETLLGwpPVH4tgjqvioVAkGmCPHPdNUiR3sBMi_J5CuTDfc895J7wLNnHeA0DUlK0oIW7dmxUTKyRma0yyVCcmEmqE5YTlLJFf5BVrEeBwlFYLPUdg6W_fgDGBv8aCDw7ELven6AFi7PTZed5V7x97h7gC4AXPQrjK6xi0E60OjT1nj3Qh730f8WUXjI2BblRDW0PrvYVw3rY9VB_ESnVtdR7g6zSV6e7h_3Twlu-fH7eZulximOEnSTEqdSgVizxlnmupUWeDWSgmUSshzmzED3Khyzw2xnJayVDkjuYJUsZQv0c10tw3-o4fYFUffBze-LJhggkqR8WxUt5MywccYwBZtqBodhoKS4rfRojXFX6MjTSb6VdUw_OuKl83kfwDDgXnY
CitedBy_id crossref_primary_10_1016_j_carpta_2022_100238
crossref_primary_10_3390_ma16134558
Cites_doi 10.1002/pc.25090
10.1016/j.compstruct.2019.111015
10.1016/j.compscitech.2012.03.025
10.1016/j.compositesa.2016.09.016
10.1007/s10570-015-0666-3
10.1007/978-3-642-17992-1_13
10.1007/s10570-015-0796-7
10.1016/j.procir.2016.01.133
10.1533/9781855737587
10.1002/pc.10242
10.1007/s10570-018-2079-6
10.1007/s10570-013-9982-7
10.3390/polym10121320
10.1016/S0266-3538(00)00201-3
10.1038/s41598-021-91115-4
10.1016/j.compositesa.2007.03.006
10.1016/j.compositesa.2015.08.038
10.1002/pc.25356
10.1080/00218464.2017.1385459
10.1515/aut-2015-0004
10.1002/pc.22762
10.1002/pc.24635
10.1295/polymj.32.29
10.1002/pc.25695
10.1002/pc.10165
10.1016/j.indcrop.2016.12.028
10.1177/002199836700100210
10.1007/s10570-009-9292-2
10.1155/2019/8439530
10.1177/002199837100500106
10.1016/j.compositesb.2018.08.096
10.1002/pc.25030
10.1002/app.22145
10.1016/j.ijadhadh.2018.05.003
10.1007/s10570-019-02352-w
10.1016/j.compositesa.2011.11.019
10.1007/978-3-642-55468-1_3
10.1016/j.compositesa.2005.10.006
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of Society of Plastics Engineers.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Society of Plastics Engineers.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pc.26430
DatabaseName Wiley_OA刊
Wiley Online Library Journals
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley_OA刊
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0569
EndPage 1021
ExternalDocumentID 10_1002_pc_26430
PC26430
Genre article
GrantInformation_xml – fundername: Austria Biorefinery Centre Tulln
  funderid: K3‐F‐712/001‐2017
GroupedDBID .-4
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8AO
8FE
8FG
8FW
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHFT
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KB.
KC.
KQQ
KZ1
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2P
M2Q
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
S0X
SAMSI
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c2930-4588a489e6d3232a1a49fe3ff88e118e77f52ce3c9bd3c0f31b8b972079e49243
IEDL.DBID DR2
ISSN 0272-8397
IngestDate Thu Oct 10 17:00:14 EDT 2024
Fri Aug 23 02:08:48 EDT 2024
Sat Aug 24 00:57:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-4588a489e6d3232a1a49fe3ff88e118e77f52ce3c9bd3c0f31b8b972079e49243
Notes Funding information
Austria Biorefinery Centre Tulln, Grant/Award Number: K3‐F‐712/001‐2017
ORCID 0000-0002-0488-8890
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.26430
PQID 2626186535
PQPubID 37365
PageCount 10
ParticipantIDs proquest_journals_2626186535
crossref_primary_10_1002_pc_26430
wiley_primary_10_1002_pc_26430_PC26430
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer composites
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2015; 15
2019; 2019
2019; 90
2012
2020; 41
2011
2006; 99
2000; 21
2019; 15
2013; 20
2006; 37
2019; 224
2006
1950
2003
2016; 91
2017; 134
2018; 25
2007; 38
2012; 72
2001; 61
2018; 154
2019; 40
2021; 11
2001
1967; 1
2020
2000; 32
2017; 98
2019; 26
2015; 22
2018
2016; 40
2014; 35
2017
2016
2016; 83
2018; 94
2018; 10
1999; 90
2012; 43
2009; 16
1971; 5
2016; 23
2016; 88
e_1_2_6_53_1
e_1_2_6_30_1
Müller U. (e_1_2_6_3_1) 2019; 15
Schenek A. (e_1_2_6_44_1) 2006
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
Hill R. (e_1_2_6_27_1) 1950
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
El‐Dessouky H. M. (e_1_2_6_33_1) 2017
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
EN‐14621 (e_1_2_6_51_1) 2006
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Khokar N. (e_1_2_6_32_1) 1999; 90
Lübbert U. (e_1_2_6_49_1) 2017
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Ganster J. (e_1_2_6_17_1) 2011
e_1_2_6_8_1
Peiffer J. (e_1_2_6_25_1) 2016; 88
e_1_2_6_4_1
Zhang J. (e_1_2_6_13_1) 2017; 134
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
Le T. (e_1_2_6_26_1) 2012
e_1_2_6_29_1
e_1_2_6_46_1
References_xml – volume: 16
  start-page: 765
  year: 2009
  publication-title: Cellulose
– year: 2001
– volume: 88
  year: 2016
  publication-title: Text. Res. J.
– volume: 40
  start-page: 217
  year: 2019
  publication-title: Polym. Compos.
– volume: 83
  start-page: 98
  year: 2016
  publication-title: Compos. Part A: Appl. Sci. Manuf.
– volume: 94
  start-page: 991
  year: 2018
  publication-title: J. Adhes.
– volume: 20
  start-page: 1657
  year: 2013
  publication-title: Cellulose
– year: 2018
– volume: 134
  start-page: 134
  year: 2017
  publication-title: J. Appl. Polym. Sci.
– volume: 99
  start-page: 1496
  year: 2006
  publication-title: J. Appl. Polym. Sci.
– volume: 21
  start-page: 65
  year: 2000
  publication-title: Polym. Compos.
– volume: 41
  start-page: 32
  year: 2020
  publication-title: Polym. Compos.
– volume: 224
  year: 2019
  publication-title: Compos. Struct.
– volume: 15
  start-page: 207
  year: 2015
  publication-title: Autex Res. J.
– volume: 1
  start-page: 200
  year: 1967
  publication-title: J. Compos. Mater.
– volume: 40
  start-page: 2335
  year: 2019
  publication-title: Polym. Compos.
– volume: 10
  start-page: 1320
  year: 2018
  publication-title: Polymer
– volume: 154
  start-page: 439
  year: 2018
  publication-title: Compos. Part B Eng.
– volume: 25
  start-page: 7197
  year: 2018
  publication-title: Cellulose
– volume: 98
  start-page: 1
  year: 2017
  publication-title: Ind. Crops Prod.
– volume: 26
  start-page: 3655
  year: 2019
  publication-title: Cellulose
– start-page: 453
  year: 2011
– volume: 72
  start-page: 1160
  year: 2012
  publication-title: Compos. Sci. Technol.
– volume: 23
  start-page: 213
  year: 2016
  publication-title: Cellulose
– volume: 90
  start-page: 346
  year: 1999
  publication-title: J. Text. Inst.
– volume: 22
  start-page: 2777
  year: 2015
  publication-title: Cellulose
– volume: 2019
  start-page: 8439530
  year: 2019
  publication-title: Adv. Mater. Sci. Eng.
– volume: 41
  start-page: 4084
  year: 2020
  publication-title: Polym. Compos.
– volume: 5
  start-page: 58
  year: 1971
  publication-title: J. Compos. Mater.
– volume: 11
  year: 2021
  publication-title: Sci. Rep.
– year: 2003
– volume: 90
  start-page: 163
  year: 2019
  publication-title: Int. J. Adhes. Adhes.
– year: 1950
– volume: 40
  start-page: 557
  year: 2016
  publication-title: Procedia CIRP
– year: 2016
– start-page: 479
  year: 2011
– start-page: 323
  year: 2017
– volume: 91
  start-page: 156
  year: 2016
  publication-title: Compos. Part A: Appl. Sci. Manuf.
– year: 2012
– volume: 38
  start-page: 1912
  year: 2007
  publication-title: Compos. Part A: Appl. Sci. Manuf.
– volume: 32
  start-page: 29
  year: 2000
  publication-title: Polym. J.
– year: 2006
– year: 2020
– volume: 61
  start-page: 125
  year: 2001
  publication-title: Compos. Sci. Technol.
– volume: 43
  start-page: 1419
  year: 2012
  publication-title: Compos. Part A: Appl. Sci. Manuf.
– volume: 37
  start-page: 1660
  year: 2006
  publication-title: Compos. Part A: Appl. Sci. Manuf.
– year: 2017
– volume: 40
  start-page: 2231
  year: 2019
  publication-title: Polym. Compos.
– volume: 15
  start-page: 1
  year: 2019
  publication-title: Wood Mater. Sci. Eng.
– volume: 21
  start-page: 872
  year: 2000
  publication-title: Polym. Compos.
– volume: 35
  start-page: 1150
  year: 2014
  publication-title: Polym. Compos.
– ident: e_1_2_6_40_1
  doi: 10.1002/pc.25090
– ident: e_1_2_6_24_1
  doi: 10.1016/j.compstruct.2019.111015
– ident: e_1_2_6_35_1
  doi: 10.1016/j.compscitech.2012.03.025
– ident: e_1_2_6_53_1
  doi: 10.1016/j.compositesa.2016.09.016
– ident: e_1_2_6_19_1
  doi: 10.1007/s10570-015-0666-3
– ident: e_1_2_6_18_1
  doi: 10.1007/978-3-642-17992-1_13
– volume-title: Textiles—Multifilament Yarns—Methods of Test for Textures or Non‐textured Filament Yarns
  year: 2006
  ident: e_1_2_6_51_1
  contributor:
    fullname: EN‐14621
– volume-title: Lexikon Garne und Zwirne. Eigenschaften und Herstellung textiler Fäden
  year: 2006
  ident: e_1_2_6_44_1
  contributor:
    fullname: Schenek A.
– ident: e_1_2_6_21_1
  doi: 10.1007/s10570-015-0796-7
– ident: e_1_2_6_5_1
  doi: 10.1016/j.procir.2016.01.133
– ident: e_1_2_6_10_1
  doi: 10.1533/9781855737587
– ident: e_1_2_6_37_1
  doi: 10.1002/pc.10242
– ident: e_1_2_6_31_1
  doi: 10.1007/s10570-018-2079-6
– ident: e_1_2_6_4_1
– ident: e_1_2_6_14_1
  doi: 10.1007/s10570-013-9982-7
– ident: e_1_2_6_42_1
  doi: 10.3390/polym10121320
– ident: e_1_2_6_30_1
  doi: 10.1016/S0266-3538(00)00201-3
– volume: 134
  start-page: 134
  year: 2017
  ident: e_1_2_6_13_1
  publication-title: J. Appl. Polym. Sci.
  contributor:
    fullname: Zhang J.
– ident: e_1_2_6_45_1
  doi: 10.1038/s41598-021-91115-4
– ident: e_1_2_6_7_1
  doi: 10.1016/j.compositesa.2007.03.006
– ident: e_1_2_6_36_1
  doi: 10.1016/j.compositesa.2015.08.038
– ident: e_1_2_6_9_1
  doi: 10.1002/pc.25356
– ident: e_1_2_6_47_1
  doi: 10.1080/00218464.2017.1385459
– ident: e_1_2_6_43_1
  doi: 10.1515/aut-2015-0004
– ident: e_1_2_6_50_1
– ident: e_1_2_6_20_1
  doi: 10.1002/pc.22762
– ident: e_1_2_6_39_1
  doi: 10.1002/pc.24635
– volume-title: WEVO‐Spezialharz EP 32 S mit WEVO‐Härter B 22 TS zur Instandsetzung tragender, gerissener Holz‐ und Brettschichtholzbauteile mittels Klebung
  year: 2017
  ident: e_1_2_6_49_1
  contributor:
    fullname: Lübbert U.
– ident: e_1_2_6_12_1
  doi: 10.1295/polymj.32.29
– ident: e_1_2_6_16_1
  doi: 10.1002/pc.25695
– ident: e_1_2_6_38_1
  doi: 10.1002/pc.10165
– volume: 90
  start-page: 346
  year: 1999
  ident: e_1_2_6_32_1
  publication-title: J. Text. Inst.
  contributor:
    fullname: Khokar N.
– ident: e_1_2_6_6_1
  doi: 10.1016/j.indcrop.2016.12.028
– ident: e_1_2_6_29_1
  doi: 10.1177/002199836700100210
– ident: e_1_2_6_15_1
  doi: 10.1007/s10570-009-9292-2
– ident: e_1_2_6_23_1
  doi: 10.1155/2019/8439530
– ident: e_1_2_6_28_1
  doi: 10.1177/002199837100500106
– ident: e_1_2_6_34_1
  doi: 10.1016/j.compositesb.2018.08.096
– volume: 15
  start-page: 1
  year: 2019
  ident: e_1_2_6_3_1
  publication-title: Wood Mater. Sci. Eng.
  contributor:
    fullname: Müller U.
– ident: e_1_2_6_52_1
  doi: 10.1002/pc.25030
– ident: e_1_2_6_2_1
– start-page: 323
  volume-title: 6 Spread Tow Technology for Ultra Lightweight CFRP Composites: Potential and Possibilities
  year: 2017
  ident: e_1_2_6_33_1
  contributor:
    fullname: El‐Dessouky H. M.
– ident: e_1_2_6_22_1
  doi: 10.1002/app.22145
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ijadhadh.2018.05.003
– ident: e_1_2_6_11_1
  doi: 10.1007/s10570-019-02352-w
– ident: e_1_2_6_8_1
  doi: 10.1016/j.compositesa.2011.11.019
– start-page: 479
  volume-title: Man‐Made Cellulose Short Fiber Reinforced Oil and Bio‐Based Thermoplastics
  year: 2011
  ident: e_1_2_6_17_1
  contributor:
    fullname: Ganster J.
– volume-title: The Mathematical Theory of Plasticity
  year: 1950
  ident: e_1_2_6_27_1
  contributor:
    fullname: Hill R.
– volume-title: The Manufacture and Mechanical Properties of Aligned Long Harakeke Fibre Reinforced Epoxy Composites
  year: 2012
  ident: e_1_2_6_26_1
  contributor:
    fullname: Le T.
– ident: e_1_2_6_41_1
  doi: 10.1007/978-3-642-55468-1_3
– ident: e_1_2_6_48_1
  doi: 10.1016/j.compositesa.2005.10.006
– volume: 88
  start-page: 004051751668528
  year: 2016
  ident: e_1_2_6_25_1
  publication-title: Text. Res. J.
  contributor:
    fullname: Peiffer J.
SSID ssj0021663
Score 2.3769739
Snippet The present study investigated the effect of selected structural parameters on the mechanical performance of regenerated cellulose composites. The experimental...
Abstract The present study investigated the effect of selected structural parameters on the mechanical performance of regenerated cellulose composites. The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1012
SubjectTerms Acrylic resins
biofibers
composites
Continuous fiber composites
Design optimization
Ductile fracture
Epoxy resins
Filaments
Folding
Mechanical properties
Prestressing
Rayon
Stiffness
structure–property relations
Tensile tests
Warp
Weft
Yarn
Yarns
Title Influence of yarn structure and coating on the mechanical performance of continuous viscose fiber/epoxy composites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.26430
https://www.proquest.com/docview/2626186535
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58XPTgW1wfSwTx1t02SR857qqLCoqIguChJGkCIrbL1hX115tpt64KgnjqIR1oOpnON-WbbwAOlB_rkErj6UgIj0eJ9BKZGU9aEWSMycivdGYvLqPTW35-F95NWJXYC1PrQ3z-cMPIqL7XGOBSld2paOhQd1wyZ1iuByxGNtfx9adyFA2ieogajV3Au5zb6M76tNsYfs9EU3j5FaRWWWawDPfN89XkksfO-Fl19PsP6cb_bWAFlibgk_Tq07IKMyZfg8UvkoTrMDprppaQwpI3OcpJLTE7Hhki84zoQiJTmhQ5cdiRPBlsHUZPk-G0BwFtkQT_kI-LcUleHkrkxROL9JSug_yvbwS57EgYM-UG3A5Obo5OvclcBk87cOB72NwqeSJMlDEHyGQgubCGWZskxtUrJo5tSLVhWqiMad-yQCVKxNSPheGu3mObMJcXudkCYkPBTeQgqFWaB1QKFsrQ14pqy5MsUi3Yb3yUDmv5jbQWWqbpUKfV-2vBbuO8dBKApVuhOAkgZGELDisv_GqfXh1V1-2_3rgDCxSbICru9i7MOS-YPQdNnlUbZim_asN8r3_cH7SrI_kBoLrjGQ
link.rule.ids 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED7GfFAf_C1Op0YQ37q1SX8Fn2Q6Np0iorAHoSRpAkNsx7qJ8683aVc3BUF86kN70PZyue_Cd98BnHI7EB5m0hI-pZbrh8wKWSwtpqgTE8J8O9eZvb3zO0_udd_rV-C87IUp9CG-DtxMZOT7tQlwcyDdnKuGDkVDZ3Oi6_UlHe3EzG24fPjSjsKOX4xRw4EOeZ11S-VZGzdLy--5aA4wF2Fqnmfa6_BcvmFBL3lpTMa8IT5-iDf-8xM2YG2GP9FFsWA2oSKTLVhdUCXchlG3HFyCUoWmbJSgQmV2MpKIJTESKTNkaZQmSMNH9CpN97BxNhrO2xCMreHBD5JJOsnQ2yAz1HikDEOlqVH_-xQZOrvhjMlsB57aV4-tjjUbzWAJjQ9sy_S3Mjek0o-JxmTMYS5VkigVhlKXLDIIlIeFJILymAhbEYeHnAbYDqh0dclHdqGapIncA6Q86kpfo1DFhetgRonHPFtwLJQbxj6vwUnppGhYKHBEhdYyjoYiyv9fDeql96JZDGb6DjbDADzi1eAsd8Ov9tF9K7_u__XBY1juPN72ol737uYAVrDpicip3HWoao_IQ41UxvwoX5GfSnTk6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iIPrgXZxOjSC-dWuTNG0eZTo2L2OIg4EPJUkTGGJbdhHnrzdp120KgvjUh_RA05PT853yne8AcCncQPqIK0dSxhxCQ-6EPFYO18yLMebUzXVmHzu01SN3fb8_Y1XaXphCH2L-w81GRv69tgGexbq-EA3NZM0kc2zK9TVCDfC1gOhpLh2FPFpMUUOBiXiTdEvhWRfVS8vvqWiBL5dRap5mmtvgpXzAgl3yWpuMRU1-_tBu_N8OdsDWDH3C6-K47IIVleyBzSVNwn0wbJdjS2Cq4ZQPE1hozE6GCvIkhjLllioN0wQa8AjflO0dtq6G2aIJwdpaFvwgmaSTEXwfjCwxHmrLT6kbzP8xhZbMbhljanQAes3b50bLmQ1mcKRBB65ju1s5CZmiMTaIjHucMK2w1mGoTMGigkD7SCosmYixdDX2RChYgNyAKWIKPnwIVpM0UUcAap8RRQ0G1UISD3GGfe67UiCpSRhTUQEXpY-irNDfiAqlZRRlMsrfXwVUS-dFswgcmRVkRwH42K-Aq9wLv9pH3UZ-Pf7rjedgvXvTjB7anfsTsIFsQ0TO466CVeMQdWpgylic5efxC7uD45c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+yarn+structure+and+coating+on+the+mechanical+performance+of+continuous+viscose+fiber%2Fepoxy+composites&rft.jtitle=Polymer+composites&rft.au=Ungerer%2C+Bernhard&rft.au=M%C3%BCller%2C+Ulrich&rft.au=Pramreiter%2C+Maximilian&rft.au=Enrique+Herrero+Acero&rft.date=2022-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=43&rft.issue=2&rft.spage=1012&rft.epage=1021&rft_id=info:doi/10.1002%2Fpc.26430&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon