Multi-Objective Optimization of Experiments Using Curvature and Fisher Information Matrix

The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 5; no. 4; p. 63
Main Authors Manesso, Erica, Sridharan, Srinath, Gunawan, Rudiyanto
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the maximum information for parameter estimation. Existing model-based design of experiment (MBDOE) methods commonly rely on the Fisher information matrix (FIM) for defining a metric of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs with respect to the parameters. In this work, we developed a multi-objective optimization (MOO) MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature. The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic modeling of fed-batch fermentation of baker’s yeast.
AbstractList The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the maximum information for parameter estimation. Existing model-based design of experiment (MBDOE) methods commonly rely on the Fisher information matrix (FIM) for defining a metric of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs with respect to the parameters. In this work, we developed a multi-objective optimization (MOO) MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature. The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic modeling of fed-batch fermentation of baker’s yeast.
Author Sridharan, Srinath
Manesso, Erica
Gunawan, Rudiyanto
Author_xml – sequence: 1
  givenname: Erica
  surname: Manesso
  fullname: Manesso, Erica
– sequence: 2
  givenname: Srinath
  surname: Sridharan
  fullname: Sridharan, Srinath
– sequence: 3
  givenname: Rudiyanto
  surname: Gunawan
  fullname: Gunawan, Rudiyanto
BookMark eNpNkDFPwzAQhS1UJErpwD-wxMQQOMexHY-oKlCpVRc6MEVOYoOr1g62UxV-PUFFiLfcG97d6X2XaOS80whdE7ijVMJ9FxgUAJyeoXGe5yKTgojRP3-BpjFuYZAktGR8jF5X_S7ZbF1vdZPsQeN1l-zefqlkvcPe4Pmx08HutUsRb6J1b3jWh4NKfdBYuRY_2viuA14448P-tLVSKdjjFTo3ahf19HdO0OZx_jJ7zpbrp8XsYZk1ucxTZoAr1pR1K4kyphU1lCUtGOWFILrmrNbACeWqAS5a0pYCKOOSFKwEXhc1oxN0c7rbBf_R65iqre-DG15WRMocmCwpDKnbU6oJPsagTdUNrVT4rAhUP_CqP3j0G7OtYt0
CitedBy_id crossref_primary_10_1016_j_ifacol_2020_12_558
crossref_primary_10_1093_bioinformatics_btz445
crossref_primary_10_1162_neco_a_01375
crossref_primary_10_3390_pr9061053
crossref_primary_10_1016_j_eng_2019_10_003
Cites_doi 10.1021/ie071206c
10.1186/1471-2105-13-181
10.1371/journal.pcbi.1002280
10.1177/0037549703040937
10.1155/2013/897658
10.1093/bioinformatics/btt436
10.1016/S0098-1354(00)00328-8
10.1002/wsbm.1204
10.1371/journal.pcbi.1004488
10.1093/bioinformatics/bts585
10.1371/journal.pcbi.1005227
10.1103/PhysRevLett.113.098701
10.1371/journal.pcbi.1004915
10.3390/pr5030049
10.1093/bioinformatics/bts377
10.1371/journal.pcbi.1002888
10.1007/s10898-006-9075-3
10.1109/4235.996017
10.1111/j.1742-4658.2008.06843.x
10.1371/journal.pcbi.1003650
10.1137/100791063
10.2307/2284499
10.1021/ie400133m
10.1093/bioinformatics/bts092
10.3390/pr5020029
10.1023/A:1011534830530
10.1016/j.cor.2009.05.003
10.1186/1471-2105-7-483
10.1371/journal.pcbi.0040030
10.1016/j.ces.2007.11.034
10.3390/metabo2040891
10.1049/iet-syb:20070069
10.1007/s10910-015-0511-9
10.1093/bioinformatics/btv365
10.1016/j.mbs.2009.03.002
10.1016/j.jbiotec.2010.02.019
10.1080/00401706.1985.10488048
10.1007/s11538-011-9686-9
10.1021/ie040096w
10.1186/1471-2105-6-155
10.1081/BIP-200035458
10.1137/S0895479899352045
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Copyright_xml – notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr5040063
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr5040063
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PIMPY
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c292t-f06a5c8bd91affd7b08834536471eb65be06136ac067d1d8703569145806b4b53
IEDL.DBID 8FG
ISSN 2227-9717
IngestDate Thu Oct 10 19:22:49 EDT 2024
Fri Dec 06 03:02:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-f06a5c8bd91affd7b08834536471eb65be06136ac067d1d8703569145806b4b53
OpenAccessLink https://www.proquest.com/docview/1992059830?pq-origsite=%requestingapplication%
PQID 1992059830
PQPubID 2032344
ParticipantIDs proquest_journals_1992059830
crossref_primary_10_3390_pr5040063
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref13
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Seber (ref32) 2003
ref24
ref46
Cover (ref9) 2006
ref23
ref45
ref26
ref25
ref47
ref20
Bates (ref28) 1980; 42
Rangaiah (ref35) 2008; Volume 1
ref42
ref41
ref22
ref44
ref21
ref43
Varma (ref36) 1999
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref42
  doi: 10.1021/ie071206c
– ident: ref14
  doi: 10.1186/1471-2105-13-181
– ident: ref21
  doi: 10.1371/journal.pcbi.1002280
– ident: ref10
  doi: 10.1177/0037549703040937
– ident: ref44
  doi: 10.1155/2013/897658
– ident: ref23
  doi: 10.1093/bioinformatics/btt436
– ident: ref31
  doi: 10.1016/S0098-1354(00)00328-8
– ident: ref8
  doi: 10.1002/wsbm.1204
– ident: ref26
  doi: 10.1371/journal.pcbi.1004488
– ident: ref22
  doi: 10.1093/bioinformatics/bts585
– ident: ref45
  doi: 10.1371/journal.pcbi.1005227
– ident: ref46
  doi: 10.1103/PhysRevLett.113.098701
– ident: ref47
  doi: 10.1371/journal.pcbi.1004915
– ident: ref16
  doi: 10.3390/pr5030049
– ident: ref18
  doi: 10.1093/bioinformatics/bts377
– ident: ref19
  doi: 10.1371/journal.pcbi.1002888
– ident: ref40
  doi: 10.1007/s10898-006-9075-3
– year: 2003
  ident: ref32
  contributor:
    fullname: Seber
– ident: ref38
  doi: 10.1109/4235.996017
– ident: ref7
  doi: 10.1111/j.1742-4658.2008.06843.x
– ident: ref24
  doi: 10.1371/journal.pcbi.1003650
– ident: ref13
  doi: 10.1137/100791063
– ident: ref27
  doi: 10.2307/2284499
– ident: ref15
  doi: 10.1021/ie400133m
– ident: ref17
  doi: 10.1093/bioinformatics/bts092
– ident: ref5
  doi: 10.3390/pr5020029
– ident: ref33
  doi: 10.1023/A:1011534830530
– volume: Volume 1
  year: 2008
  ident: ref35
  contributor:
    fullname: Rangaiah
– ident: ref39
  doi: 10.1016/j.cor.2009.05.003
– ident: ref41
  doi: 10.1186/1471-2105-7-483
– ident: ref20
  doi: 10.1371/journal.pcbi.0040030
– year: 1999
  ident: ref36
  contributor:
    fullname: Varma
– year: 2006
  ident: ref9
  contributor:
    fullname: Cover
– ident: ref6
  doi: 10.1016/j.ces.2007.11.034
– ident: ref2
  doi: 10.3390/metabo2040891
– ident: ref12
  doi: 10.1049/iet-syb:20070069
– ident: ref3
  doi: 10.1007/s10910-015-0511-9
– ident: ref4
  doi: 10.1093/bioinformatics/btv365
– ident: ref43
  doi: 10.1016/j.mbs.2009.03.002
– ident: ref1
  doi: 10.1016/j.jbiotec.2010.02.019
– ident: ref29
  doi: 10.1080/00401706.1985.10488048
– ident: ref25
  doi: 10.1007/s11538-011-9686-9
– volume: 42
  start-page: 1
  year: 1980
  ident: ref28
  article-title: Relative Curvature Measures of Nonlinearity
  publication-title: J. R. Stat. Soc. Ser. B
  contributor:
    fullname: Bates
– ident: ref30
  doi: 10.1021/ie040096w
– ident: ref11
  doi: 10.1186/1471-2105-6-155
– ident: ref34
  doi: 10.1081/BIP-200035458
– ident: ref37
  doi: 10.1137/S0895479899352045
SSID ssj0000913856
Score 2.1401083
Snippet The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 63
SubjectTerms Batch culture
Biological activity
Curvature
Data processing
Design of experiments
Design parameters
Dynamic models
Fermentation
Fisher information
Multiple objective analysis
Nonlinear systems
Nonlinearity
Optimization
Parameter estimation
Parameter identification
Yeast
Title Multi-Objective Optimization of Experiments Using Curvature and Fisher Information Matrix
URI https://www.proquest.com/docview/1992059830
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAtIAolMpCDDBYbeLYcSYEVUqF1BYhKpUpir8GJNLStBITvx3bcQssjJEVD3e5e3eXu3cAXNFQURnHGiVaCBQRxREXUiNOmcAqyYl0U--jMR1Oo8cZmfmCW-nbKjc-0TlqORe2Rt61bZImFGC4d7v4QHZrlP276ldo7IJ6EMbUtvSxwcO2xmI5LxmhFaEQNtl9d7Ek9qul-C8M_fXCDloGh-DAx4TwrlJiA-yoogn2fzEFNkHD22AJrz1R9M0ReHXTs2jC3yqvBSfG_t_9YCWca5hu6ftL6HoDYH9ta7DrpYJ5IWG19xz6kST31shS9n8eg-kgfekPkV-VgESYhCukezQngnGZBLnWMubGeeCIWHL4QHFKuLK4TXNhwEkG0hgpJjQJIsJ6lEec4BNQK-aFOgWQmluECUsCZs4jHuRCM0mxNMlsGOtctsDlRnLZomLEyEwmYcWbbcXbAu2NTDNvFGX2o8Kz_4_PwV5o0dN1jbRBbbVcqwuD_SvecQrugPp9On56Nk-jr_QbohKzAw
link.rule.ids 314,780,784,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BGYAB0QKiUMBCDDBYbeLYSSaEqpYCfSytVKYofg1IpKVpJX4-duIWujBb8XDnu-_ucvcdwB3zFZNhqHGshcABVRxzITXmLBJExSmVxdT7YMh6k-B1Sqeu4Ja7tsq1TywctZwJWyNv2jZJEwpEpPU4_8J2a5T9u-pWaOzCXkAMdNtJ8e7zpsZiOS8jykpCIWKy--Z8Qe2rZWQbhra9cAEt3WM4cjEheiqVWIUdldXg8A9TYA2qzgZzdO-Ioh9O4L2YnsUj_lF6LTQy9v_pBivRTKPOhr4_R0VvAGqvbA12tVAozSQq954jN5JUfDWwlP3fpzDpdsbtHnarErDwY3-JdYulVERcxl6qtQy5cR4koJYc3lOcUa4sbrNUGHCSnjRGSiiLvYBGLcYDTskZVLJZps4BMXOLMGGJF5nzgHup0JFkRJpk1g91Kutwu5ZcMi8ZMRKTSVjxJhvx1qGxlmnijCJPflV48f_xDez3xoN-0n8Zvl3CgW-RtOggaUBluVipKxMHLPl1oewfQiyzGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oJkYPRlAjiroxHvSwoa_dtiejCMEHjxhJ8NR0XwcTC1JI_PnutgvKxfOmPcx0v29mOvMNwBX1JBVhqHCsOMcBkQwzLhRmNOK-jFMiiqn3Xp92R8HTmIxt_1Nu2yqXmFgAtZhwUyNvmjZJHQpEvtNUti1i-NC5nX5hs0HK_Gm16zQ2YUuzouNVYOu-3R--riouRgEzIrSUF_J1rt-czoj5hqm_TkrrmFwQTWcf9myEiO5Kl1ZhQ2Y12P2jG1iDqr2RObq2stE3B_BezNLiAfsoMQwNNBp82jFLNFGovRLzz1HRKYBaC1ORXcwkSjOByi3oyA4oFU_1jID_9yGMOu23VhfbxQmYe7E3x8qhKeERE7GbKiVCpqHED4iRinclo4RJw-I05ZqqhCv0lfUJjd2ARA5lASP-EVSySSaPAVH9Fq6DFDfS5wFzU64iQX2hU1svVKmow-XScsm01MdIdF5hzJuszFuHxtKmib0iefLr0JP_jy9gW3s6eXnsP5_CjmdotWgnaUBlPlvIMx0UzNm59fYPe8S4tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Optimization+of+Experiments+Using+Curvature+and+Fisher+Information+Matrix&rft.jtitle=Processes&rft.au=Manesso%2C+Erica&rft.au=Sridharan%2C+Srinath&rft.au=Gunawan%2C+Rudiyanto&rft.date=2017-12-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=5&rft.issue=4&rft.spage=63&rft_id=info:doi/10.3390%2Fpr5040063&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr5040063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon