Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive

Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 38; no. 4; pp. 2387 - 2395
Main Authors Oner, Mustafa Umit, Sahin, Ilker, Keysan, Ozan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 - 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.
AbstractList Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven by an inverter with a model predictive control (MPC) algorithm, the controller outputs are influenced by a fault due to the fault-controller interaction. Based on this observation, this study developed neural network models using inverter switching statistics to detect the ISCF of an IM. The method was non-invasive, and it did not require any additional sensors. In the fault detection task, an area under receiver operating characteristics curve value of 0.9950 (95% Confidence Interval: 0.9949 – 0.9951) was obtained. At the rated operating conditions, the neural network model detected and located an ISCF of 2-turns (out of 104 turns per phase) under 0.1 seconds, a speedup of more than two times compared to the thresholding-based method. Moreover, we published the switching vector data collected at various load torque and shaft speed values for healthy and faulty states of the IM, becoming the first publicly available ISCF detection dataset. Together with the dataset, we provided performance baselines for three main neural network architectures, namely, multi-layer perceptron, convolutional neural network, and recurrent neural network.
Author Oner, Mustafa Umit
Keysan, Ozan
Sahin, Ilker
Author_xml – sequence: 1
  givenname: Mustafa Umit
  orcidid: 0000-0003-4252-9167
  surname: Oner
  fullname: Oner, Mustafa Umit
  email: mustafaumit.oner@eng.bau.edu.tr
  organization: Artificial Intelligence Engineering Department, Bahcesehir University, Istanbul, Turkey
– sequence: 2
  givenname: Ilker
  orcidid: 0000-0003-3085-8828
  surname: Sahin
  fullname: Sahin, Ilker
  email: ilkersahin@aselsan.com.tr
  organization: ASELSAN Inc., Ankara, Turkey
– sequence: 3
  givenname: Ozan
  orcidid: 0000-0002-6311-7906
  surname: Keysan
  fullname: Keysan, Ozan
  email: keysan@metu.edu.tr
  organization: Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey
BookMark eNp9kL1PwzAQxS0EEm1hZ2CwxJxiO3FijygtH1IpQ9s5cp0LGEJcbAfEzD-OozIgBqaT7r13p_cbo8POdoDQGSVTSom8XM_LKSMsnaasyAhnB2hEORcJIVweohERgidC5vIYjb1_JoRmnNER-lpC71SLlxA-rHvxeAYBdMB3XQCXrHvX4dWTdQGXxuneBHyt-jZ4vPGme4yud3DRiFcfJuinYbUKKhgfjPa4sQ4rXLbWQ50srN3h0nbB2baFGt_bEOWZM-9wgo4a1Xo4_ZkTtLmer8vbZPFwc1deLRLNJAtJk9Z8q7hiqS7yrQCZaVnU20IxVitBMgWccZmKRgMTOuo0y2rZ1GwrFW0Kmk7Qxf7uztm3Hnyonm0sGF9WTEhOSC6YjC6yd2lnvXfQVDtnXpX7rCipBtRVRF0NqKsf1DGS_4loM2AY2irT_hc83wcNAPz6QxmRMk-_AdxBj2Q
CODEN ITCNE4
CitedBy_id crossref_primary_10_1109_TII_2024_3431632
crossref_primary_10_1016_j_engappai_2024_107938
crossref_primary_10_3390_wevj15100444
crossref_primary_10_1115_1_4067056
crossref_primary_10_1016_j_measurement_2024_116023
crossref_primary_10_1109_TTE_2024_3386847
crossref_primary_10_1109_JSEN_2024_3495826
Cites_doi 10.1109/28.148460
10.1109/TPEL.2022.3167439
10.1109/TMAG.2019.2892707
10.1109/TII.2014.2307013
10.1109/JESTPE.2018.2811538
10.1049/iet-epa.2009.0183
10.1109/TIA.2003.814576
10.1109/TIE.2008.2007527
10.3390/app9102116
10.1109/MIA.2007.322274
10.1109/tie.2022.3231333
10.1109/CVPR.2019.00283
10.1109/CVPR.2009.5206848
10.1109/TIE.2010.2064276
10.1109/TIE.2006.888790
10.1109/ACCESS.2022.3180153
10.1049/elp2.12066
10.1109/TIE.2021.3125653
10.1109/TIE.2021.3109514
10.1109/ACCESS.2020.2991137
10.1016/j.ymssp.2020.106908
10.1007/978-1-4612-4380-9_41
10.1109/TEC.2005.847955
10.1109/TIE.2008.2011580
10.1109/TIE.2008.2004667
10.1109/TIA.2019.2947401
10.1109/ACCESS.2020.2972859
10.1109/TPEL.2020.3024914
10.1109/TIA.2004.834012
10.1109/ACCESS.2020.3009109
10.1109/MIE.2013.2287651
10.1016/j.neucom.2018.05.083
10.1109/MPEL.2020.3033607
10.1109/TIE.2016.2520902
10.1109/TEC.2020.3048071
10.1109/TIE.2017.2688973
10.1109/TIE.2016.2515560
10.1109/MIA.2007.909802
10.1109/TPEL.2019.2953269
10.1145/2382577.2382579
10.1109/APPEEC45492.2019.8994556
10.1109/TIE.2017.2774777
10.1016/j.eswa.2014.02.028
10.1109/TTE.2021.3110318
10.1109/ACCESS.2017.2764474
10.1109/TEC.2004.837304
10.1109/TIE.2010.2089937
10.3390/en13061475
10.1109/TIE.2020.2978690
10.1109/TIE.2010.2060463
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TEC.2023.3274052
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0059
EndPage 2395
ExternalDocumentID 10_1109_TEC_2023_3274052
10120996
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-f3d5ba5a23c76b8e94c97db7a22da804ae525938fce28c8e9144d9fd2b9a1f713
IEDL.DBID RIE
ISSN 0885-8969
IngestDate Mon Jun 30 08:34:00 EDT 2025
Tue Jul 01 02:53:26 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Wed Aug 27 02:28:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-f3d5ba5a23c76b8e94c97db7a22da804ae525938fce28c8e9144d9fd2b9a1f713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6311-7906
0000-0003-3085-8828
0000-0003-4252-9167
PQID 2895006829
PQPubID 85443
PageCount 9
ParticipantIDs crossref_primary_10_1109_TEC_2023_3274052
proquest_journals_2895006829
ieee_primary_10120996
crossref_citationtrail_10_1109_TEC_2023_3274052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Dec.
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on energy conversion
PublicationTitleAbbrev TEC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ner (ref47) 2022
ref51
ref50
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ahin (ref46) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref9
  doi: 10.1109/28.148460
– ident: ref16
  doi: 10.1109/TPEL.2022.3167439
– ident: ref25
  doi: 10.1109/TMAG.2019.2892707
– ident: ref24
  doi: 10.1109/TII.2014.2307013
– ident: ref12
  doi: 10.1109/JESTPE.2018.2811538
– year: 2021
  ident: ref46
  article-title: Model predictive torque control of an induction motor enhanced with an inter-turn short circuit fault detection feature
– ident: ref14
  doi: 10.1049/iet-epa.2009.0183
– ident: ref31
  doi: 10.1109/TIA.2003.814576
– ident: ref5
  doi: 10.1109/TIE.2008.2007527
– ident: ref4
  doi: 10.3390/app9102116
– ident: ref10
  doi: 10.1109/MIA.2007.322274
– ident: ref22
  doi: 10.1109/tie.2022.3231333
– ident: ref51
  doi: 10.1109/CVPR.2019.00283
– ident: ref52
  doi: 10.1109/CVPR.2009.5206848
– ident: ref11
  doi: 10.1109/TIE.2010.2064276
– ident: ref44
  doi: 10.1109/TIE.2006.888790
– ident: ref13
  doi: 10.1109/ACCESS.2022.3180153
– ident: ref38
  doi: 10.1049/elp2.12066
– ident: ref17
  doi: 10.1109/TIE.2021.3125653
– ident: ref18
  doi: 10.1109/TIE.2021.3109514
– ident: ref39
  doi: 10.1109/ACCESS.2020.2991137
– ident: ref7
  doi: 10.1016/j.ymssp.2020.106908
– ident: ref48
  doi: 10.1007/978-1-4612-4380-9_41
– ident: ref1
  doi: 10.1109/TEC.2005.847955
– ident: ref21
  doi: 10.1109/TIE.2008.2011580
– ident: ref43
  doi: 10.1109/TIE.2008.2004667
– ident: ref29
  doi: 10.1109/TIA.2019.2947401
– ident: ref34
  doi: 10.1109/ACCESS.2020.2972859
– ident: ref33
  doi: 10.1109/TPEL.2020.3024914
– ident: ref23
  doi: 10.1109/TIA.2004.834012
– ident: ref26
  doi: 10.1109/ACCESS.2020.3009109
– ident: ref2
  doi: 10.1109/MIE.2013.2287651
– ident: ref50
  doi: 10.1016/j.neucom.2018.05.083
– ident: ref32
  doi: 10.1109/MPEL.2020.3033607
– ident: ref19
  doi: 10.1109/TIE.2016.2520902
– ident: ref15
  doi: 10.1109/TEC.2020.3048071
– ident: ref28
  doi: 10.1109/TIE.2017.2688973
– ident: ref27
  doi: 10.1109/TIE.2016.2515560
– ident: ref8
  doi: 10.1109/MIA.2007.909802
– ident: ref30
  doi: 10.1109/TPEL.2019.2953269
– ident: ref49
  doi: 10.1145/2382577.2382579
– year: 2022
  ident: ref47
  article-title: Inter-turn short circuit fault (ISCF) detection (v1.0.0)
  publication-title: Zenodo
– ident: ref40
  doi: 10.1109/APPEEC45492.2019.8994556
– ident: ref37
  doi: 10.1109/TIE.2017.2774777
– ident: ref35
  doi: 10.1016/j.eswa.2014.02.028
– ident: ref36
  doi: 10.1109/TTE.2021.3110318
– ident: ref42
  doi: 10.1109/ACCESS.2017.2764474
– ident: ref6
  doi: 10.1109/TEC.2004.837304
– ident: ref3
  doi: 10.1109/TIE.2010.2089937
– ident: ref45
  doi: 10.3390/en13061475
– ident: ref41
  doi: 10.1109/TIE.2020.2978690
– ident: ref20
  doi: 10.1109/TIE.2010.2060463
SSID ssj0014521
Score 2.4903185
Snippet Early detection of an inter-turn short circuit fault (ISCF) can reduce repair costs and downtime of an electrical machine. In an induction machine (IM) driven...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2387
SubjectTerms Algorithms
Artificial neural networks
Closed loops
Condition monitoring
Confidence intervals
Controllers
Datasets
Fault detection
Fault diagnosis
induction motor
Induction motors
Inverters
Machine learning
model predictive control
motor drives
multi-layer perceptron
Multilayer perceptrons
Multilayers
Neural networks
Predictive control
Recurrent neural networks
Short circuits
Switching
Title Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive
URI https://ieeexplore.ieee.org/document/10120996
https://www.proquest.com/docview/2895006829
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT3CAAkUstGgOXDgkm3Xs2D6itKsK0b10K_UW-StixWpT7SZC4sofZ2xnq1JUxC1RbCvS-GOe580bQj4WXAphtETPbSYzZr3KDMdXykyrRMFc1YYL_ctFdXHNvtzwmzFZPebCeO8j-czn4THG8l1nh3BVNp2lTM_qgBwgckvJWnchA8ZjkhWuGp5JVal9TLJQ0-V5nYcy4XmJGKzg9I8zKBZV-WsnjsfL_AVZ7H8ssUq-50NvcvvzgWbjf__5EXk-OprwOc2Ml-SJ37wiz-7JD74mv4IyB7ZZJCr4Ds58CClAvCXMljgAXH1D9xzq1dYOqx7melj3O4g0AwgKHYEPClc_Vn1kZELwXJPwM6AvDBrqdbfzLvvadbdQJ1L82ju47BDpw9kWd9pjcj0_X9YX2ViUIbNU0T5rS8eN5pqWVlRGesWsEs4ITanTsmDac0RUpWytp9Lid0RsTrWOGqVnLULiN-Rw0238WwKOtYWwJVdUekYRqgnjERwLPDKFMlxOyHRvpsaOiuWhcMa6icilUA0atgmGbUbDTsinux63Sa3jH22Pg53utUsmmpCT_VRoxvW8axCW8pBNQ9W7R7q9J0_D6InpckIO--3gT9Ff6c2HOE9_A4mu5os
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOMAOGx9D6xjgAxcOSVPHju0jylaV0fayTtot8le0iqqZ2kRIXPnHebbTaQOBuMWKnVh6tt_7-f3eewh9zJjgXCsBlttIJNQ4mWgGTUJ1LXlGbVH7C_3ZvJhc08sbdtMHq4dYGOdcIJ-51D8GX75tTOevyoajGOlZPEFPQfEzEsO17p0GlIUwK9g3LBGykDuvZCaHi4sy9YXC0xxQWMbIIy0Uyqr8cRYHBTM-QvPd1CKv5FvatTo1P37L2vjfc3-BDntTE3-Oa-Ml2nPrV-jgQQLC1-inz80BfeaRDL7F5847FXC4J0wW8AF8dQsGOi6XG9MtWzxW3ard4kA0wD5Hh2eE4qvvyzZwMrG3XWPqZwzWMFa4XDVbZ5Np09zhMtLiV87iWQNYH59v4Kw9Rtfji0U5SfqyDIkhkrRJnVumFVMkN7zQwklqJLeaK0KsEhlVjgGmykVtHBEG3gNms7K2REs1qgEUv0H762btThC2tM64yZkkwlECYI1rB_CYg9LkUjMxQMOdmCrT5yz3pTNWVcAumaxAsJUXbNULdoA-3Y-4i_k6_tH32MvpQb8oogE62y2Fqt_R2wqAKfPxNESe_mXYB_RssphNq-mX-de36Ln_U-S9nKH9dtO5d2C9tPp9WLO_ALk76dU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Networks+Detect+Inter-Turn+Short+Circuit+Faults+Using+Inverter+Switching+Statistics+for+a+Closed-Loop+Controlled+Motor+Drive&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Oner%2C+Mustafa+Umit&rft.au=Sahin%2C+Ilker&rft.au=Keysan%2C+Ozan&rft.date=2023-12-01&rft.pub=IEEE&rft.issn=0885-8969&rft.volume=38&rft.issue=4&rft.spage=2387&rft.epage=2395&rft_id=info:doi/10.1109%2FTEC.2023.3274052&rft.externalDocID=10120996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon