Multi-Objective Optimization of Experiments Using Curvature and Fisher Information Matrix
The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the...
Saved in:
Published in | Processes Vol. 5; no. 4; p. 63 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the maximum information for parameter estimation. Existing model-based design of experiment (MBDOE) methods commonly rely on the Fisher information matrix (FIM) for defining a metric of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs with respect to the parameters. In this work, we developed a multi-objective optimization (MOO) MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature. The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic modeling of fed-batch fermentation of baker’s yeast. |
---|---|
AbstractList | The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental data. In this regard, experimental conditions have a strong influence on parameter identifiability and should therefore be optimized to give the maximum information for parameter estimation. Existing model-based design of experiment (MBDOE) methods commonly rely on the Fisher information matrix (FIM) for defining a metric of data informativeness. When the model behavior is highly nonlinear, FIM-based criteria may lead to suboptimal designs, as the FIM only accounts for the linear variation in the model outputs with respect to the parameters. In this work, we developed a multi-objective optimization (MOO) MBDOE, for which the model nonlinearity was taken into consideration through the use of curvature. The proposed MOO MBDOE involved maximizing data informativeness using a FIM-based metric and at the same time minimizing the model curvature. We demonstrated the advantages of the MOO MBDOE over existing FIM-based and other curvature-based MBDOEs in an application to the kinetic modeling of fed-batch fermentation of baker’s yeast. |
Author | Sridharan, Srinath Manesso, Erica Gunawan, Rudiyanto |
Author_xml | – sequence: 1 givenname: Erica surname: Manesso fullname: Manesso, Erica – sequence: 2 givenname: Srinath surname: Sridharan fullname: Sridharan, Srinath – sequence: 3 givenname: Rudiyanto surname: Gunawan fullname: Gunawan, Rudiyanto |
BookMark | eNpNkDFPwzAQhS1UJErpwD-wxMQQOMexHY-oKlCpVRc6MEVOYoOr1g62UxV-PUFFiLfcG97d6X2XaOS80whdE7ijVMJ9FxgUAJyeoXGe5yKTgojRP3-BpjFuYZAktGR8jF5X_S7ZbF1vdZPsQeN1l-zefqlkvcPe4Pmx08HutUsRb6J1b3jWh4NKfdBYuRY_2viuA14448P-tLVSKdjjFTo3ahf19HdO0OZx_jJ7zpbrp8XsYZk1ucxTZoAr1pR1K4kyphU1lCUtGOWFILrmrNbACeWqAS5a0pYCKOOSFKwEXhc1oxN0c7rbBf_R65iqre-DG15WRMocmCwpDKnbU6oJPsagTdUNrVT4rAhUP_CqP3j0G7OtYt0 |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2020_12_558 crossref_primary_10_1093_bioinformatics_btz445 crossref_primary_10_1162_neco_a_01375 crossref_primary_10_3390_pr9061053 crossref_primary_10_1016_j_eng_2019_10_003 |
Cites_doi | 10.1021/ie071206c 10.1186/1471-2105-13-181 10.1371/journal.pcbi.1002280 10.1177/0037549703040937 10.1155/2013/897658 10.1093/bioinformatics/btt436 10.1016/S0098-1354(00)00328-8 10.1002/wsbm.1204 10.1371/journal.pcbi.1004488 10.1093/bioinformatics/bts585 10.1371/journal.pcbi.1005227 10.1103/PhysRevLett.113.098701 10.1371/journal.pcbi.1004915 10.3390/pr5030049 10.1093/bioinformatics/bts377 10.1371/journal.pcbi.1002888 10.1007/s10898-006-9075-3 10.1109/4235.996017 10.1111/j.1742-4658.2008.06843.x 10.1371/journal.pcbi.1003650 10.1137/100791063 10.2307/2284499 10.1021/ie400133m 10.1093/bioinformatics/bts092 10.3390/pr5020029 10.1023/A:1011534830530 10.1016/j.cor.2009.05.003 10.1186/1471-2105-7-483 10.1371/journal.pcbi.0040030 10.1016/j.ces.2007.11.034 10.3390/metabo2040891 10.1049/iet-syb:20070069 10.1007/s10910-015-0511-9 10.1093/bioinformatics/btv365 10.1016/j.mbs.2009.03.002 10.1016/j.jbiotec.2010.02.019 10.1080/00401706.1985.10488048 10.1007/s11538-011-9686-9 10.1021/ie040096w 10.1186/1471-2105-6-155 10.1081/BIP-200035458 10.1137/S0895479899352045 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/pr5040063 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2227-9717 |
ExternalDocumentID | 10_3390_pr5040063 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PIMPY PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c292t-f06a5c8bd91affd7b08834536471eb65be06136ac067d1d8703569145806b4b53 |
IEDL.DBID | 8FG |
ISSN | 2227-9717 |
IngestDate | Thu Oct 10 19:22:49 EDT 2024 Fri Dec 06 03:02:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-f06a5c8bd91affd7b08834536471eb65be06136ac067d1d8703569145806b4b53 |
OpenAccessLink | https://www.proquest.com/docview/1992059830?pq-origsite=%requestingapplication% |
PQID | 1992059830 |
PQPubID | 2032344 |
ParticipantIDs | proquest_journals_1992059830 crossref_primary_10_3390_pr5040063 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Processes |
PublicationYear | 2017 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Seber (ref32) 2003 ref24 ref46 Cover (ref9) 2006 ref23 ref45 ref26 ref25 ref47 ref20 Bates (ref28) 1980; 42 Rangaiah (ref35) 2008; Volume 1 ref42 ref41 ref22 ref44 ref21 ref43 Varma (ref36) 1999 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref42 doi: 10.1021/ie071206c – ident: ref14 doi: 10.1186/1471-2105-13-181 – ident: ref21 doi: 10.1371/journal.pcbi.1002280 – ident: ref10 doi: 10.1177/0037549703040937 – ident: ref44 doi: 10.1155/2013/897658 – ident: ref23 doi: 10.1093/bioinformatics/btt436 – ident: ref31 doi: 10.1016/S0098-1354(00)00328-8 – ident: ref8 doi: 10.1002/wsbm.1204 – ident: ref26 doi: 10.1371/journal.pcbi.1004488 – ident: ref22 doi: 10.1093/bioinformatics/bts585 – ident: ref45 doi: 10.1371/journal.pcbi.1005227 – ident: ref46 doi: 10.1103/PhysRevLett.113.098701 – ident: ref47 doi: 10.1371/journal.pcbi.1004915 – ident: ref16 doi: 10.3390/pr5030049 – ident: ref18 doi: 10.1093/bioinformatics/bts377 – ident: ref19 doi: 10.1371/journal.pcbi.1002888 – ident: ref40 doi: 10.1007/s10898-006-9075-3 – year: 2003 ident: ref32 contributor: fullname: Seber – ident: ref38 doi: 10.1109/4235.996017 – ident: ref7 doi: 10.1111/j.1742-4658.2008.06843.x – ident: ref24 doi: 10.1371/journal.pcbi.1003650 – ident: ref13 doi: 10.1137/100791063 – ident: ref27 doi: 10.2307/2284499 – ident: ref15 doi: 10.1021/ie400133m – ident: ref17 doi: 10.1093/bioinformatics/bts092 – ident: ref5 doi: 10.3390/pr5020029 – ident: ref33 doi: 10.1023/A:1011534830530 – volume: Volume 1 year: 2008 ident: ref35 contributor: fullname: Rangaiah – ident: ref39 doi: 10.1016/j.cor.2009.05.003 – ident: ref41 doi: 10.1186/1471-2105-7-483 – ident: ref20 doi: 10.1371/journal.pcbi.0040030 – year: 1999 ident: ref36 contributor: fullname: Varma – year: 2006 ident: ref9 contributor: fullname: Cover – ident: ref6 doi: 10.1016/j.ces.2007.11.034 – ident: ref2 doi: 10.3390/metabo2040891 – ident: ref12 doi: 10.1049/iet-syb:20070069 – ident: ref3 doi: 10.1007/s10910-015-0511-9 – ident: ref4 doi: 10.1093/bioinformatics/btv365 – ident: ref43 doi: 10.1016/j.mbs.2009.03.002 – ident: ref1 doi: 10.1016/j.jbiotec.2010.02.019 – ident: ref29 doi: 10.1080/00401706.1985.10488048 – ident: ref25 doi: 10.1007/s11538-011-9686-9 – volume: 42 start-page: 1 year: 1980 ident: ref28 article-title: Relative Curvature Measures of Nonlinearity publication-title: J. R. Stat. Soc. Ser. B contributor: fullname: Bates – ident: ref30 doi: 10.1021/ie040096w – ident: ref11 doi: 10.1186/1471-2105-6-155 – ident: ref34 doi: 10.1081/BIP-200035458 – ident: ref37 doi: 10.1137/S0895479899352045 |
SSID | ssj0000913856 |
Score | 2.1401083 |
Snippet | The bottleneck in creating dynamic models of biological networks and processes often lies in estimating unknown kinetic model parameters from experimental... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 63 |
SubjectTerms | Batch culture Biological activity Curvature Data processing Design of experiments Design parameters Dynamic models Fermentation Fisher information Multiple objective analysis Nonlinear systems Nonlinearity Optimization Parameter estimation Parameter identification Yeast |
Title | Multi-Objective Optimization of Experiments Using Curvature and Fisher Information Matrix |
URI | https://www.proquest.com/docview/1992059830 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAtIAolMpCDDBYbeLYcSYEVUqF1BYhKpUpir8GJNLStBITvx3bcQssjJEVD3e5e3eXu3cAXNFQURnHGiVaCBQRxREXUiNOmcAqyYl0U--jMR1Oo8cZmfmCW-nbKjc-0TlqORe2Rt61bZImFGC4d7v4QHZrlP276ldo7IJ6EMbUtvSxwcO2xmI5LxmhFaEQNtl9d7Ek9qul-C8M_fXCDloGh-DAx4TwrlJiA-yoogn2fzEFNkHD22AJrz1R9M0ReHXTs2jC3yqvBSfG_t_9YCWca5hu6ftL6HoDYH9ta7DrpYJ5IWG19xz6kST31shS9n8eg-kgfekPkV-VgESYhCukezQngnGZBLnWMubGeeCIWHL4QHFKuLK4TXNhwEkG0hgpJjQJIsJ6lEec4BNQK-aFOgWQmluECUsCZs4jHuRCM0mxNMlsGOtctsDlRnLZomLEyEwmYcWbbcXbAu2NTDNvFGX2o8Kz_4_PwV5o0dN1jbRBbbVcqwuD_SvecQrugPp9On56Nk-jr_QbohKzAw |
link.rule.ids | 314,780,784,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BGYAB0QKiUMBCDDBYbeLYSSaEqpYCfSytVKYofg1IpKVpJX4-duIWujBb8XDnu-_ucvcdwB3zFZNhqHGshcABVRxzITXmLBJExSmVxdT7YMh6k-B1Sqeu4Ja7tsq1TywctZwJWyNv2jZJEwpEpPU4_8J2a5T9u-pWaOzCXkAMdNtJ8e7zpsZiOS8jykpCIWKy--Z8Qe2rZWQbhra9cAEt3WM4cjEheiqVWIUdldXg8A9TYA2qzgZzdO-Ioh9O4L2YnsUj_lF6LTQy9v_pBivRTKPOhr4_R0VvAGqvbA12tVAozSQq954jN5JUfDWwlP3fpzDpdsbtHnarErDwY3-JdYulVERcxl6qtQy5cR4koJYc3lOcUa4sbrNUGHCSnjRGSiiLvYBGLcYDTskZVLJZps4BMXOLMGGJF5nzgHup0JFkRJpk1g91Kutwu5ZcMi8ZMRKTSVjxJhvx1qGxlmnijCJPflV48f_xDez3xoN-0n8Zvl3CgW-RtOggaUBluVipKxMHLPl1oewfQiyzGg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oJkYPRlAjiroxHvSwoa_dtiejCMEHjxhJ8NR0XwcTC1JI_PnutgvKxfOmPcx0v29mOvMNwBX1JBVhqHCsOMcBkQwzLhRmNOK-jFMiiqn3Xp92R8HTmIxt_1Nu2yqXmFgAtZhwUyNvmjZJHQpEvtNUti1i-NC5nX5hs0HK_Gm16zQ2YUuzouNVYOu-3R--riouRgEzIrSUF_J1rt-czoj5hqm_TkrrmFwQTWcf9myEiO5Kl1ZhQ2Y12P2jG1iDqr2RObq2stE3B_BezNLiAfsoMQwNNBp82jFLNFGovRLzz1HRKYBaC1ORXcwkSjOByi3oyA4oFU_1jID_9yGMOu23VhfbxQmYe7E3x8qhKeERE7GbKiVCpqHED4iRinclo4RJw-I05ZqqhCv0lfUJjd2ARA5lASP-EVSySSaPAVH9Fq6DFDfS5wFzU64iQX2hU1svVKmow-XScsm01MdIdF5hzJuszFuHxtKmib0iefLr0JP_jy9gW3s6eXnsP5_CjmdotWgnaUBlPlvIMx0UzNm59fYPe8S4tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Optimization+of+Experiments+Using+Curvature+and+Fisher+Information+Matrix&rft.jtitle=Processes&rft.au=Manesso%2C+Erica&rft.au=Sridharan%2C+Srinath&rft.au=Gunawan%2C+Rudiyanto&rft.date=2017-12-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=5&rft.issue=4&rft.spage=63&rft_id=info:doi/10.3390%2Fpr5040063&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr5040063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |