Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo $k

For fixed non-negative integers $k$, $t$, and $n$, with $t < k$, a $k_t$-Dyck path of length $(k+1)n$ is a lattice path that starts at $(0, 0)$, ends at $((k+1)n, 0)$, stays weakly above the line $y = -t$, and consists of steps from the step-set $\{(1, 1), (1, -k)\}$. We enumerate the family of $...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 30; no. 1
Main Authors Heuberger, Clemens, Selkirk, Sarah J., Wagner, Stephan
Format Journal Article
LanguageEnglish
Published 10.02.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:For fixed non-negative integers $k$, $t$, and $n$, with $t < k$, a $k_t$-Dyck path of length $(k+1)n$ is a lattice path that starts at $(0, 0)$, ends at $((k+1)n, 0)$, stays weakly above the line $y = -t$, and consists of steps from the step-set $\{(1, 1), (1, -k)\}$. We enumerate the family of $k_t$-Dyck paths by considering the number of down-steps at a height of $i$ modulo $k$. Given a tuple $(a_1, a_2, \ldots, a_k)$ we find an exact enumeration formula for the number of $k_t$-Dyck paths of length $(k+1)n$ with $a_i$ down-steps at a height of $i$ modulo $k$, $1 \leq i \leq k$. The proofs given are done via bijective means or with generating functions.
ISSN:1077-8926
1097-1440
1077-8926
DOI:10.37236/11218