Continuous operation of battery-free implants enables advanced fracture recovery monitoring

Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is ther...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 11; no. 19; p. eadt7488
Main Authors Kasper, Kevin Albert, Romero, Gerardo Figueroa, Perez, Dania L., Miller, Avery M., Gonzales, David A., Siqueiros, Jesus, Margolis, David S., Gutruf, Philipp
Format Journal Article
LanguageEnglish
Published United States 09.05.2025
Subjects
Online AccessGet full text
ISSN2375-2548
2375-2548
DOI10.1126/sciadv.adt7488

Cover

Abstract Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union. A continuously operating wearable powers and exchanges data with osseosurface electronics to measure fracture recovery.
AbstractList Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union. A continuously operating wearable powers and exchanges data with osseosurface electronics to measure fracture recovery.
Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union.
Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union.Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union.
Author Gonzales, David A.
Romero, Gerardo Figueroa
Miller, Avery M.
Gutruf, Philipp
Siqueiros, Jesus
Kasper, Kevin Albert
Margolis, David S.
Perez, Dania L.
Author_xml – sequence: 1
  givenname: Kevin Albert
  orcidid: 0009-0000-1242-831X
  surname: Kasper
  fullname: Kasper, Kevin Albert
– sequence: 2
  givenname: Gerardo Figueroa
  orcidid: 0009-0001-2513-5046
  surname: Romero
  fullname: Romero, Gerardo Figueroa
– sequence: 3
  givenname: Dania L.
  surname: Perez
  fullname: Perez, Dania L.
– sequence: 4
  givenname: Avery M.
  orcidid: 0009-0006-0297-306X
  surname: Miller
  fullname: Miller, Avery M.
– sequence: 5
  givenname: David A.
  orcidid: 0009-0003-0120-5761
  surname: Gonzales
  fullname: Gonzales, David A.
– sequence: 6
  givenname: Jesus
  orcidid: 0009-0008-6123-3592
  surname: Siqueiros
  fullname: Siqueiros, Jesus
– sequence: 7
  givenname: David S.
  orcidid: 0000-0002-2936-7506
  surname: Margolis
  fullname: Margolis, David S.
– sequence: 8
  givenname: Philipp
  orcidid: 0000-0002-7183-7268
  surname: Gutruf
  fullname: Gutruf, Philipp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40344068$$D View this record in MEDLINE/PubMed
BookMark eNpNkL1PwzAQxS1UREvpyog8sqTYjp2PEVV8SZVYYGKIHPuMjBI72E6l_vekakFMd8Pv3b33LtHMeQcIXVOyppQVd1FZqXdrqVPJq-oMLVheiowJXs3-7XO0ivGLEEJ5UQhaX6A5JznnpKgW6GPjXbJu9GPEfoAgk_UOe4NbmRKEfWYCALb90EmXIgYn2w4int5Kp0BjE6RKYwAcQPndJMC9dzb5YN3nFTo3souwOs0len98eNs8Z9vXp5fN_TZTrGYpM5pPtgwFXtaVqoURWrG2FoK1haiAMKo5FcCgnSLUoJXQZVlVJpdtyXNF8iW6Pd4dgv8eIaamt1FBN1mGKVeTM8L4pGUH9OaEjm0PuhmC7WXYN7-FTMD6CKjgYwxg_hBKmkPpzbH05lR6_gNBZXeW
Cites_doi 10.1016/j.snb.2017.05.057
10.1097/00003086-199810001-00015
10.1016/j.jbiomech.2022.111034
10.3390/s20123487
10.3390/biology11091251
10.1097/00003086-199810001-00006
10.1088/1741-2552/ac1178
10.1126/sciadv.aaw5296
10.1002/adfm.202009289
10.1109/TAP.2023.3331764
10.1002/1097-4636(2001)58:3<277::AID-JBM1017>3.0.CO;2-T
10.1016/S0268-0890(05)80065-9
10.1038/s41586-023-06094-5
10.1016/j.actamat.2013.09.020
10.1302/2046-3758.55.2000611
10.1007/s11999-009-0752-7
10.1109/RBME.2017.2683520
10.1073/pnas.2307952120
10.3390/s21010017
10.21037/atm-21-1853
10.1016/j.bios.2018.12.057
10.1126/science.abn4732
10.1016/j.jbi.2019.103153
10.35940/ijitee.L3108.119119
10.1016/1053-0770(92)90048-C
10.1021/acs.chemrev.3c00425
10.2196/20738
10.1021/acsnano.9b08323
10.2196/18636
10.1201/b14263
10.1097/JU.0000000000002110.01
10.1007/s11914-020-00584-5
10.1016/S0022-5193(84)80031-4
10.1097/BOT.0b013e3181b01c49
10.1016/j.bios.2023.115218
10.1016/B978-0-12-801238-3.11209-7
10.1038/s41551-020-0518-9
10.1097/HP.0000000000001210
10.1155/2015/727694
10.1109/BHI.2016.7455973
10.1073/pnas.1920073117
10.3389/fnins.2017.00555
10.1021/acs.chemrev.8b00573
10.1126/sciadv.abj3269
10.1016/j.biomaterials.2019.119731
10.1016/j.rser.2015.07.031
10.1038/s41378-021-00294-7
10.1073/pnas.2025775118
10.1038/s41467-021-27003-2
10.1088/0964-1726/25/12/123001
10.3390/s21196343
10.1088/1741-2552/abe805
10.1109/JTEHM.2021.3098127
10.1136/neurintsurg-2020-016862
10.1080/17434440.2019.1563480
10.1016/j.aej.2023.11.030
10.1080/08941939.2022.2045393
10.1055/s-0038-1632754
10.1038/s41467-019-13637-w
10.1016/S0034-5288(18)34492-8
10.1109/JBHI.2014.2329712
10.1186/s42234-021-00080-w
10.1073/pnas.0508480102
10.3390/s23062991
10.1016/j.arth.2005.07.011
10.3390/medicina58070858
10.1088/0967-3334/35/4/517
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1126/sciadv.adt7488
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID 40344068
10_1126_sciadv_adt7488
Genre Journal Article
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADPDF
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCGUY
BCNDV
BKF
CITATION
EBS
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
OVEED
RHI
RPM
TEORI
BBORY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c292t-fd4651f1e4798c95f5dc2b9552b658e021d415e2eb0019edc5d7788f3ab743c03
IEDL.DBID M48
ISSN 2375-2548
IngestDate Wed Jul 02 04:26:20 EDT 2025
Mon May 12 02:38:41 EDT 2025
Sun Jul 06 05:09:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-fd4651f1e4798c95f5dc2b9552b658e021d415e2eb0019edc5d7788f3ab743c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0000-1242-831X
0009-0006-0297-306X
0000-0002-2936-7506
0009-0001-2513-5046
0000-0002-7183-7268
0009-0003-0120-5761
0009-0008-6123-3592
OpenAccessLink https://doi.org/10.1126/sciadv.adt7488
PMID 40344068
PQID 3202400120
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3202400120
pubmed_primary_40344068
crossref_primary_10_1126_sciadv_adt7488
PublicationCentury 2000
PublicationDate 2025-05-09
2025-May-09
20250509
PublicationDateYYYYMMDD 2025-05-09
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2025
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
Rich A. M. (e_1_3_2_61_2) 2025; 43
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_70_2
References_xml – ident: e_1_3_2_69_2
  doi: 10.1016/j.snb.2017.05.057
– ident: e_1_3_2_56_2
  doi: 10.1097/00003086-199810001-00015
– ident: e_1_3_2_53_2
  doi: 10.1016/j.jbiomech.2022.111034
– ident: e_1_3_2_13_2
  doi: 10.3390/s20123487
– ident: e_1_3_2_52_2
  doi: 10.3390/biology11091251
– ident: e_1_3_2_66_2
  doi: 10.1097/00003086-199810001-00006
– ident: e_1_3_2_25_2
  doi: 10.1088/1741-2552/ac1178
– ident: e_1_3_2_70_2
  doi: 10.1126/sciadv.aaw5296
– ident: e_1_3_2_15_2
  doi: 10.1002/adfm.202009289
– ident: e_1_3_2_34_2
  doi: 10.1109/TAP.2023.3331764
– ident: e_1_3_2_46_2
  doi: 10.1002/1097-4636(2001)58:3<277::AID-JBM1017>3.0.CO;2-T
– ident: e_1_3_2_64_2
  doi: 10.1016/S0268-0890(05)80065-9
– ident: e_1_3_2_23_2
  doi: 10.1038/s41586-023-06094-5
– ident: e_1_3_2_35_2
  doi: 10.1016/j.actamat.2013.09.020
– ident: e_1_3_2_60_2
  doi: 10.1302/2046-3758.55.2000611
– ident: e_1_3_2_65_2
  doi: 10.1007/s11999-009-0752-7
– ident: e_1_3_2_14_2
  doi: 10.1109/RBME.2017.2683520
– ident: e_1_3_2_33_2
  doi: 10.1073/pnas.2307952120
– ident: e_1_3_2_57_2
  doi: 10.3390/s21010017
– ident: e_1_3_2_59_2
  doi: 10.21037/atm-21-1853
– ident: e_1_3_2_4_2
  doi: 10.1016/j.bios.2018.12.057
– ident: e_1_3_2_17_2
  doi: 10.1126/science.abn4732
– ident: e_1_3_2_39_2
– ident: e_1_3_2_45_2
  doi: 10.1016/j.jbi.2019.103153
– ident: e_1_3_2_3_2
  doi: 10.35940/ijitee.L3108.119119
– ident: e_1_3_2_12_2
  doi: 10.1016/1053-0770(92)90048-C
– ident: e_1_3_2_18_2
  doi: 10.1021/acs.chemrev.3c00425
– ident: e_1_3_2_28_2
  doi: 10.2196/20738
– ident: e_1_3_2_6_2
  doi: 10.1021/acsnano.9b08323
– ident: e_1_3_2_9_2
  doi: 10.2196/18636
– ident: e_1_3_2_50_2
  doi: 10.1201/b14263
– ident: e_1_3_2_24_2
  doi: 10.1097/JU.0000000000002110.01
– ident: e_1_3_2_67_2
  doi: 10.1007/s11914-020-00584-5
– ident: e_1_3_2_47_2
  doi: 10.1016/S0022-5193(84)80031-4
– ident: e_1_3_2_63_2
  doi: 10.1097/BOT.0b013e3181b01c49
– ident: e_1_3_2_32_2
  doi: 10.1016/j.bios.2023.115218
– ident: e_1_3_2_49_2
  doi: 10.1016/B978-0-12-801238-3.11209-7
– ident: e_1_3_2_20_2
  doi: 10.1038/s41551-020-0518-9
– ident: e_1_3_2_38_2
  doi: 10.1097/HP.0000000000001210
– ident: e_1_3_2_2_2
  doi: 10.1155/2015/727694
– ident: e_1_3_2_26_2
  doi: 10.1109/BHI.2016.7455973
– ident: e_1_3_2_41_2
  doi: 10.1073/pnas.1920073117
– ident: e_1_3_2_8_2
  doi: 10.3389/fnins.2017.00555
– ident: e_1_3_2_5_2
  doi: 10.1021/acs.chemrev.8b00573
– ident: e_1_3_2_31_2
  doi: 10.1126/sciadv.abj3269
– ident: e_1_3_2_68_2
  doi: 10.1016/j.biomaterials.2019.119731
– ident: e_1_3_2_36_2
  doi: 10.1016/j.rser.2015.07.031
– ident: e_1_3_2_44_2
  doi: 10.1038/s41378-021-00294-7
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.2025775118
– ident: e_1_3_2_30_2
  doi: 10.1038/s41467-021-27003-2
– ident: e_1_3_2_16_2
  doi: 10.1088/0964-1726/25/12/123001
– ident: e_1_3_2_40_2
  doi: 10.3390/s21196343
– ident: e_1_3_2_19_2
  doi: 10.1088/1741-2552/abe805
– ident: e_1_3_2_51_2
  doi: 10.1109/JTEHM.2021.3098127
– ident: e_1_3_2_22_2
  doi: 10.1136/neurintsurg-2020-016862
– ident: e_1_3_2_37_2
– ident: e_1_3_2_7_2
  doi: 10.1080/17434440.2019.1563480
– ident: e_1_3_2_27_2
  doi: 10.1016/j.aej.2023.11.030
– ident: e_1_3_2_71_2
  doi: 10.1080/08941939.2022.2045393
– ident: e_1_3_2_48_2
  doi: 10.1055/s-0038-1632754
– ident: e_1_3_2_43_2
  doi: 10.1038/s41467-019-13637-w
– ident: e_1_3_2_54_2
  doi: 10.1016/S0034-5288(18)34492-8
– ident: e_1_3_2_29_2
  doi: 10.1109/JBHI.2014.2329712
– ident: e_1_3_2_21_2
  doi: 10.1186/s42234-021-00080-w
– ident: e_1_3_2_55_2
  doi: 10.1073/pnas.0508480102
– ident: e_1_3_2_10_2
  doi: 10.3390/s23062991
– ident: e_1_3_2_62_2
  doi: 10.1016/j.arth.2005.07.011
– ident: e_1_3_2_58_2
  doi: 10.3390/medicina58070858
– volume: 43
  start-page: 603
  year: 2025
  ident: e_1_3_2_61_2
  article-title: Development of an implantable sensor system for in vivo strain, temperature, and pH monitoring: Comparative evaluation of titanium and resorbable magnesium plates
  publication-title: Bioact. Mater.
– ident: e_1_3_2_11_2
  doi: 10.1088/0967-3334/35/4/517
SSID ssj0001466519
Score 2.2981772
Snippet Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage eadt7488
SubjectTerms Animals
Electric Power Supplies
Fracture Healing
Fractures, Bone
Humans
Monitoring, Physiologic - methods
Prostheses and Implants
Wearable Electronic Devices
Wireless Technology - instrumentation
Title Continuous operation of battery-free implants enables advanced fracture recovery monitoring
URI https://www.ncbi.nlm.nih.gov/pubmed/40344068
https://www.proquest.com/docview/3202400120
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XryI9VkfZQVBPWxJt9lNchARsRahniwUPITNPqBg05qmYv-9s5utD1TwktwSMjvLfN9m5vsQOg2swC3QBMIiwUnIg4yIDsuI0W3JRBxrruw5ZP-B9wbh_ZANP_uffABnv1I76yc1KJ5bby-LK9jwl18GYIR6bQlVRpCOq2gNqhK3RKzvob47bwk5Z87ng3YiRoAXxV7D8ecjvteoP4CnK0DdTbThkSO-rpa6jlZ0voXqfm_O8LkXkL7YRk9WcmqUz4HUY_iaao3xxODMiWkuiCm0xqPx9Nk2wWDtxqdmeNkOgI2dnJoXGlu2DKm-wGO38-0R4A4adG8fb3rEmygQSRNaEqOs27lp6zBKYpkww5SkWcIYzQB8aCjxCmq4ps5DKNFKMhUBLTYdkQG4kEFnF9XySa73EVaJkACYpNSRCoXhMdwCwDOKyUBEOmmgs2XY0mmllZE6jkF5WgU49QFuoJNlVFNIZ_uPQuQaopJaO_fQTfQ20F4V7o9nhVaeMODxwb_fc4jWqfXrtQ2KyRGqlcVcHwOIKLOmI99wvRu2my5T3gG6bMrD
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+operation+of+battery-free+implants+enables+advanced+fracture+recovery+monitoring&rft.jtitle=Science+advances&rft.au=Kasper%2C+Kevin+Albert&rft.au=Romero%2C+Gerardo+Figueroa&rft.au=Perez%2C+Dania+L.&rft.au=Miller%2C+Avery+M.&rft.date=2025-05-09&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=11&rft.issue=19&rft_id=info:doi/10.1126%2Fsciadv.adt7488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_sciadv_adt7488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon