Continuous operation of battery-free implants enables advanced fracture recovery monitoring
Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is ther...
Saved in:
Published in | Science advances Vol. 11; no. 19; p. eadt7488 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
09.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-2548 2375-2548 |
DOI | 10.1126/sciadv.adt7488 |
Cover
Abstract | Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union.
A continuously operating wearable powers and exchanges data with osseosurface electronics to measure fracture recovery. |
---|---|
AbstractList | Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union.
A continuously operating wearable powers and exchanges data with osseosurface electronics to measure fracture recovery. Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union. Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union.Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union. |
Author | Gonzales, David A. Romero, Gerardo Figueroa Miller, Avery M. Gutruf, Philipp Siqueiros, Jesus Kasper, Kevin Albert Margolis, David S. Perez, Dania L. |
Author_xml | – sequence: 1 givenname: Kevin Albert orcidid: 0009-0000-1242-831X surname: Kasper fullname: Kasper, Kevin Albert – sequence: 2 givenname: Gerardo Figueroa orcidid: 0009-0001-2513-5046 surname: Romero fullname: Romero, Gerardo Figueroa – sequence: 3 givenname: Dania L. surname: Perez fullname: Perez, Dania L. – sequence: 4 givenname: Avery M. orcidid: 0009-0006-0297-306X surname: Miller fullname: Miller, Avery M. – sequence: 5 givenname: David A. orcidid: 0009-0003-0120-5761 surname: Gonzales fullname: Gonzales, David A. – sequence: 6 givenname: Jesus orcidid: 0009-0008-6123-3592 surname: Siqueiros fullname: Siqueiros, Jesus – sequence: 7 givenname: David S. orcidid: 0000-0002-2936-7506 surname: Margolis fullname: Margolis, David S. – sequence: 8 givenname: Philipp orcidid: 0000-0002-7183-7268 surname: Gutruf fullname: Gutruf, Philipp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40344068$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkL1PwzAQxS1UREvpyog8sqTYjp2PEVV8SZVYYGKIHPuMjBI72E6l_vekakFMd8Pv3b33LtHMeQcIXVOyppQVd1FZqXdrqVPJq-oMLVheiowJXs3-7XO0ivGLEEJ5UQhaX6A5JznnpKgW6GPjXbJu9GPEfoAgk_UOe4NbmRKEfWYCALb90EmXIgYn2w4int5Kp0BjE6RKYwAcQPndJMC9dzb5YN3nFTo3souwOs0len98eNs8Z9vXp5fN_TZTrGYpM5pPtgwFXtaVqoURWrG2FoK1haiAMKo5FcCgnSLUoJXQZVlVJpdtyXNF8iW6Pd4dgv8eIaamt1FBN1mGKVeTM8L4pGUH9OaEjm0PuhmC7WXYN7-FTMD6CKjgYwxg_hBKmkPpzbH05lR6_gNBZXeW |
Cites_doi | 10.1016/j.snb.2017.05.057 10.1097/00003086-199810001-00015 10.1016/j.jbiomech.2022.111034 10.3390/s20123487 10.3390/biology11091251 10.1097/00003086-199810001-00006 10.1088/1741-2552/ac1178 10.1126/sciadv.aaw5296 10.1002/adfm.202009289 10.1109/TAP.2023.3331764 10.1002/1097-4636(2001)58:3<277::AID-JBM1017>3.0.CO;2-T 10.1016/S0268-0890(05)80065-9 10.1038/s41586-023-06094-5 10.1016/j.actamat.2013.09.020 10.1302/2046-3758.55.2000611 10.1007/s11999-009-0752-7 10.1109/RBME.2017.2683520 10.1073/pnas.2307952120 10.3390/s21010017 10.21037/atm-21-1853 10.1016/j.bios.2018.12.057 10.1126/science.abn4732 10.1016/j.jbi.2019.103153 10.35940/ijitee.L3108.119119 10.1016/1053-0770(92)90048-C 10.1021/acs.chemrev.3c00425 10.2196/20738 10.1021/acsnano.9b08323 10.2196/18636 10.1201/b14263 10.1097/JU.0000000000002110.01 10.1007/s11914-020-00584-5 10.1016/S0022-5193(84)80031-4 10.1097/BOT.0b013e3181b01c49 10.1016/j.bios.2023.115218 10.1016/B978-0-12-801238-3.11209-7 10.1038/s41551-020-0518-9 10.1097/HP.0000000000001210 10.1155/2015/727694 10.1109/BHI.2016.7455973 10.1073/pnas.1920073117 10.3389/fnins.2017.00555 10.1021/acs.chemrev.8b00573 10.1126/sciadv.abj3269 10.1016/j.biomaterials.2019.119731 10.1016/j.rser.2015.07.031 10.1038/s41378-021-00294-7 10.1073/pnas.2025775118 10.1038/s41467-021-27003-2 10.1088/0964-1726/25/12/123001 10.3390/s21196343 10.1088/1741-2552/abe805 10.1109/JTEHM.2021.3098127 10.1136/neurintsurg-2020-016862 10.1080/17434440.2019.1563480 10.1016/j.aej.2023.11.030 10.1080/08941939.2022.2045393 10.1055/s-0038-1632754 10.1038/s41467-019-13637-w 10.1016/S0034-5288(18)34492-8 10.1109/JBHI.2014.2329712 10.1186/s42234-021-00080-w 10.1073/pnas.0508480102 10.3390/s23062991 10.1016/j.arth.2005.07.011 10.3390/medicina58070858 10.1088/0967-3334/35/4/517 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1126/sciadv.adt7488 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2375-2548 |
ExternalDocumentID | 40344068 10_1126_sciadv_adt7488 |
Genre | Journal Article |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADPDF AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCGUY BCNDV BKF CITATION EBS FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD OVEED RHI RPM TEORI BBORY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c292t-fd4651f1e4798c95f5dc2b9552b658e021d415e2eb0019edc5d7788f3ab743c03 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Wed Jul 02 04:26:20 EDT 2025 Mon May 12 02:38:41 EDT 2025 Sun Jul 06 05:09:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-fd4651f1e4798c95f5dc2b9552b658e021d415e2eb0019edc5d7788f3ab743c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0000-1242-831X 0009-0006-0297-306X 0000-0002-2936-7506 0009-0001-2513-5046 0000-0002-7183-7268 0009-0003-0120-5761 0009-0008-6123-3592 |
OpenAccessLink | https://doi.org/10.1126/sciadv.adt7488 |
PMID | 40344068 |
PQID | 3202400120 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3202400120 pubmed_primary_40344068 crossref_primary_10_1126_sciadv_adt7488 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-09 2025-May-09 20250509 |
PublicationDateYYYYMMDD | 2025-05-09 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2025 |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 Rich A. M. (e_1_3_2_61_2) 2025; 43 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_69_2 doi: 10.1016/j.snb.2017.05.057 – ident: e_1_3_2_56_2 doi: 10.1097/00003086-199810001-00015 – ident: e_1_3_2_53_2 doi: 10.1016/j.jbiomech.2022.111034 – ident: e_1_3_2_13_2 doi: 10.3390/s20123487 – ident: e_1_3_2_52_2 doi: 10.3390/biology11091251 – ident: e_1_3_2_66_2 doi: 10.1097/00003086-199810001-00006 – ident: e_1_3_2_25_2 doi: 10.1088/1741-2552/ac1178 – ident: e_1_3_2_70_2 doi: 10.1126/sciadv.aaw5296 – ident: e_1_3_2_15_2 doi: 10.1002/adfm.202009289 – ident: e_1_3_2_34_2 doi: 10.1109/TAP.2023.3331764 – ident: e_1_3_2_46_2 doi: 10.1002/1097-4636(2001)58:3<277::AID-JBM1017>3.0.CO;2-T – ident: e_1_3_2_64_2 doi: 10.1016/S0268-0890(05)80065-9 – ident: e_1_3_2_23_2 doi: 10.1038/s41586-023-06094-5 – ident: e_1_3_2_35_2 doi: 10.1016/j.actamat.2013.09.020 – ident: e_1_3_2_60_2 doi: 10.1302/2046-3758.55.2000611 – ident: e_1_3_2_65_2 doi: 10.1007/s11999-009-0752-7 – ident: e_1_3_2_14_2 doi: 10.1109/RBME.2017.2683520 – ident: e_1_3_2_33_2 doi: 10.1073/pnas.2307952120 – ident: e_1_3_2_57_2 doi: 10.3390/s21010017 – ident: e_1_3_2_59_2 doi: 10.21037/atm-21-1853 – ident: e_1_3_2_4_2 doi: 10.1016/j.bios.2018.12.057 – ident: e_1_3_2_17_2 doi: 10.1126/science.abn4732 – ident: e_1_3_2_39_2 – ident: e_1_3_2_45_2 doi: 10.1016/j.jbi.2019.103153 – ident: e_1_3_2_3_2 doi: 10.35940/ijitee.L3108.119119 – ident: e_1_3_2_12_2 doi: 10.1016/1053-0770(92)90048-C – ident: e_1_3_2_18_2 doi: 10.1021/acs.chemrev.3c00425 – ident: e_1_3_2_28_2 doi: 10.2196/20738 – ident: e_1_3_2_6_2 doi: 10.1021/acsnano.9b08323 – ident: e_1_3_2_9_2 doi: 10.2196/18636 – ident: e_1_3_2_50_2 doi: 10.1201/b14263 – ident: e_1_3_2_24_2 doi: 10.1097/JU.0000000000002110.01 – ident: e_1_3_2_67_2 doi: 10.1007/s11914-020-00584-5 – ident: e_1_3_2_47_2 doi: 10.1016/S0022-5193(84)80031-4 – ident: e_1_3_2_63_2 doi: 10.1097/BOT.0b013e3181b01c49 – ident: e_1_3_2_32_2 doi: 10.1016/j.bios.2023.115218 – ident: e_1_3_2_49_2 doi: 10.1016/B978-0-12-801238-3.11209-7 – ident: e_1_3_2_20_2 doi: 10.1038/s41551-020-0518-9 – ident: e_1_3_2_38_2 doi: 10.1097/HP.0000000000001210 – ident: e_1_3_2_2_2 doi: 10.1155/2015/727694 – ident: e_1_3_2_26_2 doi: 10.1109/BHI.2016.7455973 – ident: e_1_3_2_41_2 doi: 10.1073/pnas.1920073117 – ident: e_1_3_2_8_2 doi: 10.3389/fnins.2017.00555 – ident: e_1_3_2_5_2 doi: 10.1021/acs.chemrev.8b00573 – ident: e_1_3_2_31_2 doi: 10.1126/sciadv.abj3269 – ident: e_1_3_2_68_2 doi: 10.1016/j.biomaterials.2019.119731 – ident: e_1_3_2_36_2 doi: 10.1016/j.rser.2015.07.031 – ident: e_1_3_2_44_2 doi: 10.1038/s41378-021-00294-7 – ident: e_1_3_2_42_2 doi: 10.1073/pnas.2025775118 – ident: e_1_3_2_30_2 doi: 10.1038/s41467-021-27003-2 – ident: e_1_3_2_16_2 doi: 10.1088/0964-1726/25/12/123001 – ident: e_1_3_2_40_2 doi: 10.3390/s21196343 – ident: e_1_3_2_19_2 doi: 10.1088/1741-2552/abe805 – ident: e_1_3_2_51_2 doi: 10.1109/JTEHM.2021.3098127 – ident: e_1_3_2_22_2 doi: 10.1136/neurintsurg-2020-016862 – ident: e_1_3_2_37_2 – ident: e_1_3_2_7_2 doi: 10.1080/17434440.2019.1563480 – ident: e_1_3_2_27_2 doi: 10.1016/j.aej.2023.11.030 – ident: e_1_3_2_71_2 doi: 10.1080/08941939.2022.2045393 – ident: e_1_3_2_48_2 doi: 10.1055/s-0038-1632754 – ident: e_1_3_2_43_2 doi: 10.1038/s41467-019-13637-w – ident: e_1_3_2_54_2 doi: 10.1016/S0034-5288(18)34492-8 – ident: e_1_3_2_29_2 doi: 10.1109/JBHI.2014.2329712 – ident: e_1_3_2_21_2 doi: 10.1186/s42234-021-00080-w – ident: e_1_3_2_55_2 doi: 10.1073/pnas.0508480102 – ident: e_1_3_2_10_2 doi: 10.3390/s23062991 – ident: e_1_3_2_62_2 doi: 10.1016/j.arth.2005.07.011 – ident: e_1_3_2_58_2 doi: 10.3390/medicina58070858 – volume: 43 start-page: 603 year: 2025 ident: e_1_3_2_61_2 article-title: Development of an implantable sensor system for in vivo strain, temperature, and pH monitoring: Comparative evaluation of titanium and resorbable magnesium plates publication-title: Bioact. Mater. – ident: e_1_3_2_11_2 doi: 10.1088/0967-3334/35/4/517 |
SSID | ssj0001466519 |
Score | 2.2981772 |
Snippet | Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | eadt7488 |
SubjectTerms | Animals Electric Power Supplies Fracture Healing Fractures, Bone Humans Monitoring, Physiologic - methods Prostheses and Implants Wearable Electronic Devices Wireless Technology - instrumentation |
Title | Continuous operation of battery-free implants enables advanced fracture recovery monitoring |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40344068 https://www.proquest.com/docview/3202400120 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XryI9VkfZQVBPWxJt9lNchARsRahniwUPITNPqBg05qmYv-9s5utD1TwktwSMjvLfN9m5vsQOg2swC3QBMIiwUnIg4yIDsuI0W3JRBxrruw5ZP-B9wbh_ZANP_uffABnv1I76yc1KJ5bby-LK9jwl18GYIR6bQlVRpCOq2gNqhK3RKzvob47bwk5Z87ng3YiRoAXxV7D8ecjvteoP4CnK0DdTbThkSO-rpa6jlZ0voXqfm_O8LkXkL7YRk9WcmqUz4HUY_iaao3xxODMiWkuiCm0xqPx9Nk2wWDtxqdmeNkOgI2dnJoXGlu2DKm-wGO38-0R4A4adG8fb3rEmygQSRNaEqOs27lp6zBKYpkww5SkWcIYzQB8aCjxCmq4ps5DKNFKMhUBLTYdkQG4kEFnF9XySa73EVaJkACYpNSRCoXhMdwCwDOKyUBEOmmgs2XY0mmllZE6jkF5WgU49QFuoJNlVFNIZ_uPQuQaopJaO_fQTfQ20F4V7o9nhVaeMODxwb_fc4jWqfXrtQ2KyRGqlcVcHwOIKLOmI99wvRu2my5T3gG6bMrD |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+operation+of+battery-free+implants+enables+advanced+fracture+recovery+monitoring&rft.jtitle=Science+advances&rft.au=Kasper%2C+Kevin+Albert&rft.au=Romero%2C+Gerardo+Figueroa&rft.au=Perez%2C+Dania+L.&rft.au=Miller%2C+Avery+M.&rft.date=2025-05-09&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=11&rft.issue=19&rft_id=info:doi/10.1126%2Fsciadv.adt7488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_sciadv_adt7488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |