DCR‐Net: Dilated convolutional residual network for fashion image retrieval
Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology has made a breakthrough from text‐based to content‐based. But there is still not a proper deep learning method used for fashion image retrie...
Saved in:
Published in | Computer animation and virtual worlds Vol. 34; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology has made a breakthrough from text‐based to content‐based. But there is still not a proper deep learning method used for fashion image retrieval. This article proposes a fashion image retrieval framework based on dilated convolutional residual network which consists of two major parts, image feature extraction and feature distance measurement. For image feature extraction, we first extract the shallow features of the input image by a multi‐scale convolutional network, and then develop a novel dilated convolutional residual network to obtain the deep features of the image. Finally, the extracted features are transformed into high‐dimensional features vector by a binary retrieval vector module. For feature distance measurement, we first use PCA to reduce the dimension of the extracted high‐dimensional vectors. Then we propose a mixed distance measurement algorithm combined with cosine distance and Mahalanobis distance to calculate the spatial distance of the feature vectors for similarity ranking, which solves the problems of poor robustness in complex background fashion image retrieval and the inefficiency calculation of Mahalanobis distance. The experimental results show the superiority of our fashion image retrieval framework over existing state‐of‐the‐art methods.
Fashion image retrieval technology has made a breakthrough from text‐based to content‐based. We propose a novel dilated convolutional residual network to obtain multi‐scale information of fashion images and a mixed measurement algorithm to achieve better visual and metric retrieval. |
---|---|
AbstractList | Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology has made a breakthrough from text‐based to content‐based. But there is still not a proper deep learning method used for fashion image retrieval. This article proposes a fashion image retrieval framework based on dilated convolutional residual network which consists of two major parts, image feature extraction and feature distance measurement. For image feature extraction, we first extract the shallow features of the input image by a multi‐scale convolutional network, and then develop a novel dilated convolutional residual network to obtain the deep features of the image. Finally, the extracted features are transformed into high‐dimensional features vector by a binary retrieval vector module. For feature distance measurement, we first use PCA to reduce the dimension of the extracted high‐dimensional vectors. Then we propose a mixed distance measurement algorithm combined with cosine distance and Mahalanobis distance to calculate the spatial distance of the feature vectors for similarity ranking, which solves the problems of poor robustness in complex background fashion image retrieval and the inefficiency calculation of Mahalanobis distance. The experimental results show the superiority of our fashion image retrieval framework over existing state‐of‐the‐art methods. Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology has made a breakthrough from text‐based to content‐based. But there is still not a proper deep learning method used for fashion image retrieval. This article proposes a fashion image retrieval framework based on dilated convolutional residual network which consists of two major parts, image feature extraction and feature distance measurement. For image feature extraction, we first extract the shallow features of the input image by a multi‐scale convolutional network, and then develop a novel dilated convolutional residual network to obtain the deep features of the image. Finally, the extracted features are transformed into high‐dimensional features vector by a binary retrieval vector module. For feature distance measurement, we first use PCA to reduce the dimension of the extracted high‐dimensional vectors. Then we propose a mixed distance measurement algorithm combined with cosine distance and Mahalanobis distance to calculate the spatial distance of the feature vectors for similarity ranking, which solves the problems of poor robustness in complex background fashion image retrieval and the inefficiency calculation of Mahalanobis distance. The experimental results show the superiority of our fashion image retrieval framework over existing state‐of‐the‐art methods. Fashion image retrieval technology has made a breakthrough from text‐based to content‐based. We propose a novel dilated convolutional residual network to obtain multi‐scale information of fashion images and a mixed measurement algorithm to achieve better visual and metric retrieval. |
Author | Yuan, Haidongqing Chen, Jia Zhang, Yi He, Ruhan Liang, Jinxing |
Author_xml | – sequence: 1 givenname: Jia surname: Chen fullname: Chen, Jia organization: Wuhan Textile University – sequence: 2 givenname: Haidongqing orcidid: 0000-0002-2854-0020 surname: Yuan fullname: Yuan, Haidongqing email: costinyuan@gmail.com organization: Wuhan Textile University – sequence: 3 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Wuhan Textile University – sequence: 4 givenname: Ruhan surname: He fullname: He, Ruhan organization: Wuhan Textile University – sequence: 5 givenname: Jinxing surname: Liang fullname: Liang, Jinxing organization: Wuhan Textile University |
BookMark | eNp1kMtKAzEYhYNUsK2CjzDgxs3UJDOZi7sy9QZVQVTcDblq6jipSaalOx_BZ_RJTK24EF39B_7vHA5nAHqtaSUA-wiOEIT4iNPFCEMCt0AfkTSLU5w_9H50hnbAwLlZIDOMYB9cTqqbj7f3K-mPo4luqJci4qZdmKbz2rS0iax0WnRBtNIvjX2OlLGRou4pvCP9Qh9lQLzVckGbXbCtaOPk3vcdgrvTk9vqPJ5en11U42nMcZnAGBcEMQEp4QUSiheEJiXMWJlinHCmZAIZEYynokwSwjKhUCZJJhjLca4YkskQHGxy59a8dtL5emY6G9q6GhcQIpynKA3U4Ybi1jhnparnNhS2qxrBej1WHcaq12MFdPQL5drT9QLeUt38ZYg3hqVu5Orf4Loa33_xn_9IfXg |
CitedBy_id | crossref_primary_10_1117_1_JEI_33_6_063011 crossref_primary_10_1007_s13369_024_09627_w crossref_primary_10_1007_s00371_024_03788_3 crossref_primary_10_1007_s00371_024_03628_4 crossref_primary_10_35940_ijitee_G9203_0811922 crossref_primary_10_1109_ACCESS_2024_3494023 crossref_primary_10_1007_s00371_024_03397_0 crossref_primary_10_1007_s00371_024_03419_x crossref_primary_10_1007_s00371_024_03514_z crossref_primary_10_1142_S219688882450012X |
Cites_doi | 10.1145/2964284.2967270 10.1109/CVPRW.2014.131 10.1109/CTCEEC.2017.8455138 10.1109/WACV45572.2020.9093468 10.1109/CVPR.2016.124 10.1109/CVPR.2016.90 10.14419/ijet.v7i2.8.10461 10.1109/CVPR.2019.00965 10.3390/s19051123 10.1109/WACV.2018.00163 10.1016/j.ijheatmasstransfer.2006.07.030 10.1145/3159652.3159716 10.1109/ICCV.2015.127 10.1109/ISPACS.2012.6473502 10.1049/iet-ipr.2018.5277 10.1007/BF00751350 10.1109/ICCSNT.2013.6967276 10.1145/2393347.2396471 10.1145/2461466.2461485 10.1109/CVPR.2017.652 10.1007/s00778-017-0472-7 10.1109/CVPR42600.2020.01079 10.1109/ICPR.2016.7900079 10.1109/ICCV.1999.790410 10.1109/CVPR.2019.00266 10.4135/9781412985475 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons, Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2050 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2050 CAV2050 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province funderid: 2020CFB801 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2930-2851bd0a5c81dfc85a3906b94223cbfe30b5dbc4d9335b6df16e56dbb727fb1e3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Fri Jul 25 05:25:04 EDT 2025 Tue Jul 01 02:42:23 EDT 2025 Thu Apr 24 23:03:09 EDT 2025 Wed Mar 05 09:44:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-2851bd0a5c81dfc85a3906b94223cbfe30b5dbc4d9335b6df16e56dbb727fb1e3 |
Notes | Funding information Natural Science Foundation of Hubei Province, Grant/Award Number: 2020CFB801 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2854-0020 |
PQID | 2800127414 |
PQPubID | 2034909 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2800127414 crossref_primary_10_1002_cav_2050 crossref_citationtrail_10_1002_cav_2050 wiley_primary_10_1002_cav_2050_CAV2050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March/April 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March/April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 7 2017; 8 1995; 71 2012 2017; 26 2019; 41 2021 2019; 13 2019; 46 2019; 19 2018 2015 2007; 50 2013 2012; 25 1989; 69 2001; 2011 e_1_2_7_6_1 e_1_2_7_5_1 Ismail MMB (e_1_2_7_2_1) 2017; 8 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Guo X (e_1_2_7_25_1) 2021 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_32_1 Kovashka A (e_1_2_7_17_1) 2012 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Zhen W (e_1_2_7_24_1) 2019; 41 e_1_2_7_37_1 Hong Y (e_1_2_7_38_1) 2019; 46 Kiapour HM (e_1_2_7_14_1) 2015 Krizhevsky A (e_1_2_7_23_1) 2012; 25 Wang X (e_1_2_7_10_1) 2001; 2011 Redmon J (e_1_2_7_39_1) 2018 |
References_xml | – volume: 13 start-page: 515 issue: 3 year: 2019 end-page: 21 article-title: Detected text‐based image retrieval approach for textual images publication-title: IET Image Process – volume: 7 start-page: 353 issue: 2.8 year: 2018 end-page: 7 article-title: Implementation of SIFT for detection of electronic waste publication-title: Int J Eng Technol – volume: 71 start-page: 761 issue: 1 year: 1995 end-page: 96 article-title: Darn/superdarn publication-title: Space Sci Rev – volume: 19 start-page: 1123 issue: 5 year: 2019 article-title: A SIFT‐based DEM extraction approach using GEOEYE‐1 satellite stereo pairs publication-title: Sensors – volume: 25 start-page: 1097 year: 2012 end-page: 105 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inf Proces Syst – issue: 04 year: 2021 article-title: Building segmentation in remote sensing image based on multiscale‐feature fusion dikated convolution resnet publication-title: Guangxue Jingmi Gongcheng/Optics and Precision Engineering – year: 2018 end-page: . Available from: http://arxiv.org/abs/1804.02767 article-title: Yolov3: an incremental improvement publication-title: CoRR – volume: 41 start-page: 1671 issue: 09 year: 2019 end-page: 1678 article-title: A garment retrieval method based on deformable convolution publication-title: Comput Eng Sci – volume: 46 start-page: 215 issue: 6 year: 2019 end-page: 24 article-title: Clothing image retrieval method combining convolutional neural network multi‐layer feature fusion and K‐means clustering publication-title: Comput Therm Sci – volume: 26 start-page: 683 issue: 5 year: 2017 end-page: 708 article-title: Query‐aware locality‐sensitive hashing scheme for lp norm publication-title: VLDB J – volume: 8 start-page: 159 issue: 5 year: 2017 end-page: 170 article-title: A survey on content‐based image retrieval publication-title: Int J Adv Comput Sci Appl – start-page: 3343 year: 2015 end-page: 3351 article-title: Where to buy it: matching street clothing photos in online shops publication-title: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile – volume: 69 year: 1989 – start-page: 1062 year: 2015 end-page: 1070 article-title: Cross‐domain image retrieval with a dual attribute‐aware ranking network publication-title: 2015 IEEE International Conference on Computer Vision (ICCV) – start-page: 105 year: 2013 end-page: 112 – start-page: 185 year: 2012 end-page: 210 article-title: WhittleSearch: interactive image search with relative attribute feedback publication-title: International Journal of Computer Vision – volume: 2011 start-page: 1353 year: 2001 end-page: 6 article-title: Clothes search in consumer photos via color matching and attribute learning publication-title: ACM Multimed – volume: 50 start-page: 654 issue: 3‐4 year: 2007 end-page: 66 article-title: A benchmark solidification experiment on an Sn–10% wtBi alloy publication-title: Int J Heat Mass Transf – ident: e_1_2_7_29_1 doi: 10.1145/2964284.2967270 – ident: e_1_2_7_37_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_13_1 doi: 10.1109/CVPRW.2014.131 – ident: e_1_2_7_22_1 doi: 10.1109/CTCEEC.2017.8455138 – ident: e_1_2_7_31_1 doi: 10.1109/WACV45572.2020.9093468 – year: 2018 ident: e_1_2_7_39_1 article-title: Yolov3: an incremental improvement publication-title: CoRR – volume: 41 start-page: 1671 issue: 09 year: 2019 ident: e_1_2_7_24_1 article-title: A garment retrieval method based on deformable convolution publication-title: Comput Eng Sci – volume: 46 start-page: 215 issue: 6 year: 2019 ident: e_1_2_7_38_1 article-title: Clothing image retrieval method combining convolutional neural network multi‐layer feature fusion and K‐means clustering publication-title: Comput Therm Sci – ident: e_1_2_7_6_1 doi: 10.1109/CVPR.2016.124 – ident: e_1_2_7_33_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_7_4_1 doi: 10.14419/ijet.v7i2.8.10461 – ident: e_1_2_7_28_1 – ident: e_1_2_7_30_1 doi: 10.1109/CVPR.2019.00965 – ident: e_1_2_7_5_1 doi: 10.3390/s19051123 – ident: e_1_2_7_32_1 doi: 10.1109/WACV.2018.00163 – ident: e_1_2_7_35_1 doi: 10.1016/j.ijheatmasstransfer.2006.07.030 – start-page: 185 year: 2012 ident: e_1_2_7_17_1 article-title: WhittleSearch: interactive image search with relative attribute feedback publication-title: International Journal of Computer Vision – start-page: 3343 year: 2015 ident: e_1_2_7_14_1 article-title: Where to buy it: matching street clothing photos in online shops publication-title: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile – ident: e_1_2_7_19_1 doi: 10.1145/3159652.3159716 – ident: e_1_2_7_15_1 doi: 10.1109/ICCV.2015.127 – ident: e_1_2_7_27_1 doi: 10.1109/ISPACS.2012.6473502 – ident: e_1_2_7_3_1 doi: 10.1049/iet-ipr.2018.5277 – ident: e_1_2_7_36_1 doi: 10.1007/BF00751350 – ident: e_1_2_7_21_1 doi: 10.1109/ICCSNT.2013.6967276 – volume: 2011 start-page: 1353 year: 2001 ident: e_1_2_7_10_1 article-title: Clothes search in consumer photos via color matching and attribute learning publication-title: ACM Multimed – ident: e_1_2_7_11_1 doi: 10.1145/2393347.2396471 – ident: e_1_2_7_12_1 doi: 10.1145/2461466.2461485 – ident: e_1_2_7_18_1 doi: 10.1109/CVPR.2017.652 – ident: e_1_2_7_34_1 doi: 10.1007/s00778-017-0472-7 – ident: e_1_2_7_40_1 doi: 10.1109/CVPR42600.2020.01079 – ident: e_1_2_7_16_1 doi: 10.1109/ICPR.2016.7900079 – volume: 25 start-page: 1097 year: 2012 ident: e_1_2_7_23_1 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inf Proces Syst – ident: e_1_2_7_8_1 doi: 10.1109/ICCV.1999.790410 – ident: e_1_2_7_9_1 – ident: e_1_2_7_26_1 doi: 10.1109/CVPR.2019.00266 – ident: e_1_2_7_7_1 doi: 10.4135/9781412985475 – volume: 8 start-page: 159 issue: 5 year: 2017 ident: e_1_2_7_2_1 article-title: A survey on content‐based image retrieval publication-title: Int J Adv Comput Sci Appl – issue: 04 year: 2021 ident: e_1_2_7_25_1 article-title: Building segmentation in remote sensing image based on multiscale‐feature fusion dikated convolution resnet publication-title: Guangxue Jingmi Gongcheng/Optics and Precision Engineering |
SSID | ssj0026210 |
Score | 2.3703244 |
Snippet | Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Artificial neural networks dilated convolution Distance measurement fashion image retrieval Feature extraction Image retrieval Machine learning Mathematical analysis metric learning residual network |
Title | DCR‐Net: Dilated convolutional residual network for fashion image retrieval |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2050 https://www.proquest.com/docview/2800127414 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF6kXvTgv1itJYLoKW26yW423kprKWJ7qLYUPITsT6BYU7GtB08-gs_ok7iTTVoVBfEUCLOQzMzufJPMfIPQaRR4GAcRtiXzhe35RNmRJETnPI7iTPo-q0FzcqdL233vakiGWVUl9MIYfojFBzfYGel5DRs84tPqkjRURM86vUvTdSjVAjzUWzBHYYoNEQHxqA1ZQs476-BqvvBrJFrCy88gNY0yrU10lz-fKS65r8xnvCJevlE3_u8FttBGBj6tuvGWbbSikh20PhhN5-budBd1mo3e--tbV80urOZorJGotKAyPfNQLafz87SBy0pMBbmlYa8Vw0ymSWKNHvT5pEVgTJf24T3Ub13eNtp2NnLBFjruOzbWAIxLJyJC49hYMBK5gUM5GNQVPFauw4nkwpOB6xJOZVyjilDJuYZBMa8pdx8VkkmiDpAVEKY8GjGhiIAR60yvJ0oy5VMB7bdFdJ6rPxQZHzmMxRiHhkkZh1pBISioiE4Wko-Gg-MHmVJuwTDbhdMQs_TPulfziugsNcWv68NGfQDXw78KHqE1mDxvytFKqDB7mqtjjU9mvIxW683O9U059cgP2mrkHg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-rBt7g-K4ieqt20SVM9LbvK-tg9iIoHoTSPwuJaxd314Mmf4G_0l5hp2vWBgngqlAm0yST5Jpn5PoCtJAoIiRLiKh5KNwipdhNFqYl5PC24CkNexeLkVps1L4OTa3o9AgdlLYzlhxgeuOHMyNdrnOB4IL33wRoqkycT32G8PoaC3nk8dT7kjiKMWCoCGjAX44SSedYje2XLr3vRB8D8DFPzfeZoGm7KL7TpJbe7g77Ylc_fyBv_-QszMFXgT6dmHWYWRnQ2B5NXnd7Avu3NQ6tRP397eW3r_r7T6HQNGFUOJqcXTmrsTIie13A5mU0idwzydVKUZbrPnM6dWaKMCSp1GTdegMujw4t60y1UF1xptn7PJQaDCeUlVBoom0pOEz_ymMAx9aVIte8JqoQMVOT7VDCVVpmmTAlhkFAqqtpfhNHsPtNL4ESU64AlXGoqUWWdm_ZUK65DJrECtwI7Zf_HsqAkR2WMbmzJlElsOijGDqrA5tDywdJw_GCzWg5hXEzEXkx4frkeVIMKbOdj8Wv7uF67wufyXw03YLx50TqLz47bpyswgUL0NjttFUb7jwO9ZuBKX6znbvkO5JXmpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EQfTgW6xWjSB6iqab3c3GW2kt9VWk2CJ4CNlHoFij2NaDJ3-Cv9Ff4k42qQ8UxFMgzEIyM7vzTTLzDUK7cUgwDmPsKh5IlwRUu7Gi1OQ8nhZcBQGvQHPyRYs1O-T0ml7nVZXQC2P5IcYf3GBnZOc1bPAHlRx-kIbK-Mmkd5CuTxHmcfDoentMHYUZtkwElDAX0oSCeNbDh8XKr6HoA19-RqlZmGnMo5viAW11ye3BaCgO5PM37sb_vcECmsvRp1O17rKIJnS6hGa7vcHI3h0so4t6rf328trSwyOn3usbKKocKE3PXdTImQQ96-ByUltC7hjc6yQwlOk-dXp35oAyIjCnyzjxCuo0jq9qTTefueBKE_g9FxsEJpQXU2mAbCI5jf3QYwIs6kuRaN8TVAlJVOj7VDCVVJimTAlhcFAiKtpfRZPpfarXkBNSrgmLudRUwox1btZTrbgOmIT-2xLaL9QfyZyQHOZi9CNLpYwjo6AIFFRCO2PJB0vC8YNMubBglG_DQYR59mudVEgJ7WWm-HV9VKt24br-V8FtNH1Zb0TnJ62zDTQDU-htaVoZTQ4fR3rTYJWh2Mqc8h1nFuVd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DCR%E2%80%90Net%3A+Dilated+convolutional+residual+network+for+fashion+image+retrieval&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Chen%2C+Jia&rft.au=Yuan%2C+Haidongqing&rft.au=Zhang%2C+Yi&rft.au=He%2C+Ruhan&rft.date=2023-03-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fcav.2050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |