Temperature controlled magnon–photon coupling in a YIG/GGG-superconducting cavity coupled system
To explore potential applications in classical and quantum information transfer, the hybrid systems between yttrium iron garnet (YIG) and cavities have been extensively studied, and four coupling regimes have been defined based on the relative strength between the coupling strength and dissipation r...
Saved in:
Published in | Journal of applied physics Vol. 134; no. 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/5.0160117 |
Cover
Loading…
Abstract | To explore potential applications in classical and quantum information transfer, the hybrid systems between yttrium iron garnet (YIG) and cavities have been extensively studied, and four coupling regimes have been defined based on the relative strength between the coupling strength and dissipation rate of each subsystem. Achieving the control of magnon–photon coupling between nano-thick YIG films and cavities remains to be explored. We experimentally measure the microwave transmission spectra of a nano-thick yttrium iron garnet/gadolinium gallium garnet (YIG/GGG) film coupled to a superconducting cavity at different temperatures. The dissipation rate of the superconducting cavity increases significantly with decreasing temperature, which is influenced by the temperature-dependent magnetic susceptibility of the GGG substrate. Accompanied by the temperature-dependent magnon dissipation rate, a continuous transformation of the coupled system in strong coupling, Purcell and weak coupling regimes is achieved. |
---|---|
AbstractList | To explore potential applications in classical and quantum information transfer, the hybrid systems between yttrium iron garnet (YIG) and cavities have been extensively studied, and four coupling regimes have been defined based on the relative strength between the coupling strength and dissipation rate of each subsystem. Achieving the control of magnon–photon coupling between nano-thick YIG films and cavities remains to be explored. We experimentally measure the microwave transmission spectra of a nano-thick yttrium iron garnet/gadolinium gallium garnet (YIG/GGG) film coupled to a superconducting cavity at different temperatures. The dissipation rate of the superconducting cavity increases significantly with decreasing temperature, which is influenced by the temperature-dependent magnetic susceptibility of the GGG substrate. Accompanied by the temperature-dependent magnon dissipation rate, a continuous transformation of the coupled system in strong coupling, Purcell and weak coupling regimes is achieved. |
Author | Wu, Zhenfa Zhao, Yue Sun, Yitong Tian, Yufeng Yan, Shishen Bai, Lihui Chen, Yanxue |
Author_xml | – sequence: 1 givenname: Yue surname: Zhao fullname: Zhao, Yue organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China – sequence: 2 givenname: Yitong surname: Sun fullname: Sun, Yitong organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China – sequence: 3 givenname: Zhenfa surname: Wu fullname: Wu, Zhenfa organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China – sequence: 4 givenname: Yanxue surname: Chen fullname: Chen, Yanxue organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China – sequence: 5 givenname: Yufeng surname: Tian fullname: Tian, Yufeng organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China – sequence: 6 givenname: Shishen surname: Yan fullname: Yan, Shishen organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China – sequence: 7 givenname: Lihui surname: Bai fullname: Bai, Lihui organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
BookMark | eNp9kEFLwzAYhoNMcJse_AcFTwrdkrRNk6MMrYOBl3nwFLI0mR1tU5NU2G3_wX_oLzGj8yLi6Tu8z_N-8E7AqDWtAuAawRmCJJlnM4gIRCg_A2MEKYvzLIMjMIYQo5iynF2AiXM7GBCasDHYrFXTKSt8b1UkTeutqWtVRo3Yhuavw2f3ZrxpQ9R3ddVuo6qNRPS6LOZFUcSuD26wyl76YyjFR-X3AxxK3N551VyCcy1qp65OdwpeHh_Wi6d49VwsF_erWGKGfawhIVoKlSY0L1kmMMJIlUzplKKSKEyR2mCUCrKBRGsJEYM4wzJlTNMyS2UyBTdDb2fNe6-c5zvT2za85JiSPGGM0iRQtwMlrXHOKs07WzXC7jmC_Dghz_hpwsDOf7Gy8sJXx5lEVf9p3A2G-yH_qf8GYXKDkg |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1002_qute_202300420 crossref_primary_10_1088_2515_7639_ad2984 |
Cites_doi | 10.1038/s41467-019-12749-7 10.1038/ncomms9914 10.1038/ncomms2771 10.1103/PhysRevLett.74.2379 10.1103/PhysRevB.97.014419 10.1103/PhysRevApplied.2.054002 10.1073/pnas.1419326112 10.1103/PhysRevLett.123.107702 10.1007/s100530050339 10.1109/TMAG.2016.2527691 10.1063/1.4959140 10.1103/PhysRevB.95.214423 10.1088/1367-2630/ab3e1c 10.1103/PhysRev.133.A728 10.1063/1.5024336 10.1103/PhysRevLett.101.036601 10.1063/5.0063642 10.1063/5.0006753 10.1103/PhysRevLett.113.083603 10.1103/PhysRevB.95.174411 10.1038/nature07127 10.1038/nphys3050 10.1103/PhysRevB.96.064407 10.7567/1882-0786/ab248d 10.1063/1.4939134 10.1038/nature02851 10.1103/PhysRevE.61.929 10.1063/1.4979409 10.1103/PhysRevLett.111.127003 10.1126/science.1131871 10.1103/PhysRevB.102.064426 10.1038/nature18604 10.1103/PhysRevB.102.144428 10.1103/PhysRevB.95.214411 10.1103/RevModPhys.85.623 10.1109/ACCESS.2019.2913788 10.1103/PhysRevLett.113.156401 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0160117 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_5_0160117 jap |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: No. 12274260 – fundername: the 111 Project B13029 – fundername: the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University – fundername: the Shandong Provincial Natural Science Foundation grantid: No. ZR2019JQ02 |
GroupedDBID | -DZ -~X .DC 2-P 29J 4.4 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c292t-f066fcae4387d95a2121ed9ef481d6e281eb214a6b06ffc0190252c499f8d54c3 |
ISSN | 0021-8979 |
IngestDate | Sun Jun 29 16:49:26 EDT 2025 Tue Jul 01 00:38:54 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Fri Jun 21 00:15:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-f066fcae4387d95a2121ed9ef481d6e281eb214a6b06ffc0190252c499f8d54c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7327-9968 0000-0001-8979-3577 0009-0009-1810-4004 0000-0002-2373-6710 0000-0001-5354-8203 0000-0002-3093-1733 0000-0003-0791-1635 |
PQID | 2867399883 |
PQPubID | 2050677 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2867399883 scitation_primary_10_1063_5_0160117 crossref_primary_10_1063_5_0160117 crossref_citationtrail_10_1063_5_0160117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230928 2023-09-28 |
PublicationDateYYYYMMDD | 2023-09-28 |
PublicationDate_xml | – month: 09 year: 2023 text: 20230928 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Bourhill, Castel, Manchec, Cochet (c21) 2020 Zhang, Zou, Jiang, Tang (c9) 2014 Maier-Flaig, Klingler, Dubs, Surzhenko, Gross, Weiler, Huebl, Goennenwein (c32) 2017 Castel, Jeunehomme, Youssef, Vukadinovic, Manchec, Dejene, Bauer (c22) 2017 Bai, Blanchette, Harder, Chen, Fan, Xiao, Hu (c27) 2016 Zhang, Zou, Zhu, Marquardt, Jiang, Tang (c6) 2015 Flower, Goryachev, Bourhill, Tobar (c28) 2019 Harder, Bai, Hyde, Hu (c15) 2017 Rao, Yao, Fan, Xue, Gui, Hu (c24) 2018 Heiss (c13) 1999 Goryachev, Farr, Creedon, Fan, Kostylev, Tobar (c4) 2014 Kimble (c2) 2008 Seiden (c33) 1964 Oyanagi, Takahashi, Cornelissen (c36) 2019 Kurizki, Bertet, Kubo, Schmiedmayer (c7) 2015 Ando, Takahashi, Harii, Sasage, Ieda, Maekawa, Saitoh (c29) 2008 Wallraff, Schuster, Blais (c1) 2004 Tabuchi, Ishino, Ishikawa, Yamazaki, Usami, Nakamura (c25) 2014 Xiang, Ashhab, You, Nori (c18) 2013 Jermain, Aradhya, Reynolds, Buhrman, Brangham, Page, Hammel, Yang, Ralph (c34) 2017 Kaur, Yao, Rao, Gui, Hu (c23) 2016 Rameshti, Bauer (c12) 2018 Heiss (c14) 2000 Maier-Flaig, Harder, Klingler, Qiu, Saitoh, Weiler, Geprägs, Gross, Goennenwein, Huebl (c26) 2017 Hou, Liu (c30) 2019 Grigoryan, Xia (c17) 2020 Zhang, Sun, Lu, Guo, Xue, Chen, Tian, Yan, Bai (c31) 2021 Bar-Gill, Pham, Jarmola, Budker, Walsworth (c10) 2013 Liu, Xiong, Wu (c20) 2019 Schiffer, Ramirez, Huse, Gammel, Yaron, Bishop, Valentino (c35) 1995 Childress, Dutt, Taylor, Zibrov, Jelezko, Wrachtrup, Hemmer, Lukin (c11) 2006 Zhang, Zou, Jiang, Tang (c19) 2016 Putz, Krimer, Amsüss, Valookaran (c3) 2014 Huebl, Zollitsch, Lotze, Hocke, Greifenstein, Marx, Gross, Goennenwein (c5) 2013 Wang, Lu, Zhao, Zhang, Chen, Tian, Yan, Bai, Harder (c37) 2020 Lachance-Quirion, Tabuchi, Gloppe, Usami, Nakamura (c8) 2019 Xu, Mason, Jiang, Harris (c16) 2016 (2023092209521288400_c25) 2014; 113 (2023092209521288400_c27) 2016; 52 (2023092209521288400_c18) 2013; 85 (2023092209521288400_c34) 2017; 95 (2023092209521288400_c14) 2000; 61 (2023092209521288400_c19) 2016; 119 (2023092209521288400_c12) 2018; 97 (2023092209521288400_c32) 2017; 95 (2023092209521288400_c6) 2015; 6 (2023092209521288400_c13) 1999; 7 (2023092209521288400_c30) 2019; 123 (2023092209521288400_c31) 2021; 119 (2023092209521288400_c11) 2006; 314 (2023092209521288400_c10) 2013; 4 (2023092209521288400_c24) 2018; 112 (2023092209521288400_c1) 2004; 431 (2023092209521288400_c36) 2019; 10 (2023092209521288400_c16) 2016; 537 (2023092209521288400_c21) 2020; 128 (2023092209521288400_c23) 2016; 109 (2023092209521288400_c3) 2014; 10 (2023092209521288400_c4) 2014; 2 (2023092209521288400_c26) 2017; 110 (2023092209521288400_c22) 2017; 96 (2023092209521288400_c9) 2014; 113 (2023092209521288400_c29) 2008; 101 (2023092209521288400_c8) 2019; 12 (2023092209521288400_c17) 2020; 102 (2023092209521288400_c15) 2017; 95 (2023092209521288400_c5) 2013; 111 (2023092209521288400_c28) 2019; 21 (2023092209521288400_c35) 1995; 74 (2023092209521288400_c33) 1964; 133 (2023092209521288400_c7) 2015; 112 (2023092209521288400_c2) 2008; 453 (2023092209521288400_c37) 2020; 102 (2023092209521288400_c20) 2019; 7 |
References_xml | – start-page: A728 year: 1964 ident: c33 article-title: Ferrimagnetic resonance relaxation in rare-earth iron garnets publication-title: Phys. Rev. – start-page: 2379 year: 1995 ident: c35 article-title: Frustration induced spin freezing in a site-ordered magnet: Gadolinium gallium garnet publication-title: Phys. Rev. Lett. – start-page: 064407 year: 2017 ident: c22 article-title: Thermal control of the magnon-photon coupling in a notch filter coupled to a yttrium iron garnet/platinum system publication-title: Phys. Rev. B – start-page: 4740 year: 2019 ident: c36 article-title: Spin transport in insulators without exchange stiffness publication-title: Nat. Commun. – start-page: 083603 year: 2014 ident: c25 article-title: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit publication-title: Phys. Rev. Lett. – start-page: 144428 year: 2020 ident: c37 article-title: Magnetization coupling in a YIG/GGG structure publication-title: Phys. Rev. B – start-page: 156401 year: 2014 ident: c9 article-title: Strongly coupled magnons and cavity microwave photons publication-title: Phys. Rev. Lett. – start-page: 214423 year: 2017 ident: c32 article-title: Temperature-dependent magnetic damping of yttrium iron garnet spheres publication-title: Phys. Rev. B – start-page: 174411 year: 2017 ident: c34 article-title: Increased low-temperature damping in yttrium iron garnet thin films publication-title: Phys. Rev. B – start-page: 1 year: 1999 ident: c13 article-title: Phases of wave functions and level repulsion publication-title: Eur. Phys. J. D – start-page: 162 year: 2004 ident: c1 article-title: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics publication-title: Nature – start-page: 054002 year: 2014 ident: c4 article-title: High-cooperativity cavity QED with magnons at microwave frequencies publication-title: Phys. Rev. Appl. – start-page: 127003 year: 2013 ident: c5 article-title: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids publication-title: Phys. Rev. Lett. – start-page: 929 year: 2000 ident: c14 article-title: Repulsion of resonance states and exceptional points publication-title: Phys. Rev. E – start-page: 036601 year: 2008 ident: c29 article-title: Electric manipulation of spin relaxation using the spin Hall effect publication-title: Phys. Rev. Lett. – start-page: 3866 year: 2015 ident: c7 article-title: Quantum technologies with hybrid systems publication-title: Proc. Natl Acad. Sci. U.S.A. – start-page: 80 year: 2016 ident: c16 article-title: Topological energy transfer in an optomechanical system with exceptional points publication-title: Nature – start-page: 102402 year: 2021 ident: c31 article-title: Zero-field magnon-photon coupling in antiferromagnet CrCl3 publication-title: Appl. Phys. Lett. – start-page: 8914 year: 2015 ident: c6 article-title: Magnon dark modes and gradient memory publication-title: Nat. Commun. – start-page: 107702 year: 2019 ident: c30 article-title: Strong coupling between microwave photons and nanomagnet magnons publication-title: Phys. Rev. Lett. – start-page: 095004 year: 2019 ident: c28 article-title: Experimental implementations of cavity-magnon systems: From ultra strong coupling to applications in precision measurement publication-title: New J. Phys. – start-page: 720 year: 2014 ident: c3 article-title: Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED publication-title: Nat. Phys. – start-page: 214411 year: 2017 ident: c15 article-title: Topological properties of a coupled spin-photon system induced by damping publication-title: Phys. Rev. B – start-page: 023905 year: 2016 ident: c19 article-title: Superstrong coupling of thin film magnetostatic waves with microwave cavity publication-title: J. Appl. Phys. – start-page: 070101 year: 2019 ident: c8 article-title: Hybrid quantum systems based on magnonics publication-title: Appl. Phys. Express – start-page: 1743 year: 2013 ident: c10 article-title: Solid-state electronic spin coherence time approaching one second publication-title: Nat. Commun. – start-page: 064426 year: 2020 ident: c17 article-title: Torque-induced dispersive readout in a weakly coupled hybrid system publication-title: Phys. Rev. B – start-page: 281 year: 2006 ident: c11 article-title: Coherent dynamics of coupled electron and nuclear spin qubits in diamond publication-title: Science – start-page: 262401 year: 2018 ident: c24 article-title: Electric control of cooperative polariton dynamics in a cavity-magnon system publication-title: Appl. Phys. Lett. – start-page: 623 year: 2013 ident: c18 article-title: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems publication-title: Rev. Mod. Phys. – start-page: 132401 year: 2017 ident: c26 article-title: Tunable magnon-photon coupling in a compensating ferrimagnet—from weak to strong coupling publication-title: Appl. Phys. Lett. – start-page: 032404 year: 2016 ident: c23 article-title: Voltage control of cavity magnon polariton publication-title: Appl. Phys. Lett. – start-page: 57047 year: 2019 ident: c20 article-title: Room-temperature slow light in a coupled cavity magnon-photon system publication-title: IEEE Access – start-page: 014419 year: 2018 ident: c12 article-title: Indirect coupling of magnons by cavity photons publication-title: Phys. Rev. B – start-page: 1023 year: 2008 ident: c2 article-title: The quantum internet publication-title: Nature – start-page: 1000107 year: 2016 ident: c27 article-title: Control of the magnon–photon coupling publication-title: IEEE Trans. Magn. – start-page: 073904 year: 2020 ident: c21 article-title: Universal characterization of cavity–magnon polariton coupling strength verified in modifiable microwave cavity publication-title: J. Appl. Phys. – volume: 10 start-page: 4740 year: 2019 ident: 2023092209521288400_c36 article-title: Spin transport in insulators without exchange stiffness publication-title: Nat. Commun. doi: 10.1038/s41467-019-12749-7 – volume: 6 start-page: 8914 year: 2015 ident: 2023092209521288400_c6 article-title: Magnon dark modes and gradient memory publication-title: Nat. Commun. doi: 10.1038/ncomms9914 – volume: 4 start-page: 1743 year: 2013 ident: 2023092209521288400_c10 article-title: Solid-state electronic spin coherence time approaching one second publication-title: Nat. Commun. doi: 10.1038/ncomms2771 – volume: 74 start-page: 2379 year: 1995 ident: 2023092209521288400_c35 article-title: Frustration induced spin freezing in a site-ordered magnet: Gadolinium gallium garnet publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.2379 – volume: 97 start-page: 014419 year: 2018 ident: 2023092209521288400_c12 article-title: Indirect coupling of magnons by cavity photons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.014419 – volume: 2 start-page: 054002 year: 2014 ident: 2023092209521288400_c4 article-title: High-cooperativity cavity QED with magnons at microwave frequencies publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.054002 – volume: 112 start-page: 3866 year: 2015 ident: 2023092209521288400_c7 article-title: Quantum technologies with hybrid systems publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1419326112 – volume: 123 start-page: 107702 year: 2019 ident: 2023092209521288400_c30 article-title: Strong coupling between microwave photons and nanomagnet magnons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.107702 – volume: 7 start-page: 1 year: 1999 ident: 2023092209521288400_c13 article-title: Phases of wave functions and level repulsion publication-title: Eur. Phys. J. D doi: 10.1007/s100530050339 – volume: 52 start-page: 1000107 year: 2016 ident: 2023092209521288400_c27 article-title: Control of the magnon–photon coupling publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2016.2527691 – volume: 109 start-page: 032404 year: 2016 ident: 2023092209521288400_c23 article-title: Voltage control of cavity magnon polariton publication-title: Appl. Phys. Lett. doi: 10.1063/1.4959140 – volume: 95 start-page: 214423 year: 2017 ident: 2023092209521288400_c32 article-title: Temperature-dependent magnetic damping of yttrium iron garnet spheres publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.214423 – volume: 21 start-page: 095004 year: 2019 ident: 2023092209521288400_c28 article-title: Experimental implementations of cavity-magnon systems: From ultra strong coupling to applications in precision measurement publication-title: New J. Phys. doi: 10.1088/1367-2630/ab3e1c – volume: 133 start-page: A728 year: 1964 ident: 2023092209521288400_c33 article-title: Ferrimagnetic resonance relaxation in rare-earth iron garnets publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A728 – volume: 112 start-page: 262401 year: 2018 ident: 2023092209521288400_c24 article-title: Electric control of cooperative polariton dynamics in a cavity-magnon system publication-title: Appl. Phys. Lett. doi: 10.1063/1.5024336 – volume: 101 start-page: 036601 year: 2008 ident: 2023092209521288400_c29 article-title: Electric manipulation of spin relaxation using the spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.036601 – volume: 119 start-page: 102402 year: 2021 ident: 2023092209521288400_c31 article-title: Zero-field magnon-photon coupling in antiferromagnet CrCl3 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0063642 – volume: 128 start-page: 073904 year: 2020 ident: 2023092209521288400_c21 article-title: Universal characterization of cavity–magnon polariton coupling strength verified in modifiable microwave cavity publication-title: J. Appl. Phys. doi: 10.1063/5.0006753 – volume: 113 start-page: 083603 year: 2014 ident: 2023092209521288400_c25 article-title: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.083603 – volume: 95 start-page: 174411 year: 2017 ident: 2023092209521288400_c34 article-title: Increased low-temperature damping in yttrium iron garnet thin films publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.174411 – volume: 453 start-page: 1023 year: 2008 ident: 2023092209521288400_c2 article-title: The quantum internet publication-title: Nature doi: 10.1038/nature07127 – volume: 10 start-page: 720 year: 2014 ident: 2023092209521288400_c3 article-title: Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED publication-title: Nat. Phys. doi: 10.1038/nphys3050 – volume: 96 start-page: 064407 year: 2017 ident: 2023092209521288400_c22 article-title: Thermal control of the magnon-photon coupling in a notch filter coupled to a yttrium iron garnet/platinum system publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.064407 – volume: 12 start-page: 070101 year: 2019 ident: 2023092209521288400_c8 article-title: Hybrid quantum systems based on magnonics publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab248d – volume: 119 start-page: 023905 year: 2016 ident: 2023092209521288400_c19 article-title: Superstrong coupling of thin film magnetostatic waves with microwave cavity publication-title: J. Appl. Phys. doi: 10.1063/1.4939134 – volume: 431 start-page: 162 year: 2004 ident: 2023092209521288400_c1 article-title: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics publication-title: Nature doi: 10.1038/nature02851 – volume: 61 start-page: 929 year: 2000 ident: 2023092209521288400_c14 article-title: Repulsion of resonance states and exceptional points publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.929 – volume: 110 start-page: 132401 year: 2017 ident: 2023092209521288400_c26 article-title: Tunable magnon-photon coupling in a compensating ferrimagnet—from weak to strong coupling publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979409 – volume: 111 start-page: 127003 year: 2013 ident: 2023092209521288400_c5 article-title: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.127003 – volume: 314 start-page: 281 year: 2006 ident: 2023092209521288400_c11 article-title: Coherent dynamics of coupled electron and nuclear spin qubits in diamond publication-title: Science doi: 10.1126/science.1131871 – volume: 102 start-page: 064426 year: 2020 ident: 2023092209521288400_c17 article-title: Torque-induced dispersive readout in a weakly coupled hybrid system publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.064426 – volume: 537 start-page: 80 year: 2016 ident: 2023092209521288400_c16 article-title: Topological energy transfer in an optomechanical system with exceptional points publication-title: Nature doi: 10.1038/nature18604 – volume: 102 start-page: 144428 year: 2020 ident: 2023092209521288400_c37 article-title: Magnetization coupling in a YIG/GGG structure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.144428 – volume: 95 start-page: 214411 year: 2017 ident: 2023092209521288400_c15 article-title: Topological properties of a coupled spin-photon system induced by damping publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.214411 – volume: 85 start-page: 623 year: 2013 ident: 2023092209521288400_c18 article-title: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.623 – volume: 7 start-page: 57047 year: 2019 ident: 2023092209521288400_c20 article-title: Room-temperature slow light in a coupled cavity magnon-photon system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913788 – volume: 113 start-page: 156401 year: 2014 ident: 2023092209521288400_c9 article-title: Strongly coupled magnons and cavity microwave photons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.156401 |
SSID | ssj0011839 |
Score | 2.448183 |
Snippet | To explore potential applications in classical and quantum information transfer, the hybrid systems between yttrium iron garnet (YIG) and cavities have been... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Coupling Dissipation Gadolinium Gadolinium-gallium garnet Holes Hybrid systems Information transfer Iron Magnetic permeability Magnons Microwave transmission Photons Quantum phenomena Substrates Subsystems Superconductivity Temperature dependence Thick films Yttrium-iron garnet |
Title | Temperature controlled magnon–photon coupling in a YIG/GGG-superconducting cavity coupled system |
URI | http://dx.doi.org/10.1063/5.0160117 https://www.proquest.com/docview/2867399883 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFA3aIupDaaviai3B-iBI2p1MJpt5LK1ulbYIbaHry5BkElZYp4vdAfGp_6H_0F_Sm0kms-oWqi_DMuRjyD17c5Lce4LQm8RkzAL1JgZmM8IkS5wGZElgKoDVgVZlX7ls5KNjfnDGPp1n591WdpNdMlPb-ufCvJL_sSq8A7u6LNl_sGxsFF7Ab7AvPMHC8LybjQ2QXi-K3MacT4BAfnPRc1UbxpBOxxdOO0Nf1NNJyGCR70Yfh9DvcDgklzW0AbWd8GuTgSub6ySa4tCYl3q-hcPKwGH9_kik51_GstmBHdURNid1495G4EDCXOlmgro5GxmbynYBQyFdZCSrH6F62JSgqYugoGLe0dKEiNzfE7NtvG_ti5wMMq8zG51v2MoMKKMLvTrQKBgSp6_KnYRdN3W1x_V_zGgxzrA5YedpkRWh6n20TGE9AR58eXf_6PAkHjg5ouijgfx3tyJUPN2J_f5OXbr1yEMgKz5uYo6anK6ilWAPvOsBsobumWodPZ5TmlxHDz57Cz1Bag40uAMN9qD5dXXt4YJbuOCvFZYY4LKzACzYgwUHsGAPlqfo7MP7070DEi7aIJrmdEYs8E6rpWGpGJR5JoHOJKbMjWWwmuGGisQomjDJVZ9bq538AM2ohsWyFWXGdPoMLcEnmucIu3w4m3EmDYXmNBXccqGslJorluu8h962Y1i0o-YuQ5kUf9mqh17HolMvvbKo0EZriCL8My8L6HUAxFuItIe2onFub-TFXXp6iR51SN9AS7PvtXkFhHSmNgOYbgA2lYrZ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+controlled+magnon%E2%80%93photon+coupling+in+a+YIG%2FGGG-superconducting+cavity+coupled+system&rft.jtitle=Journal+of+applied+physics&rft.au=Zhao%2C+Yue&rft.au=Sun%2C+Yitong&rft.au=Wu%2C+Zhenfa&rft.au=Chen%2C+Yanxue&rft.date=2023-09-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=134&rft.issue=12&rft_id=info:doi/10.1063%2F5.0160117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0160117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |