The impact of low intensity ultrasound on cells: Underlying mechanisms and current status
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role...
Saved in:
Published in | Progress in biophysics and molecular biology Vol. 174; pp. 41 - 49 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data. |
---|---|
AbstractList | Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data. |
Author | Ouyang, Shuming Li, Yue Du, Meng Zhang, Qing Chen, Zhiyi Zhang, Jiaming |
Author_xml | – sequence: 1 givenname: Meng surname: Du fullname: Du, Meng – sequence: 2 givenname: Yue surname: Li fullname: Li, Yue – sequence: 3 givenname: Qing surname: Zhang fullname: Zhang, Qing – sequence: 4 givenname: Jiaming surname: Zhang fullname: Zhang, Jiaming – sequence: 5 givenname: Shuming surname: Ouyang fullname: Ouyang, Shuming – sequence: 6 givenname: Zhiyi orcidid: 0000-0002-5973-4522 surname: Chen fullname: Chen, Zhiyi |
BookMark | eNqFkE1LAzEQhoNUsK3-hxy97DpJttmuB0GKX1DwUg-eQjY7a1N2k5pkkf57t1QQvHiZuTzvy8wzIxPnHRJCGeQMmLzZ5fva-t5348w5cJ6DzAGKMzJly1JkrBR8QqYAZZVJBuUFmcW4AwDOSjkl75stUtvvtUnUt7TzX9S6hC7adKBDl4KOfnAN9Y4a7Lp4S99cg6E7WPdBezRb7WzsI9UjY4YQ0CUak05DvCTnre4iXv3sOdk8PmxWz9n69elldb_ODK94ytq64GCwXlQ1LwSigQXypqlqIQrW8qpsl7psUWJVG2gFH3nNi1oYaGRdGDEn16faffCfA8akehuPp2qHfoiKyyXni0pKMaLLE2qCjzFgq_bB9jocFAN1lKl26lemOspUINUoc4ze_YkaO35pvRsN2e7_gm-x5YW6 |
CitedBy_id | crossref_primary_10_1007_s12015_024_10769_5 crossref_primary_10_1038_s41598_024_72059_x crossref_primary_10_1002_bit_28651 crossref_primary_10_1016_j_addr_2023_115177 crossref_primary_10_1016_j_focha_2024_100646 crossref_primary_10_15212_bioi_2023_0004 crossref_primary_10_62347_LMPA6921 crossref_primary_10_1016_j_ejpb_2024_114246 crossref_primary_10_1016_j_jwpe_2023_103795 crossref_primary_10_1039_D3TB01354E crossref_primary_10_1063_5_0127122 |
Cites_doi | 10.4049/jimmunol.1500541 10.1002/sctm.19-0391 10.3389/fphar.2019.00875 10.1080/21691401.2019.1657878 10.1021/acsnano.7b03732 10.1016/j.ultrasmedbio.2018.08.008 10.1002/jcp.26058 10.7150/thno.20820 10.1007/s10439-008-9629-2 10.1007/s12035-018-0897-z 10.1109/TBME.2018.2889669 10.1016/j.pbiomolbio.2006.07.005 10.1016/j.ultrasmedbio.2017.01.023 10.3389/fonc.2019.00600 10.1016/j.brs.2017.02.008 10.7554/eLife.12088 10.1177/147323000903700531 10.1161/ATVBAHA.115.306477 10.1016/S0168-3659(00)00264-9 10.1021/acs.nanolett.7b00616 10.1007/978-1-4939-8661-3_9 10.1038/nrn3383 10.1007/s10529-013-1313-4 10.1016/j.bios.2017.12.038 10.2174/1381612825666190211163948 10.1002/adma.201900453 10.1523/JNEUROSCI.1458-17.2018 10.1016/j.ultrasmedbio.2004.07.022 10.1016/j.ultras.2018.08.017 10.1126/sciadv.aaz4193 10.1016/j.ultras.2010.09.004 10.1016/j.eplepsyres.2019.04.002 10.2519/jospt.2004.34.7.395 10.20892/j.issn.2095-3941.2019.0232 10.1016/j.brs.2018.05.012 10.7863/jum.2012.31.4.623 10.1109/TBME.2018.2821201 10.3389/fphar.2019.00544 10.1113/jphysiol.2010.199034 10.1016/j.ultrasmedbio.2015.05.021 10.1016/j.biomaterials.2016.01.022 10.1016/j.brs.2017.09.003 10.1098/rstb.2018.0227 10.1016/j.canlet.2019.11.034 10.1097/PHM.0000000000001265 10.1007/s12072-019-09937-4 10.2217/nnm.15.82 10.1016/j.ultsonch.2020.105096 10.1007/s13311-018-00691-3 10.3389/fcell.2016.00139 10.4081/ejh.2017.2800 10.1186/1479-5876-10-221 10.1016/j.nantod.2019.100773 10.1111/cpr.12383 10.1016/j.canlet.2020.01.028 10.1039/c3cp53963f 10.1016/j.ultrasmedbio.2017.03.003 10.1021/acs.langmuir.0c00536 10.1136/rapm-2018-100113 10.1016/j.actbio.2016.08.054 10.1111/aor.12041 10.1007/978-3-319-22536-4_10 10.1016/j.ultras.2009.10.002 10.21037/qims-20-680 10.1186/s13287-017-0567-5 10.1016/j.ultsonch.2016.08.022 10.3390/ijms20184507 10.1016/j.cmet.2017.07.007 10.1038/s41598-019-51332-4 10.2323/jgam.52.295 10.1016/j.biomaterials.2019.119250 10.1016/j.ultrasmedbio.2020.01.002 10.1002/jps.23971 10.3389/fbioe.2021.612151 10.1007/s10565-017-9384-y 10.1016/j.yjmcc.2014.09.023 10.1038/nrd1662 10.1007/s10396-020-01007-9 10.1016/j.addr.2013.12.010 10.1002/biot.201700382 10.1016/j.biomaterials.2016.11.019 10.1146/annurev-neuro-070918-050509 10.1158/1078-0432.CCR-19-2182 10.1038/nn.3620 10.1016/j.biocel.2012.04.027 10.1016/j.isci.2019.10.037 10.1016/j.neuron.2018.07.049 10.1021/acschemneuro.8b00483 10.1016/j.isci.2020.101066 10.1021/acsnano.8b00076 10.1038/s41598-018-22056-8 10.1016/S0301-5629(99)00164-7 10.1016/j.ultrasmedbio.2016.04.017 10.1016/j.jconrel.2018.01.014 10.1111/wrr.12595 10.1021/acs.nanolett.9b04373 10.1016/j.jconrel.2020.03.038 10.15252/embr.201642402 10.21037/tau.2016.02.04 10.7150/thno.39786 10.7150/jca.25576 10.1016/j.ultrasmedbio.2014.11.019 10.1098/rsif.2014.0071 10.3389/fendo.2020.00430 10.1039/b201952c 10.1016/j.ultrasmedbio.2018.08.002 10.1016/j.ultrasmedbio.2018.02.003 10.1038/s41598-019-55920-2 10.1016/j.ultsonch.2020.105125 10.1109/TBME.2018.2845689 10.1016/j.ultrasmedbio.2018.01.006 10.1161/CIRCRESAHA.119.315408 10.1021/acs.langmuir.8b03538 10.1016/j.medengphy.2008.06.002 10.1016/j.ultrasmedbio.2014.05.001 10.1038/s41598-018-35486-1 10.1016/j.ultsonch.2017.10.030 10.1126/science.aab4138 |
ContentType | Journal Article |
Copyright | Copyright © 2022. Published by Elsevier Ltd. |
Copyright_xml | – notice: Copyright © 2022. Published by Elsevier Ltd. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.pbiomolbio.2022.06.004 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1873-1732 |
EndPage | 49 |
ExternalDocumentID | 10_1016_j_pbiomolbio_2022_06_004 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABDPE ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SPD SSH SSU SSZ T5K UNMZH UQL VQP WUQ ZGI ZY4 ~G- 7X8 |
ID | FETCH-LOGICAL-c292t-fb420ceb59b243eec05e2dd9b3341f297f8a7fe6e9bc0f32fb4a24b3c0d6b4c3 |
ISSN | 0079-6107 1873-1732 |
IngestDate | Fri Jul 11 06:13:39 EDT 2025 Tue Jul 01 00:42:41 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-fb420ceb59b243eec05e2dd9b3341f297f8a7fe6e9bc0f32fb4a24b3c0d6b4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5973-4522 |
PQID | 2682259663 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2682259663 crossref_primary_10_1016_j_pbiomolbio_2022_06_004 crossref_citationtrail_10_1016_j_pbiomolbio_2022_06_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-00 |
PublicationDecade | 2020 |
PublicationTitle | Progress in biophysics and molecular biology |
PublicationYear | 2022 |
References | Mora (10.1016/j.pbiomolbio.2022.06.004_bib86) 2017; 33 Escoffre (10.1016/j.pbiomolbio.2022.06.004_bib30) 2016; 880 He (10.1016/j.pbiomolbio.2022.06.004_bib39) 2019; 47 Budhiraja (10.1016/j.pbiomolbio.2022.06.004_bib11) 2018; 13 Zhang (10.1016/j.pbiomolbio.2022.06.004_bib137) 2019; 66 O'Reilly (10.1016/j.pbiomolbio.2022.06.004_bib92) 2018; 1831 Yang (10.1016/j.pbiomolbio.2022.06.004_bib131) 2019; 10 Salgarella (10.1016/j.pbiomolbio.2022.06.004_bib101) 2017; 43 Trahey (10.1016/j.pbiomolbio.2022.06.004_bib115) 2004; 30 Shi (10.1016/j.pbiomolbio.2022.06.004_bib103) 2017; 38 Samuels (10.1016/j.pbiomolbio.2022.06.004_bib102) 2013; 134 Izadifar (10.1016/j.pbiomolbio.2022.06.004_bib43) 2017; 43 Lin (10.1016/j.pbiomolbio.2022.06.004_bib70) 2019; 44 Meng (10.1016/j.pbiomolbio.2022.06.004_bib82) 2019; 6 Lv (10.1016/j.pbiomolbio.2022.06.004_bib76) 2013; 35 Lee (10.1016/j.pbiomolbio.2022.06.004_bib60) 2019; 10 Liu (10.1016/j.pbiomolbio.2022.06.004_bib72) 2002; 2 Mohammadpour (10.1016/j.pbiomolbio.2022.06.004_bib85) 2020 Matsukawa (10.1016/j.pbiomolbio.2022.06.004_bib79) 2019; 58 Wang (10.1016/j.pbiomolbio.2022.06.004_bib118) 2016; 45 Noriega (10.1016/j.pbiomolbio.2022.06.004_bib91) 2012; 44 Rakshit (10.1016/j.pbiomolbio.2022.06.004_bib95) 2014; 16 Nagasaka (10.1016/j.pbiomolbio.2022.06.004_bib88) 2016; 4 Chen (10.1016/j.pbiomolbio.2022.06.004_bib15) 2018; 8 Fan (10.1016/j.pbiomolbio.2022.06.004_bib32) 2017; 7 Huang (10.1016/j.pbiomolbio.2022.06.004_bib41) 2020; 20 Silvani (10.1016/j.pbiomolbio.2022.06.004_bib106) 2021; 9 Miller (10.1016/j.pbiomolbio.2022.06.004_bib83) 2012; 31 Wang (10.1016/j.pbiomolbio.2022.06.004_bib121) 2019; 9 Pereno (10.1016/j.pbiomolbio.2022.06.004_bib93) 2020; 36 Toyama (10.1016/j.pbiomolbio.2022.06.004_bib114) 2016; 351 Xu (10.1016/j.pbiomolbio.2022.06.004_bib129) 2016; 6 Beekers (10.1016/j.pbiomolbio.2022.06.004_bib5) 2020; 322 Cui (10.1016/j.pbiomolbio.2022.06.004_bib21) 2019; 28 Imani (10.1016/j.pbiomolbio.2022.06.004_bib42) 2018; 9 Chen (10.1016/j.pbiomolbio.2022.06.004_bib17) 2019; 47 Liu (10.1016/j.pbiomolbio.2022.06.004_bib75) 2020; 9 Bandyopadhyay (10.1016/j.pbiomolbio.2022.06.004_bib4) 2016; 196 Li (10.1016/j.pbiomolbio.2022.06.004_bib65) 2019; 66 Nishida (10.1016/j.pbiomolbio.2022.06.004_bib90) 2019; 13 Derks (10.1016/j.pbiomolbio.2022.06.004_bib26) 2020; 126 Frenkel (10.1016/j.pbiomolbio.2022.06.004_bib35) 2000; 26 Zhou (10.1016/j.pbiomolbio.2022.06.004_bib141) 2020; 470 Wood (10.1016/j.pbiomolbio.2022.06.004_bib126) 2015; 41 Zhang (10.1016/j.pbiomolbio.2022.06.004_bib135) 2018; 12 Bouakaz (10.1016/j.pbiomolbio.2022.06.004_bib10) 2016; 880 Ferroni (10.1016/j.pbiomolbio.2022.06.004_bib33) 2017; 61 Jones (10.1016/j.pbiomolbio.2022.06.004_bib49) 2019; 374 Sirsi (10.1016/j.pbiomolbio.2022.06.004_bib107) 2014; 72 Liao (10.1016/j.pbiomolbio.2022.06.004_bib68) 2018; 44 Wang (10.1016/j.pbiomolbio.2022.06.004_bib123) 2020 Angle (10.1016/j.pbiomolbio.2022.06.004_bib1) 2011; 51 Shindo (10.1016/j.pbiomolbio.2022.06.004_bib105) 2016; 36 Wang (10.1016/j.pbiomolbio.2022.06.004_bib119) 2018; 8 Busse (10.1016/j.pbiomolbio.2022.06.004_bib12) 2016; 355 Eguchi (10.1016/j.pbiomolbio.2022.06.004_bib29) 2018; 11 Heydari (10.1016/j.pbiomolbio.2022.06.004_bib40) 2017; 11 Bhutto (10.1016/j.pbiomolbio.2022.06.004_bib9) 2018; 44 (10.1016/j.pbiomolbio.2022.06.004_bib46) 2017; 317 Costa (10.1016/j.pbiomolbio.2022.06.004_bib20) 2018; 233 Frenkel (10.1016/j.pbiomolbio.2022.06.004_bib34) 2000; 68 Nicholson (10.1016/j.pbiomolbio.2022.06.004_bib89) 2019 ter Haar (10.1016/j.pbiomolbio.2022.06.004_bib113) 2007; 93 Zhang (10.1016/j.pbiomolbio.2022.06.004_bib139) 2020; 131 Chen (10.1016/j.pbiomolbio.2022.06.004_bib13) 2014; 11 Kubanek (10.1016/j.pbiomolbio.2022.06.004_bib55) 2018; 38 Beyder (10.1016/j.pbiomolbio.2022.06.004_bib7) 2010; 588 Yang (10.1016/j.pbiomolbio.2022.06.004_bib133) 2020; 67 Ye (10.1016/j.pbiomolbio.2022.06.004_bib134) 2016; 42 Gallo (10.1016/j.pbiomolbio.2022.06.004_bib36) 2004; 34 Li (10.1016/j.pbiomolbio.2022.06.004_bib63) 2017; 10 Zhang (10.1016/j.pbiomolbio.2022.06.004_bib138) 2020; 26 Liu (10.1016/j.pbiomolbio.2022.06.004_bib74) 2018; 44 Tabuchi (10.1016/j.pbiomolbio.2022.06.004_bib111) 2020; 47 Skalina (10.1016/j.pbiomolbio.2022.06.004_bib108) 2019; 9 Arjmand (10.1016/j.pbiomolbio.2022.06.004_bib2) 2020; 11 Duncan (10.1016/j.pbiomolbio.2022.06.004_bib28) 2017; 8 Jones (10.1016/j.pbiomolbio.2022.06.004_bib48) 2019; 374 Liu (10.1016/j.pbiomolbio.2022.06.004_bib73) 2012; 10 Li (10.1016/j.pbiomolbio.2022.06.004_bib66) 2019; 154 Qiu (10.1016/j.pbiomolbio.2022.06.004_bib94) 2019; 21 Maria (10.1016/j.pbiomolbio.2022.06.004_bib77) 2015; 10 Song (10.1016/j.pbiomolbio.2022.06.004_bib109) 2018; 104 Mitragotri (10.1016/j.pbiomolbio.2022.06.004_bib84) 2005; 4 Yang (10.1016/j.pbiomolbio.2022.06.004_bib132) 2020; 67 De Cock (10.1016/j.pbiomolbio.2022.06.004_bib24) 2016; 83 Wang (10.1016/j.pbiomolbio.2022.06.004_bib120) 2019; 91 Haudenschild (10.1016/j.pbiomolbio.2022.06.004_bib38) 2009; 37 Jin (10.1016/j.pbiomolbio.2022.06.004_bib47) 2020; 43 Guo (10.1016/j.pbiomolbio.2022.06.004_bib37) 2018; 99 Zou (10.1016/j.pbiomolbio.2022.06.004_bib142) 2020; 23 Duck (10.1016/j.pbiomolbio.2022.06.004_bib27) 2008; 30 Khan (10.1016/j.pbiomolbio.2022.06.004_bib51) 2017; 26 Li (10.1016/j.pbiomolbio.2022.06.004_bib64) 2018; 115 Daftardar (10.1016/j.pbiomolbio.2022.06.004_bib22) 2019; 25 Zhao (10.1016/j.pbiomolbio.2022.06.004_bib140) 2015; 41 Chen (10.1016/j.pbiomolbio.2022.06.004_bib14) 2016; 17 Escoffre (10.1016/j.pbiomolbio.2022.06.004_bib31) 2019; 35 Bernardi (10.1016/j.pbiomolbio.2022.06.004_bib6) 2015; 78 Ling (10.1016/j.pbiomolbio.2022.06.004_bib71) 2017; 50 Su (10.1016/j.pbiomolbio.2022.06.004_bib110) 2017; 10 Choi (10.1016/j.pbiomolbio.2022.06.004_bib18) 2013; 37 Roovers (10.1016/j.pbiomolbio.2022.06.004_bib99) 2019; 217 Lewis (10.1016/j.pbiomolbio.2022.06.004_bib62) 2015; 4 Babakhanian (10.1016/j.pbiomolbio.2022.06.004_bib3) 2018; 8 Mascharak (10.1016/j.pbiomolbio.2022.06.004_bib78) 2017; 115 Tyler (10.1016/j.pbiomolbio.2022.06.004_bib116) 2012; 13 Li (10.1016/j.pbiomolbio.2022.06.004_bib67) 2020; 475 Lang (10.1016/j.pbiomolbio.2022.06.004_bib58) 2019; 20 Meng (10.1016/j.pbiomolbio.2022.06.004_bib81) 2018; 10 Xu (10.1016/j.pbiomolbio.2022.06.004_bib130) 2021; 11 Chen (10.1016/j.pbiomolbio.2022.06.004_bib16) 2018; 55 Kalashnikova (10.1016/j.pbiomolbio.2022.06.004_bib50) 2015; 10 Rong (10.1016/j.pbiomolbio.2022.06.004_bib98) 2020; 67 Weeks (10.1016/j.pbiomolbio.2022.06.004_bib124) 2016; 5 Bhatnagar (10.1016/j.pbiomolbio.2022.06.004_bib8) 2014; 103 Jia (10.1016/j.pbiomolbio.2022.06.004_bib44) 2018; 44 Rong (10.1016/j.pbiomolbio.2022.06.004_bib97) 2018; 273 Runyan (10.1016/j.pbiomolbio.2022.06.004_bib100) 2006; 52 Velnar (10.1016/j.pbiomolbio.2022.06.004_bib117) 2009; 37 Kubanek (10.1016/j.pbiomolbio.2022.06.004_bib56) 2018; 38 Kubanek (10.1016/j.pbiomolbio.2022.06.004_bib57) 2020; 6 Darrow (10.1016/j.pbiomolbio.2022.06.004_bib23) 2019; 16 Collis (10.1016/j.pbiomolbio.2022.06.004_bib19) 2010; 50 de Oliveira Perrucini (10.1016/j.pbiomolbio.2022.06.004_bib25) 2020; 99 Murad (10.1016/j.pbiomolbio.2022.06.004_bib87) 2019; 9 Rong (10.1016/j.pbiomolbio.2022.06.004_bib96) 2018; 273 Legon (10.1016/j.pbiomolbio.2022.06.004_bib61) 2014; 17 Wang (10.1016/j.pbiomolbio.2022.06.004_bib122) 2019; 31 Mead (10.1016/j.pbiomolbio.2022.06.004_bib80) 2017; 17 Wu (10.1016/j.pbiomolbio.2022.06.004_bib127) 2020; 10 Jiang (10.1016/j.pbiomolbio.2022.06.004_bib45) 2019; 66 Xin (10.1016/j.pbiomolbio.2022.06.004_bib128) 2016; 5 Lee (10.1016/j.pbiomolbio.2022.06.004_bib59) 2014; 40 Shi (10.1016/j.pbiomolbio.2022.06.004_bib104) 2019; 16 Zhang (10.1016/j.pbiomolbio.2022.06.004_bib136) 2019; 120 Lin (10.1016/j.pbiomolbio.2022.06.004_bib69) 2019; 10 Kollmann (10.1016/j.pbiomolbio.2022.06.004_bib53) 2013; 34 Wiegand (10.1016/j.pbiomolbio.2022.06.004_bib125) 2017; 25 Khayamian (10.1016/j.pbiomolbio.2022.06.004_bib52) 2018; 41 Kooiman (10.1016/j.pbiomolbio.2022.06.004_bib54) 2020; 46 Teo (10.1016/j.pbiomolbio.2022.06.004_bib112) 2017 |
References_xml | – volume: 196 start-page: 1964 issue: 4 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib4 article-title: Low-intensity focused ultrasound induces reversal of tumor-induced T cell tolerance and prevents immune escape publication-title: J. Immunol. doi: 10.4049/jimmunol.1500541 – volume: 9 start-page: 850 issue: 8 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib75 article-title: The role of ultrasound in enhancing mesenchymal stromal cell-based therapies publication-title: Stem Cells Translat. Med. doi: 10.1002/sctm.19-0391 – volume: 10 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib131 article-title: Focused ultrasound improves NK-92MI cells infiltration into tumors publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00875 – volume: 47 start-page: 3603 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib17 article-title: Low intensity pulsed ultrasound promotes the migration of bone marrow- derived mesenchymal stem cells via activating FAK-ERK1/2 signalling pathway publication-title: Artif. Cell Nanomed. Biotechnol. doi: 10.1080/21691401.2019.1657878 – volume: 11 start-page: 9084 issue: 9 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib40 article-title: Development of a virtual cell model to predict cell response to substrate topography publication-title: ACS Nano doi: 10.1021/acsnano.7b03732 – volume: 44 start-page: 2662 issue: 12 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib9 article-title: Effect of molecular weight on sonoporation-mediated uptake in human cells publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.08.008 – volume: 233 start-page: 1558 issue: 2 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib20 article-title: Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26058 – volume: 47 start-page: 674 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib39 article-title: Synergies of accelerating differentiation of bone marrow mesenchymal stem cells induced by low intensity pulsed ultrasound, osteogenic and endothelial inductive agent publication-title: Artif. Cell Nanomed. Biotechnol. – volume: 7 start-page: 4894 issue: 19 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib32 article-title: Cell-cycle-specific cellular responses to sonoporation publication-title: Theranostics doi: 10.7150/thno.20820 – volume: 37 start-page: 492 issue: 3 year: 2009 ident: 10.1016/j.pbiomolbio.2022.06.004_bib38 article-title: Pressure and distortion regulate human mesenchymal stem cell gene expression publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-008-9629-2 – volume: 55 start-page: 7079 issue: 8 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib16 article-title: Transcranial ultrasound stimulation improves long-term functional outcomes and protects against brain damage in traumatic brain injury publication-title: Mol. Neurobiol. doi: 10.1007/s12035-018-0897-z – volume: 66 start-page: 2704 issue: 10 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib45 article-title: A review of low-intensity pulsed ultrasound for therapeutic applications publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2889669 – volume: 93 start-page: 111 issue: 1–3 year: 2007 ident: 10.1016/j.pbiomolbio.2022.06.004_bib113 article-title: Therapeutic applications of ultrasound publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2006.07.005 – volume: 43 start-page: 1085 issue: 6 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib43 article-title: Mechanical and biological effects of ultrasound: a review of present knowledge publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2017.01.023 – volume: 9 start-page: 600 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib121 article-title: Experimental data-mining analyses reveal new roles of low-intensity ultrasound in differentiating cell death regulatome in cancer and non-cancer cells via potential modulation of chromatin long-range interactions publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00600 – volume: 10 start-page: 695 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib63 article-title: Low-intensity (400 mW/cm, 500 kHz) pulsed transcranial ultrasound preconditioning may mitigate focal cerebral ischemia in rats publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.02.008 – volume: 4 year: 2015 ident: 10.1016/j.pbiomolbio.2022.06.004_bib62 article-title: Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension publication-title: Elife doi: 10.7554/eLife.12088 – volume: 37 start-page: 1528 issue: 5 year: 2009 ident: 10.1016/j.pbiomolbio.2022.06.004_bib117 article-title: The wound healing process: an overview of the cellular and molecular mechanisms publication-title: J. Int. Med. Res. doi: 10.1177/147323000903700531 – volume: 36 start-page: 1220 issue: 6 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib105 article-title: Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates left ventricular dysfunction in a mouse model of acute myocardial infarction publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.115.306477 – volume: 68 start-page: 251 issue: 2 year: 2000 ident: 10.1016/j.pbiomolbio.2022.06.004_bib34 article-title: Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin publication-title: J. Contr. Release : Official J. Controlled Release Soc. doi: 10.1016/S0168-3659(00)00264-9 – volume: 17 start-page: 3533 issue: 6 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib80 article-title: Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson's disease model publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00616 – volume: 6 issue: 17 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib82 article-title: Sonoporation of cells by a parallel stable cavitation microbubble array publication-title: Adv. Sci. – volume: 1831 start-page: 111 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib92 article-title: Ultrasound and microbubble-mediated blood-brain barrier disruption for targeted delivery of therapeutics to the Brain publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8661-3_9 – volume: 13 start-page: 867 issue: 12 year: 2012 ident: 10.1016/j.pbiomolbio.2022.06.004_bib116 article-title: The mechanobiology of brain function publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3383 – volume: 35 start-page: 2201 issue: 12 year: 2013 ident: 10.1016/j.pbiomolbio.2022.06.004_bib76 article-title: Effects of low-intensity pulsed ultrasound on cell viability, proliferation and neural differentiation of induced pluripotent stem cells-derived neural crest stem cells publication-title: Biotechnol. Lett. doi: 10.1007/s10529-013-1313-4 – volume: 104 start-page: 58 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib109 article-title: Microfluidic platform for single cell analysis under dynamic spatial and temporal stimulation publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.12.038 – volume: 25 start-page: 413 issue: 4 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib22 article-title: Advances in ultrasound mediated transdermal drug delivery publication-title: Curr. Pharmaceut. Des. doi: 10.2174/1381612825666190211163948 – volume: 31 issue: 35 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib122 article-title: Energy-mediated machinery drives cellular mechanical allostasis publication-title: Adv. Mater. doi: 10.1002/adma.201900453 – volume: 38 start-page: 3081 issue: 12 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib56 article-title: Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1458-17.2018 – volume: 58 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib79 – volume: 30 start-page: 1163 issue: 9 year: 2004 ident: 10.1016/j.pbiomolbio.2022.06.004_bib115 article-title: Acoustic radiation force impulse imaging of the mechanical properties of arteries: in vivo and ex vivo results publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2004.07.022 – volume: 91 start-page: 134 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib120 article-title: High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: enhanced thermal field and cavitation at the focus publication-title: Ultrasonics doi: 10.1016/j.ultras.2018.08.017 – volume: 355 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib12 article-title: Re-evaluation of low intensity pulsed ultrasound in treatment of tibial fractures (TRUST): randomized clinical trial publication-title: BMJ Br. Med. J. (Clin. Res. Ed.) – volume: 6 start-page: eaaz4193 issue: 21 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib57 article-title: Remote, brain region-specific control of choice behavior with ultrasonic waves publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz4193 – volume: 51 start-page: 281 issue: 3 year: 2011 ident: 10.1016/j.pbiomolbio.2022.06.004_bib1 article-title: Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound publication-title: Ultrasonics doi: 10.1016/j.ultras.2010.09.004 – year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib112 – volume: 154 start-page: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib66 article-title: Seizure control by low-intensity ultrasound in mice with temporal lobe epilepsy publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2019.04.002 – volume: 34 start-page: 395 issue: 7 year: 2004 ident: 10.1016/j.pbiomolbio.2022.06.004_bib36 article-title: A comparison of human muscle temperature increases during 3-MHz continuous and pulsed ultrasound with equivalent temporal average intensities publication-title: J. Orthop. Sports Phys. Ther. doi: 10.2519/jospt.2004.34.7.395 – volume: 16 start-page: 714 issue: 4 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib104 article-title: Low-frequency HIFU induced cancer immunotherapy: tempting challenges and potential opportunities publication-title: Cancer Biol. Med. doi: 10.20892/j.issn.2095-3941.2019.0232 – volume: 11 start-page: 959 issue: 5 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib29 article-title: Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia - crucial roles of endothelial nitric oxide synthase publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.05.012 – volume: 31 start-page: 623 issue: 4 year: 2012 ident: 10.1016/j.pbiomolbio.2022.06.004_bib83 article-title: Overview of therapeutic ultrasound applications and safety considerations publication-title: J. Ultrasound Med. doi: 10.7863/jum.2012.31.4.623 – volume: 66 start-page: 217 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib65 article-title: Noninvasive ultrasonic neuromodulation in freely moving mice publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2821201 – volume: 10 start-page: 544 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib69 article-title: Ultrasound stimulation modulates voltage-gated potassium currents associated with action potential shape in hippocampal CA1 pyramidal neurons publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00544 – volume: 588 start-page: 4969 issue: Pt 24 year: 2010 ident: 10.1016/j.pbiomolbio.2022.06.004_bib7 article-title: Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.199034 – volume: 41 start-page: 2755 issue: 10 year: 2015 ident: 10.1016/j.pbiomolbio.2022.06.004_bib140 article-title: Apoptosis induced by microbubble-assisted acoustic cavitation in K562 cells: the predominant role of the cyclosporin A-dependent mitochondrial permeability transition pore publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2015.05.021 – volume: 83 start-page: 294 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib24 article-title: Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.022 – volume: 10 start-page: 1032 issue: 6 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib110 article-title: Transcranial ultrasound stimulation promotes brain-derived neurotrophic factor and reduces apoptosis in a mouse model of traumatic brain injury publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.09.003 – volume: 374 issue: 1779 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib48 article-title: Connections between the cell cycle, cell adhesion and the cytoskeleton publication-title: Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. doi: 10.1098/rstb.2018.0227 – volume: 470 start-page: 204 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib141 article-title: Ultrasound nanotheranostics in fighting cancer: advances and prospects publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.11.034 – volume: 120 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib136 article-title: Low-intensity pulsed ultrasound promotes spinal fusion by regulating macrophage polarization publication-title: Biomed. Pharmacotherapy Biomed. Pharmacotherapie – volume: 99 start-page: 19 issue: 1 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib25 article-title: Anti-inflammatory and healing effects of pulsed ultrasound therapy on fibroblasts publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/PHM.0000000000001265 – volume: 13 start-page: 416 issue: 4 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib90 article-title: Current status and perspectives for computer-aided ultrasonic diagnosis of liver lesions using deep learning technology publication-title: Hepatol Int. doi: 10.1007/s12072-019-09937-4 – volume: 10 start-page: 2593 issue: 16 year: 2015 ident: 10.1016/j.pbiomolbio.2022.06.004_bib50 article-title: Nanomaterials for wound healing: scope and advancement publication-title: Nanomedicine doi: 10.2217/nnm.15.82 – volume: 67 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib132 article-title: Mechanisms underlying sonoporation: interaction between microbubbles and cells publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2020.105096 – volume: 16 start-page: 88 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib23 article-title: Focused ultrasound for neuromodulation publication-title: Neurotherapeutics doi: 10.1007/s13311-018-00691-3 – volume: 4 start-page: 139 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib88 article-title: Differences in the mechanical properties of the developing cerebral cortical proliferative zone between mice and ferrets at both the tissue and single-cell levels publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2016.00139 – volume: 61 start-page: 2800 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib33 article-title: Treatment of diabetic foot ulcers with Therapeutic Magnetic Resonance (TMR(R)) improves the quality of granulation tissue publication-title: Eur. J. Histochem. doi: 10.4081/ejh.2017.2800 – volume: 10 year: 2012 ident: 10.1016/j.pbiomolbio.2022.06.004_bib73 article-title: Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response publication-title: J. Transl. Med. doi: 10.1186/1479-5876-10-221 – volume: 28 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib21 article-title: Intrinsic chemistry and design principle of ultrasound-responsive nanomedicine publication-title: Nano Today doi: 10.1016/j.nantod.2019.100773 – volume: 50 issue: 6 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib71 article-title: Low-intensity pulsed ultrasound activates ERK1/2 and PI3K-Akt signalling pathways and promotes the proliferation of human amnion-derived mesenchymal stem cells publication-title: Cell Prolif doi: 10.1111/cpr.12383 – volume: 475 start-page: 92 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib67 article-title: Ultrasound-mediated diagnostic imaging and advanced treatment with multifunctional micro/nanobubbles publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.01.028 – volume: 16 start-page: 2211 issue: 6 year: 2014 ident: 10.1016/j.pbiomolbio.2022.06.004_bib95 article-title: Biomechanics of cell adhesion: how force regulates the lifetime of adhesive bonds at the single molecule level publication-title: Phys. Chem. Chem. Phys. : Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53963f – volume: 43 start-page: 1452 issue: 7 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib101 article-title: Optimal ultrasound exposure conditions for maximizing C2C12 muscle cell proliferation and differentiation publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2017.03.003 – volume: 67 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib133 article-title: Mechanisms underlying sonoporation: interaction between microbubbles and cells publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2020.105096 – volume: 36 start-page: 6388 issue: 23 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib93 article-title: Microstreaming inside model cells induced by ultrasound and microbubbles publication-title: Langmuir : ACS J. Surfaces Colloids doi: 10.1021/acs.langmuir.0c00536 – volume: 44 start-page: 604 issue: 5 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib70 article-title: Ultrasound therapy reduces persistent post-thoracotomy tactile allodynia and spinal substance P expression in rats publication-title: Reg. Anesth. Pain Med. doi: 10.1136/rapm-2018-100113 – volume: 45 start-page: 31 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib118 article-title: Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.08.054 – volume: 37 start-page: 648 issue: 7 year: 2013 ident: 10.1016/j.pbiomolbio.2022.06.004_bib18 article-title: Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel publication-title: Artif. Organs doi: 10.1111/aor.12041 – volume: 880 start-page: 175 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib10 article-title: Sonoporation: concept and mechanisms publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-22536-4_10 – volume: 50 start-page: 273 issue: 2 year: 2010 ident: 10.1016/j.pbiomolbio.2022.06.004_bib19 article-title: Cavitation microstreaming and stress fields created by microbubbles publication-title: Ultrasonics doi: 10.1016/j.ultras.2009.10.002 – volume: 11 start-page: 443 issue: 1 year: 2021 ident: 10.1016/j.pbiomolbio.2022.06.004_bib130 article-title: Review on experimental study and clinical application of low-intensity pulsed ultrasound in inflammation publication-title: Quant. Imag. Med. Surg. doi: 10.21037/qims-20-680 – volume: 8 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib28 article-title: Alzheimer's disease, dementia, and stem cell therapy publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-017-0567-5 – volume: 38 start-page: 598 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib103 article-title: Influence of tumor cell lines derived from different tissue on sonoporation efficiency under ultrasound microbubble treatment publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.08.022 – volume: 20 issue: 18 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib58 article-title: Heat shock proteins are essential components in transformation and tumor progression: cancer cell intrinsic pathways and beyond publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20184507 – volume: 6 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib129 article-title: LIPUS promotes spinal fusion coupling proliferation of type H microvessels in bone publication-title: Sci. Rep. – volume: 131 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib139 article-title: Activation of Piezo1 by ultrasonic stimulation and its effect on the permeability of human umbilical vein endothelial cells publication-title: Biomed. Pharmacotherapy Biomed. Pharmacotherapie – volume: 26 issue: 2 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib51 article-title: mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression publication-title: Cell Metabol. doi: 10.1016/j.cmet.2017.07.007 – volume: 9 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib108 article-title: Low intensity focused ultrasound (LOFU)-mediated acoustic immune priming and ablative radiation therapy for in situ tumor vaccines publication-title: Sci. Rep. doi: 10.1038/s41598-019-51332-4 – volume: 52 start-page: 295 issue: 5 year: 2006 ident: 10.1016/j.pbiomolbio.2022.06.004_bib100 article-title: Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.52.295 – volume: 217 start-page: 119250 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib99 article-title: Sonoprinting of nanoparticle-loaded microbubbles: unraveling the multi-timescale mechanism publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119250 – start-page: 11 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib123 article-title: Ultrasonic neuromodulation and sonogenetics: a new era for neural modulation publication-title: Front. Physiol. – volume: 46 start-page: 1296 issue: 6 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib54 article-title: Ultrasound-responsive cavitation nuclei for therapy and drug delivery publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2020.01.002 – volume: 103 start-page: 1903 issue: 6 year: 2014 ident: 10.1016/j.pbiomolbio.2022.06.004_bib8 article-title: Exploitation of acoustic cavitation-induced microstreaming to enhance molecular transport publication-title: J. Pharmaceut. Sci. doi: 10.1002/jps.23971 – volume: 115 start-page: E353 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib64 article-title: Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow – volume: 9 year: 2021 ident: 10.1016/j.pbiomolbio.2022.06.004_bib106 article-title: Biomechanical characterization of endothelial cells exposed to shear stress using acoustic force spectroscopy publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.612151 – volume: 33 start-page: 351 issue: 4 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib86 article-title: Clinical potentials of human pluripotent stem cells publication-title: Cell Biol. Toxicol. doi: 10.1007/s10565-017-9384-y – volume: 78 start-page: 100 year: 2015 ident: 10.1016/j.pbiomolbio.2022.06.004_bib6 article-title: The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2014.09.023 – volume: 4 start-page: 255 issue: 3 year: 2005 ident: 10.1016/j.pbiomolbio.2022.06.004_bib84 article-title: Healing sound: the use of ultrasound in drug delivery and other therapeutic applications publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1662 – volume: 47 start-page: 193 issue: 2 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib111 article-title: Low-intensity pulsed ultrasound promotes the expression of immediate-early genes in mouse ST2 bone marrow stromal cells publication-title: J. Med. Ultrason. doi: 10.1007/s10396-020-01007-9 – volume: 72 start-page: 3 year: 2014 ident: 10.1016/j.pbiomolbio.2022.06.004_bib107 article-title: State-of-the-art materials for ultrasound-triggered drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.12.010 – volume: 13 issue: 4 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib11 article-title: Low-intensity ultrasound upregulates the expression of cyclin-D1 and promotes cellular proliferation in human mesenchymal stem cells publication-title: Biotechnol. J. doi: 10.1002/biot.201700382 – volume: 38 start-page: 3081 issue: 12 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib55 article-title: Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system publication-title: J. Neurosci. : Official J. Soc. Neuroscience doi: 10.1523/JNEUROSCI.1458-17.2018 – volume: 880 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib30 article-title: Therapeutic ultrasound publication-title: Adv. Exp. Med. Biol. – start-page: 170 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib85 article-title: High intensity focused ultrasound (HIFU) ablation of porous liver: numerical analysis of heat transfer and hemodynamics publication-title: Appl. Therm. Eng. – volume: 115 start-page: 155 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib78 article-title: YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.11.019 – volume: 43 start-page: 207 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib47 article-title: Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-070918-050509 – volume: 26 start-page: 477 issue: 2 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib138 article-title: Ultrasound-mediated delivery of paclitaxel for glioma: a comparative study of distribution, toxicity, and efficacy of albumin-bound versus cremophor formulations publication-title: Clin. Cancer Res. : Off. J. Am. Assoc. Canc. Res. doi: 10.1158/1078-0432.CCR-19-2182 – volume: 17 start-page: 322 issue: 2 year: 2014 ident: 10.1016/j.pbiomolbio.2022.06.004_bib61 article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans publication-title: Nat. Neurosci. doi: 10.1038/nn.3620 – volume: 44 start-page: 1331 issue: 8 year: 2012 ident: 10.1016/j.pbiomolbio.2022.06.004_bib91 article-title: Remodeling of chromatin under low intensity diffuse ultrasound publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2012.04.027 – volume: 21 start-page: 448 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib94 article-title: The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons publication-title: iScience doi: 10.1016/j.isci.2019.10.037 – volume: 99 start-page: 866 issue: 4 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib37 article-title: Ultrasound produces extensive brain activation via a cochlear pathway (vol 98, pg 1020, 2018) publication-title: Neuron doi: 10.1016/j.neuron.2018.07.049 – volume: 10 start-page: 1452 issue: 3 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib60 article-title: Dual-frequency ultrasound induces neural stem/progenitor cell differentiation and growth factor utilization by enhancing stable cavitation publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.8b00483 – volume: 23 issue: 5 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib142 article-title: Ultrasound neuromodulation inhibits seizures in acute epileptic monkeys publication-title: iScience doi: 10.1016/j.isci.2020.101066 – volume: 317 start-page: 330 issue: 3 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib46 publication-title: Stem Cell Treatments – volume: 12 start-page: 3449 issue: 4 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib135 article-title: Size-modulable nanoprobe for high-performance ultrasound imaging and drug delivery against cancer publication-title: ACS Nano doi: 10.1021/acsnano.8b00076 – volume: 8 start-page: 3885 issue: 1 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib119 article-title: Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters publication-title: Sci. Rep. doi: 10.1038/s41598-018-22056-8 – volume: 8 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib15 article-title: Preventive effect of low intensity pulsed ultrasound against experimental cerebral ischemia/reperfusion injury via apoptosis reduction and brain-derived neurotrophic factor induction publication-title: Sci. Rep. – volume: 26 start-page: 473 issue: 3 year: 2000 ident: 10.1016/j.pbiomolbio.2022.06.004_bib35 article-title: Ultrasound-induced intercellular space widening in fish epidermis publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(99)00164-7 – volume: 34 issue: 5 year: 2013 ident: 10.1016/j.pbiomolbio.2022.06.004_bib53 article-title: Ultrasound emissions: thermal and mechanical indices publication-title: Ultraschall der Med. – volume: 42 start-page: 2253 issue: 9 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib134 article-title: Caveolin-1 mediates low-intensity ultrasound-induced apoptosis via downregulation of signal transducer and activator of transcription 3 phosphorylation in laryngeal carcinoma cells publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2016.04.017 – volume: 273 start-page: 40 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib97 article-title: Ultrasound and microbubble mediated plasmid DNA uptake: a fast, global and multi-mechanisms involved process publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2018.01.014 – volume: 25 start-page: 871 issue: 5 year: 2017 ident: 10.1016/j.pbiomolbio.2022.06.004_bib125 article-title: Does noncontact low-frequency ultrasound therapy contribute to wound healing at the molecular level? publication-title: Wound Repair Regen. doi: 10.1111/wrr.12595 – volume: 10 start-page: 2901 issue: 9 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib81 article-title: Low-intensity pulsed ultrasound inhibits RANKL-induced osteoclast formation via modulating ERK-c-Fos-NFATc1 signaling cascades publication-title: Am. J. Tourism Res. – volume: 20 start-page: 1089 issue: 2 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib41 article-title: Sonogenetic modulation of cellular activities using an engineered auditory-sensing protein publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04373 – volume: 322 start-page: 426 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib5 article-title: Opening of endothelial cell-cell contacts due to sonoporation publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2020.03.038 – volume: 17 start-page: 1641 issue: 11 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib14 article-title: Gadd45a is a heterochromatin relaxer that enhances iPS cell generation publication-title: EMBO Rep. doi: 10.15252/embr.201642402 – volume: 5 start-page: 255 issue: 2 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib128 article-title: Clinical applications of low-intensity pulsed ultrasound and its potential role in urology publication-title: Transl. Androl. Urol. doi: 10.21037/tau.2016.02.04 – volume: 10 start-page: 3546 issue: 8 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib127 article-title: Targeted delivery of engineered auditory sensing protein for ultrasound neuromodulation in the brain publication-title: Theranostics doi: 10.7150/thno.39786 – volume: 9 start-page: 3765 issue: 20 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib42 article-title: MicroRNA-34 family in breast cancer: from research to therapeutic potential publication-title: J. Cancer doi: 10.7150/jca.25576 – volume: 41 start-page: 905 issue: 4 year: 2015 ident: 10.1016/j.pbiomolbio.2022.06.004_bib126 article-title: A review of low-intensity ultrasound for cancer therapy publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2014.11.019 – volume: 11 issue: 95 year: 2014 ident: 10.1016/j.pbiomolbio.2022.06.004_bib13 article-title: Single-site sonoporation disrupts actin cytoskeleton organization publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0071 – volume: 5 start-page: 538 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib124 – volume: 11 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib2 article-title: Prospect of stem cell therapy and regenerative medicine in osteoporosis publication-title: Front. Endocrinol. doi: 10.3389/fendo.2020.00430 – volume: 2 start-page: 151 issue: 3 year: 2002 ident: 10.1016/j.pbiomolbio.2022.06.004_bib72 article-title: Bubble-induced acoustic micromixing publication-title: Lab Chip doi: 10.1039/b201952c – volume: 44 start-page: 2646 issue: 12 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib74 article-title: Acceleration of bone defect healing and regeneration by low-intensity ultrasound radiation force in a rat tibial model publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.08.002 – volume: 134 start-page: 1541 year: 2013 ident: 10.1016/j.pbiomolbio.2022.06.004_bib102 – year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib89 – volume: 273 start-page: 40 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib96 article-title: Ultrasound and microbubble mediated plasmid DNA uptake: a fast, global and multi-mechanisms involved process publication-title: J. Contr. Release : Official J. Controlled Release Soc. doi: 10.1016/j.jconrel.2018.01.014 – volume: 44 start-page: 1257 issue: 6 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib68 article-title: PRE-TREATMENT with either l-carnitine or piracetam increases ultrasound-mediated gene transfection by reducing sonoporation-associated apoptosis publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.02.003 – volume: 374 issue: 1779 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib49 article-title: Connections between the cell cycle, cell adhesion and the cytoskeleton publication-title: Phil. Trans. Biol. Sci. doi: 10.1098/rstb.2018.0227 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib87 article-title: Phenotypic alterations in liver cancer cells induced by mechanochemical disruption publication-title: Sci. Rep. doi: 10.1038/s41598-019-55920-2 – volume: 67 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib98 article-title: Effects of extracellular matrix rigidity on sonoporation facilitated by targeted microbubbles: bubble attachment, bubble dynamics, and cell membrane permeabilization publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2020.105125 – volume: 66 start-page: 411 issue: 2 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib137 article-title: Antidepressant-like effect of low-intensity transcranial ultrasound stimulation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2845689 – volume: 44 start-page: 1074 issue: 5 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib44 article-title: Generation of reactive oxygen species in heterogeneously sonoporated cells by microbubbles with single-pulse ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.01.006 – volume: 126 start-page: 552 issue: 4 year: 2020 ident: 10.1016/j.pbiomolbio.2022.06.004_bib26 article-title: Polyploidy in cardiomyocytes: roadblock to heart regeneration? publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.315408 – volume: 35 start-page: 10151 issue: 31 year: 2019 ident: 10.1016/j.pbiomolbio.2022.06.004_bib31 article-title: Minireview: biophysical mechanisms of cell membrane sonopermeabilization. Knowns and unknowns publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03538 – volume: 30 start-page: 1338 issue: 10 year: 2008 ident: 10.1016/j.pbiomolbio.2022.06.004_bib27 article-title: Hazards, risks and safety of diagnostic ultrasound publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.06.002 – volume: 10 issue: 11 year: 2015 ident: 10.1016/j.pbiomolbio.2022.06.004_bib77 article-title: Low dose focused ultrasound induces enhanced tumor accumulation of natural killer cells publication-title: PLoS One – volume: 40 start-page: 2195 issue: 9 year: 2014 ident: 10.1016/j.pbiomolbio.2022.06.004_bib59 article-title: Differentiation of neural stem/progenitor cells using low-intensity ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2014.05.001 – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib3 article-title: Effects of low intensity focused ultrasound on liposomes containing channel proteins publication-title: Sci. Rep. doi: 10.1038/s41598-018-35486-1 – volume: 41 start-page: 619 year: 2018 ident: 10.1016/j.pbiomolbio.2022.06.004_bib52 article-title: Monitoring the effect of sonoporation on the cells using electrochemical approach publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.10.030 – volume: 351 start-page: 275 issue: 6270 year: 2016 ident: 10.1016/j.pbiomolbio.2022.06.004_bib114 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Science (New York, N.Y.) doi: 10.1126/science.aab4138 |
SSID | ssj0002176 |
Score | 2.4250724 |
SecondaryResourceType | review_article |
Snippet | Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 41 |
Title | The impact of low intensity ultrasound on cells: Underlying mechanisms and current status |
URI | https://www.proquest.com/docview/2682259663 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZymAvY5-s3Qca7K04uLJkRXsrYyPrWNkgg_bJSLIMKY5dGpvRvuxf3-nDcrMV1vVFBGEpie_H6e509zuE3uVUCWVIlcyFyRM4obNEyFQmpqSlZPYqy93gfz3OFz_o0Qk7mUx-Xcta6js101c31pXcRaowB3K1VbL_Idm4KUzAZ5AvjCBhGG8t47HMsW5_OvaHxqVZ9HV3ITe2aZK9D7DxeZf85voc1a62aW1s1e9qs_Y0zTowNdkSoxANCEbrN5vDZTXiqtlXq9YHQ_yi9dBddz-wOY2GsQu1mnAw2pQflzdw2kckxVj199X4VJw8shXnYT5EJcChHfLboqblAtxS39E2alpOr-lKT3gVTl3PW_qXPvehhbPZuSUjaGsYZ_bbHOWqb1u8TaH9x9EWEw6HXLazYtypsDsVLq2P3kM7BPwMMkU7h5-_LI7jYQ4em7vuHv5OSAbzKYI3_6ptC2f7gHdWy_IRehjcDXzosfMYTUzzBN33DUgvn6JTQBD2CMJthQFBOCIIjwjCbYMdgt7jET94xA8GKOCAH-zx8wwtP31cflgkodlGookgXVIpSlJtFBOK0MwYnTJDylKoDOycighezSWvTG6E0mmVEXheEqoynZa5ojp7jqZN25gXCFOmspxLpsH2toQFgjGi2AFXcyqM5HwX8eH9FDoQ0dt-KHXxLyntooO48tyTsdxizdtBBAVoTvuyZGPaflOQHIxjBu5-tneHfV-iByPuX6Fpd9Gb12CfdupNwNBvC2yWuw |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+low+intensity+ultrasound+on+cells%3A+Underlying+mechanisms+and+current+status&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Du%2C+Meng&rft.au=Li%2C+Yue&rft.au=Zhang%2C+Qing&rft.au=Zhang%2C+Jiaming&rft.date=2022-10-01&rft.issn=0079-6107&rft.volume=174&rft.spage=41&rft.epage=49&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2022.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pbiomolbio_2022_06_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon |