Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive
Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 38; no. 4; pp. 2387 - 2395 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network. |
---|---|
AbstractList | Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 – 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network. |
Author | Oner, Mustafa Umit Keysan, Ozan Sahin, Ilker |
Author_xml | – sequence: 1 givenname: Mustafa Umit orcidid: 0000-0003-4252-9167 surname: Oner fullname: Oner, Mustafa Umit email: mustafaumit.oner@eng.bau.edu.tr organization: Artificial Intelligence Engineering Department, Bahcesehir University, Istanbul, Turkey – sequence: 2 givenname: Ilker orcidid: 0000-0003-3085-8828 surname: Sahin fullname: Sahin, Ilker email: ilkersahin@aselsan.com.tr organization: ASELSAN Inc., Ankara, Turkey – sequence: 3 givenname: Ozan orcidid: 0000-0002-6311-7906 surname: Keysan fullname: Keysan, Ozan email: keysan@metu.edu.tr organization: Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey |
BookMark | eNp9kL1PwzAQxS0EEm1hZ2CwxJxiO3FijygtH1IpQ9s5cp0LGEJcbAfEzD-OozIgBqaT7r13p_cbo8POdoDQGSVTSom8XM_LKSMsnaasyAhnB2hEORcJIVweohERgidC5vIYjb1_JoRmnNER-lpC71SLlxA-rHvxeAYBdMB3XQCXrHvX4dWTdQGXxuneBHyt-jZ4vPGme4yud3DRiFcfJuinYbUKKhgfjPa4sQ4rXLbWQ50srN3h0nbB2baFGt_bEOWZM-9wgo4a1Xo4_ZkTtLmer8vbZPFwc1deLRLNJAtJk9Z8q7hiqS7yrQCZaVnU20IxVitBMgWccZmKRgMTOuo0y2rZ1GwrFW0Kmk7Qxf7uztm3Hnyonm0sGF9WTEhOSC6YjC6yd2lnvXfQVDtnXpX7rCipBtRVRF0NqKsf1DGS_4loM2AY2irT_hc83wcNAPz6QxmRMk-_AdxBj2Q |
CODEN | ITCNE4 |
CitedBy_id | crossref_primary_10_1109_TII_2024_3431632 crossref_primary_10_1016_j_engappai_2024_107938 crossref_primary_10_3390_wevj15100444 crossref_primary_10_1115_1_4067056 crossref_primary_10_1016_j_measurement_2024_116023 crossref_primary_10_1109_TTE_2024_3386847 crossref_primary_10_1109_JSEN_2024_3495826 |
Cites_doi | 10.1109/28.148460 10.1109/TPEL.2022.3167439 10.1109/TMAG.2019.2892707 10.1109/TII.2014.2307013 10.1109/JESTPE.2018.2811538 10.1049/iet-epa.2009.0183 10.1109/TIA.2003.814576 10.1109/TIE.2008.2007527 10.3390/app9102116 10.1109/MIA.2007.322274 10.1109/tie.2022.3231333 10.1109/CVPR.2019.00283 10.1109/CVPR.2009.5206848 10.1109/TIE.2010.2064276 10.1109/TIE.2006.888790 10.1109/ACCESS.2022.3180153 10.1049/elp2.12066 10.1109/TIE.2021.3125653 10.1109/TIE.2021.3109514 10.1109/ACCESS.2020.2991137 10.1016/j.ymssp.2020.106908 10.1007/978-1-4612-4380-9_41 10.1109/TEC.2005.847955 10.1109/TIE.2008.2011580 10.1109/TIE.2008.2004667 10.1109/TIA.2019.2947401 10.1109/ACCESS.2020.2972859 10.1109/TPEL.2020.3024914 10.1109/TIA.2004.834012 10.1109/ACCESS.2020.3009109 10.1109/MIE.2013.2287651 10.1016/j.neucom.2018.05.083 10.1109/MPEL.2020.3033607 10.1109/TIE.2016.2520902 10.1109/TEC.2020.3048071 10.1109/TIE.2017.2688973 10.1109/TIE.2016.2515560 10.1109/MIA.2007.909802 10.1109/TPEL.2019.2953269 10.1145/2382577.2382579 10.1109/APPEEC45492.2019.8994556 10.1109/TIE.2017.2774777 10.1016/j.eswa.2014.02.028 10.1109/TTE.2021.3110318 10.1109/ACCESS.2017.2764474 10.1109/TEC.2004.837304 10.1109/TIE.2010.2089937 10.3390/en13061475 10.1109/TIE.2020.2978690 10.1109/TIE.2010.2060463 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TEC.2023.3274052 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0059 |
EndPage | 2395 |
ExternalDocumentID | 10_1109_TEC_2023_3274052 10120996 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c292t-f3d5ba5a23c76b8e94c97db7a22da804ae525938fce28c8e9144d9fd2b9a1f713 |
IEDL.DBID | RIE |
ISSN | 0885-8969 |
IngestDate | Mon Jun 30 08:34:00 EDT 2025 Tue Jul 01 02:53:26 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Wed Aug 27 02:28:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-f3d5ba5a23c76b8e94c97db7a22da804ae525938fce28c8e9144d9fd2b9a1f713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6311-7906 0000-0003-3085-8828 0000-0003-4252-9167 |
PQID | 2895006829 |
PQPubID | 85443 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TEC_2023_3274052 proquest_journals_2895006829 ieee_primary_10120996 crossref_citationtrail_10_1109_TEC_2023_3274052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec. 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on energy conversion |
PublicationTitleAbbrev | TEC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ner (ref47) 2022 ref51 ref50 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ahin (ref46) 2021 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref9 doi: 10.1109/28.148460 – ident: ref16 doi: 10.1109/TPEL.2022.3167439 – ident: ref25 doi: 10.1109/TMAG.2019.2892707 – ident: ref24 doi: 10.1109/TII.2014.2307013 – ident: ref12 doi: 10.1109/JESTPE.2018.2811538 – year: 2021 ident: ref46 article-title: Model predictive torque control of an induction motor enhanced with an inter-turn short circuit fault detection feature – ident: ref14 doi: 10.1049/iet-epa.2009.0183 – ident: ref31 doi: 10.1109/TIA.2003.814576 – ident: ref5 doi: 10.1109/TIE.2008.2007527 – ident: ref4 doi: 10.3390/app9102116 – ident: ref10 doi: 10.1109/MIA.2007.322274 – ident: ref22 doi: 10.1109/tie.2022.3231333 – ident: ref51 doi: 10.1109/CVPR.2019.00283 – ident: ref52 doi: 10.1109/CVPR.2009.5206848 – ident: ref11 doi: 10.1109/TIE.2010.2064276 – ident: ref44 doi: 10.1109/TIE.2006.888790 – ident: ref13 doi: 10.1109/ACCESS.2022.3180153 – ident: ref38 doi: 10.1049/elp2.12066 – ident: ref17 doi: 10.1109/TIE.2021.3125653 – ident: ref18 doi: 10.1109/TIE.2021.3109514 – ident: ref39 doi: 10.1109/ACCESS.2020.2991137 – ident: ref7 doi: 10.1016/j.ymssp.2020.106908 – ident: ref48 doi: 10.1007/978-1-4612-4380-9_41 – ident: ref1 doi: 10.1109/TEC.2005.847955 – ident: ref21 doi: 10.1109/TIE.2008.2011580 – ident: ref43 doi: 10.1109/TIE.2008.2004667 – ident: ref29 doi: 10.1109/TIA.2019.2947401 – ident: ref34 doi: 10.1109/ACCESS.2020.2972859 – ident: ref33 doi: 10.1109/TPEL.2020.3024914 – ident: ref23 doi: 10.1109/TIA.2004.834012 – ident: ref26 doi: 10.1109/ACCESS.2020.3009109 – ident: ref2 doi: 10.1109/MIE.2013.2287651 – ident: ref50 doi: 10.1016/j.neucom.2018.05.083 – ident: ref32 doi: 10.1109/MPEL.2020.3033607 – ident: ref19 doi: 10.1109/TIE.2016.2520902 – ident: ref15 doi: 10.1109/TEC.2020.3048071 – ident: ref28 doi: 10.1109/TIE.2017.2688973 – ident: ref27 doi: 10.1109/TIE.2016.2515560 – ident: ref8 doi: 10.1109/MIA.2007.909802 – ident: ref30 doi: 10.1109/TPEL.2019.2953269 – ident: ref49 doi: 10.1145/2382577.2382579 – year: 2022 ident: ref47 article-title: Inter-turn short circuit fault (ISCF) detection (v1.0.0) publication-title: Zenodo – ident: ref40 doi: 10.1109/APPEEC45492.2019.8994556 – ident: ref37 doi: 10.1109/TIE.2017.2774777 – ident: ref35 doi: 10.1016/j.eswa.2014.02.028 – ident: ref36 doi: 10.1109/TTE.2021.3110318 – ident: ref42 doi: 10.1109/ACCESS.2017.2764474 – ident: ref6 doi: 10.1109/TEC.2004.837304 – ident: ref3 doi: 10.1109/TIE.2010.2089937 – ident: ref45 doi: 10.3390/en13061475 – ident: ref41 doi: 10.1109/TIE.2020.2978690 – ident: ref20 doi: 10.1109/TIE.2010.2060463 |
SSID | ssj0014521 |
Score | 2.4903185 |
Snippet | Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2387 |
SubjectTerms | Algorithms Artificial neural networks Closed loops Condition monitoring Confidence intervals Controllers Datasets Fault detection Fault diagnosis induction motor Induction motors Inverters Machine learning model predictive control motor drives multi-layer perceptron Multilayer perceptrons Multilayers Neural networks Predictive control Recurrent neural networks Short circuits Switching |
Title | Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive |
URI | https://ieeexplore.ieee.org/document/10120996 https://www.proquest.com/docview/2895006829 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT3CAAkUstGgOXDgkm3Xs2D6itKsK0b10K_UW-StixWpT7SZC4sofZ2xnq1JUxC1RbCvS-GOe580bQj4WXAphtETPbSYzZr3KDMdXykyrRMFc1YYL_ctFdXHNvtzwmzFZPebCeO8j-czn4THG8l1nh3BVNp2lTM_qgBwgckvJWnchA8ZjkhWuGp5JVal9TLJQ0-V5nYcy4XmJGKzg9I8zKBZV-WsnjsfL_AVZ7H8ssUq-50NvcvvzgWbjf__5EXk-OprwOc2Ml-SJ37wiz-7JD74mv4IyB7ZZJCr4Ds58CClAvCXMljgAXH1D9xzq1dYOqx7melj3O4g0AwgKHYEPClc_Vn1kZELwXJPwM6AvDBrqdbfzLvvadbdQJ1L82ju47BDpw9kWd9pjcj0_X9YX2ViUIbNU0T5rS8eN5pqWVlRGesWsEs4ITanTsmDac0RUpWytp9Lid0RsTrWOGqVnLULiN-Rw0238WwKOtYWwJVdUekYRqgnjERwLPDKFMlxOyHRvpsaOiuWhcMa6icilUA0atgmGbUbDTsinux63Sa3jH22Pg53utUsmmpCT_VRoxvW8axCW8pBNQ9W7R7q9J0_D6InpckIO--3gT9Ff6c2HOE9_A4mu5os |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOMAOGx9D6xjgAxcOSVPHju0jylaV0fayTtot8le0iqqZ2kRIXPnHebbTaQOBuMWKnVh6tt_7-f3eewh9zJjgXCsBlttIJNQ4mWgGTUJ1LXlGbVH7C_3ZvJhc08sbdtMHq4dYGOdcIJ-51D8GX75tTOevyoajGOlZPEFPQfEzEsO17p0GlIUwK9g3LBGykDuvZCaHi4sy9YXC0xxQWMbIIy0Uyqr8cRYHBTM-QvPd1CKv5FvatTo1P37L2vjfc3-BDntTE3-Oa-Ml2nPrV-jgQQLC1-inz80BfeaRDL7F5847FXC4J0wW8AF8dQsGOi6XG9MtWzxW3ard4kA0wD5Hh2eE4qvvyzZwMrG3XWPqZwzWMFa4XDVbZ5Np09zhMtLiV87iWQNYH59v4Kw9Rtfji0U5SfqyDIkhkrRJnVumFVMkN7zQwklqJLeaK0KsEhlVjgGmykVtHBEG3gNms7K2REs1qgEUv0H762btThC2tM64yZkkwlECYI1rB_CYg9LkUjMxQMOdmCrT5yz3pTNWVcAumaxAsJUXbNULdoA-3Y-4i_k6_tH32MvpQb8oogE62y2Fqt_R2wqAKfPxNESe_mXYB_RssphNq-mX-de36Ln_U-S9nKH9dtO5d2C9tPp9WLO_ALk76dU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Networks+Detect+Inter-Turn+Short+Circuit+Faults+Using+Inverter+Switching+Statistics+for+a+Closed-Loop+Controlled+Motor+Drive&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Oner%2C+Mustafa+Umit&rft.au=Sahin%2C+Ilker&rft.au=Keysan%2C+Ozan&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=0885-8969&rft.volume=38&rft.issue=4&rft.spage=2387&rft.epage=2395&rft_id=info:doi/10.1109%2FTEC.2023.3274052&rft.externalDocID=10120996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon |