DCR‐Net: Dilated convolutional residual network for fashion image retrieval

Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology has made a breakthrough from text‐based to content‐based. But there is still not a proper deep learning method used for fashion image retrie...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 34; no. 2
Main Authors Chen, Jia, Yuan, Haidongqing, Zhang, Yi, He, Ruhan, Liang, Jinxing
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology has made a breakthrough from text‐based to content‐based. But there is still not a proper deep learning method used for fashion image retrieval. This article proposes a fashion image retrieval framework based on dilated convolutional residual network which consists of two major parts, image feature extraction and feature distance measurement. For image feature extraction, we first extract the shallow features of the input image by a multi‐scale convolutional network, and then develop a novel dilated convolutional residual network to obtain the deep features of the image. Finally, the extracted features are transformed into high‐dimensional features vector by a binary retrieval vector module. For feature distance measurement, we first use PCA to reduce the dimension of the extracted high‐dimensional vectors. Then we propose a mixed distance measurement algorithm combined with cosine distance and Mahalanobis distance to calculate the spatial distance of the feature vectors for similarity ranking, which solves the problems of poor robustness in complex background fashion image retrieval and the inefficiency calculation of Mahalanobis distance. The experimental results show the superiority of our fashion image retrieval framework over existing state‐of‐the‐art methods. Fashion image retrieval technology has made a breakthrough from text‐based to content‐based. We propose a novel dilated convolutional residual network to obtain multi‐scale information of fashion images and a mixed measurement algorithm to achieve better visual and metric retrieval.
AbstractList Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology has made a breakthrough from text‐based to content‐based. But there is still not a proper deep learning method used for fashion image retrieval. This article proposes a fashion image retrieval framework based on dilated convolutional residual network which consists of two major parts, image feature extraction and feature distance measurement. For image feature extraction, we first extract the shallow features of the input image by a multi‐scale convolutional network, and then develop a novel dilated convolutional residual network to obtain the deep features of the image. Finally, the extracted features are transformed into high‐dimensional features vector by a binary retrieval vector module. For feature distance measurement, we first use PCA to reduce the dimension of the extracted high‐dimensional vectors. Then we propose a mixed distance measurement algorithm combined with cosine distance and Mahalanobis distance to calculate the spatial distance of the feature vectors for similarity ranking, which solves the problems of poor robustness in complex background fashion image retrieval and the inefficiency calculation of Mahalanobis distance. The experimental results show the superiority of our fashion image retrieval framework over existing state‐of‐the‐art methods.
Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology has made a breakthrough from text‐based to content‐based. But there is still not a proper deep learning method used for fashion image retrieval. This article proposes a fashion image retrieval framework based on dilated convolutional residual network which consists of two major parts, image feature extraction and feature distance measurement. For image feature extraction, we first extract the shallow features of the input image by a multi‐scale convolutional network, and then develop a novel dilated convolutional residual network to obtain the deep features of the image. Finally, the extracted features are transformed into high‐dimensional features vector by a binary retrieval vector module. For feature distance measurement, we first use PCA to reduce the dimension of the extracted high‐dimensional vectors. Then we propose a mixed distance measurement algorithm combined with cosine distance and Mahalanobis distance to calculate the spatial distance of the feature vectors for similarity ranking, which solves the problems of poor robustness in complex background fashion image retrieval and the inefficiency calculation of Mahalanobis distance. The experimental results show the superiority of our fashion image retrieval framework over existing state‐of‐the‐art methods. Fashion image retrieval technology has made a breakthrough from text‐based to content‐based. We propose a novel dilated convolutional residual network to obtain multi‐scale information of fashion images and a mixed measurement algorithm to achieve better visual and metric retrieval.
Author Yuan, Haidongqing
Chen, Jia
Zhang, Yi
He, Ruhan
Liang, Jinxing
Author_xml – sequence: 1
  givenname: Jia
  surname: Chen
  fullname: Chen, Jia
  organization: Wuhan Textile University
– sequence: 2
  givenname: Haidongqing
  orcidid: 0000-0002-2854-0020
  surname: Yuan
  fullname: Yuan, Haidongqing
  email: costinyuan@gmail.com
  organization: Wuhan Textile University
– sequence: 3
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: Wuhan Textile University
– sequence: 4
  givenname: Ruhan
  surname: He
  fullname: He, Ruhan
  organization: Wuhan Textile University
– sequence: 5
  givenname: Jinxing
  surname: Liang
  fullname: Liang, Jinxing
  organization: Wuhan Textile University
BookMark eNp1kMtKAzEYhYNUsK2CjzDgxs3UJDOZi7sy9QZVQVTcDblq6jipSaalOx_BZ_RJTK24EF39B_7vHA5nAHqtaSUA-wiOEIT4iNPFCEMCt0AfkTSLU5w_9H50hnbAwLlZIDOMYB9cTqqbj7f3K-mPo4luqJci4qZdmKbz2rS0iax0WnRBtNIvjX2OlLGRou4pvCP9Qh9lQLzVckGbXbCtaOPk3vcdgrvTk9vqPJ5en11U42nMcZnAGBcEMQEp4QUSiheEJiXMWJlinHCmZAIZEYynokwSwjKhUCZJJhjLca4YkskQHGxy59a8dtL5emY6G9q6GhcQIpynKA3U4Ybi1jhnparnNhS2qxrBej1WHcaq12MFdPQL5drT9QLeUt38ZYg3hqVu5Orf4Loa33_xn_9IfXg
CitedBy_id crossref_primary_10_1117_1_JEI_33_6_063011
crossref_primary_10_1007_s13369_024_09627_w
crossref_primary_10_1007_s00371_024_03788_3
crossref_primary_10_1007_s00371_024_03628_4
crossref_primary_10_35940_ijitee_G9203_0811922
crossref_primary_10_1109_ACCESS_2024_3494023
crossref_primary_10_1007_s00371_024_03397_0
crossref_primary_10_1007_s00371_024_03419_x
crossref_primary_10_1007_s00371_024_03514_z
crossref_primary_10_1142_S219688882450012X
Cites_doi 10.1145/2964284.2967270
10.1109/CVPRW.2014.131
10.1109/CTCEEC.2017.8455138
10.1109/WACV45572.2020.9093468
10.1109/CVPR.2016.124
10.1109/CVPR.2016.90
10.14419/ijet.v7i2.8.10461
10.1109/CVPR.2019.00965
10.3390/s19051123
10.1109/WACV.2018.00163
10.1016/j.ijheatmasstransfer.2006.07.030
10.1145/3159652.3159716
10.1109/ICCV.2015.127
10.1109/ISPACS.2012.6473502
10.1049/iet-ipr.2018.5277
10.1007/BF00751350
10.1109/ICCSNT.2013.6967276
10.1145/2393347.2396471
10.1145/2461466.2461485
10.1109/CVPR.2017.652
10.1007/s00778-017-0472-7
10.1109/CVPR42600.2020.01079
10.1109/ICPR.2016.7900079
10.1109/ICCV.1999.790410
10.1109/CVPR.2019.00266
10.4135/9781412985475
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2050
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2050
CAV2050
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  funderid: 2020CFB801
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2930-2851bd0a5c81dfc85a3906b94223cbfe30b5dbc4d9335b6df16e56dbb727fb1e3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Fri Jul 25 05:25:04 EDT 2025
Tue Jul 01 02:42:23 EDT 2025
Thu Apr 24 23:03:09 EDT 2025
Wed Mar 05 09:44:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2930-2851bd0a5c81dfc85a3906b94223cbfe30b5dbc4d9335b6df16e56dbb727fb1e3
Notes Funding information
Natural Science Foundation of Hubei Province, Grant/Award Number: 2020CFB801
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2854-0020
PQID 2800127414
PQPubID 2034909
PageCount 16
ParticipantIDs proquest_journals_2800127414
crossref_primary_10_1002_cav_2050
crossref_citationtrail_10_1002_cav_2050
wiley_primary_10_1002_cav_2050_CAV2050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March/April 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March/April 2023
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 7
2017; 8
1995; 71
2012
2017; 26
2019; 41
2021
2019; 13
2019; 46
2019; 19
2018
2015
2007; 50
2013
2012; 25
1989; 69
2001; 2011
e_1_2_7_6_1
e_1_2_7_5_1
Ismail MMB (e_1_2_7_2_1) 2017; 8
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Guo X (e_1_2_7_25_1) 2021
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_32_1
Kovashka A (e_1_2_7_17_1) 2012
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Zhen W (e_1_2_7_24_1) 2019; 41
e_1_2_7_37_1
Hong Y (e_1_2_7_38_1) 2019; 46
Kiapour HM (e_1_2_7_14_1) 2015
Krizhevsky A (e_1_2_7_23_1) 2012; 25
Wang X (e_1_2_7_10_1) 2001; 2011
Redmon J (e_1_2_7_39_1) 2018
References_xml – volume: 13
  start-page: 515
  issue: 3
  year: 2019
  end-page: 21
  article-title: Detected text‐based image retrieval approach for textual images
  publication-title: IET Image Process
– volume: 7
  start-page: 353
  issue: 2.8
  year: 2018
  end-page: 7
  article-title: Implementation of SIFT for detection of electronic waste
  publication-title: Int J Eng Technol
– volume: 71
  start-page: 761
  issue: 1
  year: 1995
  end-page: 96
  article-title: Darn/superdarn
  publication-title: Space Sci Rev
– volume: 19
  start-page: 1123
  issue: 5
  year: 2019
  article-title: A SIFT‐based DEM extraction approach using GEOEYE‐1 satellite stereo pairs
  publication-title: Sensors
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Proces Syst
– issue: 04
  year: 2021
  article-title: Building segmentation in remote sensing image based on multiscale‐feature fusion dikated convolution resnet
  publication-title: Guangxue Jingmi Gongcheng/Optics and Precision Engineering
– year: 2018
  end-page: . Available from: http://arxiv.org/abs/1804.02767
  article-title: Yolov3: an incremental improvement
  publication-title: CoRR
– volume: 41
  start-page: 1671
  issue: 09
  year: 2019
  end-page: 1678
  article-title: A garment retrieval method based on deformable convolution
  publication-title: Comput Eng Sci
– volume: 46
  start-page: 215
  issue: 6
  year: 2019
  end-page: 24
  article-title: Clothing image retrieval method combining convolutional neural network multi‐layer feature fusion and K‐means clustering
  publication-title: Comput Therm Sci
– volume: 26
  start-page: 683
  issue: 5
  year: 2017
  end-page: 708
  article-title: Query‐aware locality‐sensitive hashing scheme for lp norm
  publication-title: VLDB J
– volume: 8
  start-page: 159
  issue: 5
  year: 2017
  end-page: 170
  article-title: A survey on content‐based image retrieval
  publication-title: Int J Adv Comput Sci Appl
– start-page: 3343
  year: 2015
  end-page: 3351
  article-title: Where to buy it: matching street clothing photos in online shops
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile
– volume: 69
  year: 1989
– start-page: 1062
  year: 2015
  end-page: 1070
  article-title: Cross‐domain image retrieval with a dual attribute‐aware ranking network
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– start-page: 105
  year: 2013
  end-page: 112
– start-page: 185
  year: 2012
  end-page: 210
  article-title: WhittleSearch: interactive image search with relative attribute feedback
  publication-title: International Journal of Computer Vision
– volume: 2011
  start-page: 1353
  year: 2001
  end-page: 6
  article-title: Clothes search in consumer photos via color matching and attribute learning
  publication-title: ACM Multimed
– volume: 50
  start-page: 654
  issue: 3‐4
  year: 2007
  end-page: 66
  article-title: A benchmark solidification experiment on an Sn–10% wtBi alloy
  publication-title: Int J Heat Mass Transf
– ident: e_1_2_7_29_1
  doi: 10.1145/2964284.2967270
– ident: e_1_2_7_37_1
– ident: e_1_2_7_20_1
– ident: e_1_2_7_13_1
  doi: 10.1109/CVPRW.2014.131
– ident: e_1_2_7_22_1
  doi: 10.1109/CTCEEC.2017.8455138
– ident: e_1_2_7_31_1
  doi: 10.1109/WACV45572.2020.9093468
– year: 2018
  ident: e_1_2_7_39_1
  article-title: Yolov3: an incremental improvement
  publication-title: CoRR
– volume: 41
  start-page: 1671
  issue: 09
  year: 2019
  ident: e_1_2_7_24_1
  article-title: A garment retrieval method based on deformable convolution
  publication-title: Comput Eng Sci
– volume: 46
  start-page: 215
  issue: 6
  year: 2019
  ident: e_1_2_7_38_1
  article-title: Clothing image retrieval method combining convolutional neural network multi‐layer feature fusion and K‐means clustering
  publication-title: Comput Therm Sci
– ident: e_1_2_7_6_1
  doi: 10.1109/CVPR.2016.124
– ident: e_1_2_7_33_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_4_1
  doi: 10.14419/ijet.v7i2.8.10461
– ident: e_1_2_7_28_1
– ident: e_1_2_7_30_1
  doi: 10.1109/CVPR.2019.00965
– ident: e_1_2_7_5_1
  doi: 10.3390/s19051123
– ident: e_1_2_7_32_1
  doi: 10.1109/WACV.2018.00163
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ijheatmasstransfer.2006.07.030
– start-page: 185
  year: 2012
  ident: e_1_2_7_17_1
  article-title: WhittleSearch: interactive image search with relative attribute feedback
  publication-title: International Journal of Computer Vision
– start-page: 3343
  year: 2015
  ident: e_1_2_7_14_1
  article-title: Where to buy it: matching street clothing photos in online shops
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile
– ident: e_1_2_7_19_1
  doi: 10.1145/3159652.3159716
– ident: e_1_2_7_15_1
  doi: 10.1109/ICCV.2015.127
– ident: e_1_2_7_27_1
  doi: 10.1109/ISPACS.2012.6473502
– ident: e_1_2_7_3_1
  doi: 10.1049/iet-ipr.2018.5277
– ident: e_1_2_7_36_1
  doi: 10.1007/BF00751350
– ident: e_1_2_7_21_1
  doi: 10.1109/ICCSNT.2013.6967276
– volume: 2011
  start-page: 1353
  year: 2001
  ident: e_1_2_7_10_1
  article-title: Clothes search in consumer photos via color matching and attribute learning
  publication-title: ACM Multimed
– ident: e_1_2_7_11_1
  doi: 10.1145/2393347.2396471
– ident: e_1_2_7_12_1
  doi: 10.1145/2461466.2461485
– ident: e_1_2_7_18_1
  doi: 10.1109/CVPR.2017.652
– ident: e_1_2_7_34_1
  doi: 10.1007/s00778-017-0472-7
– ident: e_1_2_7_40_1
  doi: 10.1109/CVPR42600.2020.01079
– ident: e_1_2_7_16_1
  doi: 10.1109/ICPR.2016.7900079
– volume: 25
  start-page: 1097
  year: 2012
  ident: e_1_2_7_23_1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Proces Syst
– ident: e_1_2_7_8_1
  doi: 10.1109/ICCV.1999.790410
– ident: e_1_2_7_9_1
– ident: e_1_2_7_26_1
  doi: 10.1109/CVPR.2019.00266
– ident: e_1_2_7_7_1
  doi: 10.4135/9781412985475
– volume: 8
  start-page: 159
  issue: 5
  year: 2017
  ident: e_1_2_7_2_1
  article-title: A survey on content‐based image retrieval
  publication-title: Int J Adv Comput Sci Appl
– issue: 04
  year: 2021
  ident: e_1_2_7_25_1
  article-title: Building segmentation in remote sensing image based on multiscale‐feature fusion dikated convolution resnet
  publication-title: Guangxue Jingmi Gongcheng/Optics and Precision Engineering
SSID ssj0026210
Score 2.3703244
Snippet Fashion image retrieval is an important branch of image retrieval technology. With the rapid development of online shopping, fashion image retrieval technology...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
dilated convolution
Distance measurement
fashion image retrieval
Feature extraction
Image retrieval
Machine learning
Mathematical analysis
metric learning
residual network
Title DCR‐Net: Dilated convolutional residual network for fashion image retrieval
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2050
https://www.proquest.com/docview/2800127414
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF6kXvTgv1itJYLoKW26yW423kprKWJ7qLYUPITsT6BYU7GtB08-gs_ok7iTTVoVBfEUCLOQzMzufJPMfIPQaRR4GAcRtiXzhe35RNmRJETnPI7iTPo-q0FzcqdL233vakiGWVUl9MIYfojFBzfYGel5DRs84tPqkjRURM86vUvTdSjVAjzUWzBHYYoNEQHxqA1ZQs476-BqvvBrJFrCy88gNY0yrU10lz-fKS65r8xnvCJevlE3_u8FttBGBj6tuvGWbbSikh20PhhN5-budBd1mo3e--tbV80urOZorJGotKAyPfNQLafz87SBy0pMBbmlYa8Vw0ymSWKNHvT5pEVgTJf24T3Ub13eNtp2NnLBFjruOzbWAIxLJyJC49hYMBK5gUM5GNQVPFauw4nkwpOB6xJOZVyjilDJuYZBMa8pdx8VkkmiDpAVEKY8GjGhiIAR60yvJ0oy5VMB7bdFdJ6rPxQZHzmMxRiHhkkZh1pBISioiE4Wko-Gg-MHmVJuwTDbhdMQs_TPulfziugsNcWv68NGfQDXw78KHqE1mDxvytFKqDB7mqtjjU9mvIxW683O9U059cgP2mrkHg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-rBt7g-K4ieqt20SVM9LbvK-tg9iIoHoTSPwuJaxd314Mmf4G_0l5hp2vWBgngqlAm0yST5Jpn5PoCtJAoIiRLiKh5KNwipdhNFqYl5PC24CkNexeLkVps1L4OTa3o9AgdlLYzlhxgeuOHMyNdrnOB4IL33wRoqkycT32G8PoaC3nk8dT7kjiKMWCoCGjAX44SSedYje2XLr3vRB8D8DFPzfeZoGm7KL7TpJbe7g77Ylc_fyBv_-QszMFXgT6dmHWYWRnQ2B5NXnd7Avu3NQ6tRP397eW3r_r7T6HQNGFUOJqcXTmrsTIie13A5mU0idwzydVKUZbrPnM6dWaKMCSp1GTdegMujw4t60y1UF1xptn7PJQaDCeUlVBoom0pOEz_ymMAx9aVIte8JqoQMVOT7VDCVVpmmTAlhkFAqqtpfhNHsPtNL4ESU64AlXGoqUWWdm_ZUK65DJrECtwI7Zf_HsqAkR2WMbmzJlElsOijGDqrA5tDywdJw_GCzWg5hXEzEXkx4frkeVIMKbOdj8Wv7uF67wufyXw03YLx50TqLz47bpyswgUL0NjttFUb7jwO9ZuBKX6znbvkO5JXmpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EQfTgW6xWjSB6iqab3c3GW2kt9VWk2CJ4CNlHoFij2NaDJ3-Cv9Ff4k42qQ8UxFMgzEIyM7vzTTLzDUK7cUgwDmPsKh5IlwRUu7Gi1OQ8nhZcBQGvQHPyRYs1O-T0ml7nVZXQC2P5IcYf3GBnZOc1bPAHlRx-kIbK-Mmkd5CuTxHmcfDoentMHYUZtkwElDAX0oSCeNbDh8XKr6HoA19-RqlZmGnMo5viAW11ye3BaCgO5PM37sb_vcECmsvRp1O17rKIJnS6hGa7vcHI3h0so4t6rf328trSwyOn3usbKKocKE3PXdTImQQ96-ByUltC7hjc6yQwlOk-dXp35oAyIjCnyzjxCuo0jq9qTTefueBKE_g9FxsEJpQXU2mAbCI5jf3QYwIs6kuRaN8TVAlJVOj7VDCVVJimTAlhcFAiKtpfRZPpfarXkBNSrgmLudRUwox1btZTrbgOmIT-2xLaL9QfyZyQHOZi9CNLpYwjo6AIFFRCO2PJB0vC8YNMubBglG_DQYR59mudVEgJ7WWm-HV9VKt24br-V8FtNH1Zb0TnJ62zDTQDU-htaVoZTQ4fR3rTYJWh2Mqc8h1nFuVd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DCR%E2%80%90Net%3A+Dilated+convolutional+residual+network+for+fashion+image+retrieval&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Chen%2C+Jia&rft.au=Yuan%2C+Haidongqing&rft.au=Zhang%2C+Yi&rft.au=He%2C+Ruhan&rft.date=2023-03-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fcav.2050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_2050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon