Optimal Transmit Beamforming for Integrated Sensing and Communication
This paper studies the transmit beamforming in a downlink integrated sensing and communication (ISAC) system, where a base station (BS) equipped with a uniform linear array (ULA) sends combined information-bearing and dedicated radar signals to perform downlink multiuser communication and radar targ...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 72; no. 8; pp. 10588 - 10603 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper studies the transmit beamforming in a downlink integrated sensing and communication (ISAC) system, where a base station (BS) equipped with a uniform linear array (ULA) sends combined information-bearing and dedicated radar signals to perform downlink multiuser communication and radar target sensing simultaneously. We consider two radar sensing design criteria, including the conventional sensing beampattern matching and the newly proposed minimum weighted beampattern gain maximization, respectively. Under this setup, we maximize the radar sensing performance while ensuring the communication users' individual signal-to-interference-plus-noise ratio (SINR) requirements subject to the BS's maximum transmit power constraints. In particular, we consider two types of communication receivers, namely Type-I and Type-II receivers, which do not have and do have the capability of cancelling the interference from the a-priori known dedicated radar signals, respectively. Under both Type-I and Type-II receivers, the beampattern matching and minimum weighted beampattern gain maximization problems are non-convex and thus difficult to be optimally solved in general. Fortunately, via applying the semidefinite relaxation (SDR) technique, we obtain the globally optimal solutions to these problems by rigorously proving the tightness of their SDRs. Besides, for both design criteria, we show that dedicated radar signals are generally beneficial in enhancing the system performance with both types of receivers under general channel conditions, while the dedicated radar signals are not required with Type-I receivers under the special case with line-of-sight (LOS) communication channels. Numerical results show that the minimum weighted beampattern gain maximization design significantly outperforms the beampattern matching design, in terms of much higher beampattern gains at the worst-case sensing angles and much lower computational complexity in solving the corresponding problems. It is also shown that by exploiting the capability of cancelling the interference caused by the dedicated radar signals, the case with Type-II receivers results in better sensing performance than that with Type-I receivers and other conventional designs. |
---|---|
AbstractList | This paper studies the transmit beamforming in a downlink integrated sensing and communication (ISAC) system, where a base station (BS) equipped with a uniform linear array (ULA) sends combined information-bearing and dedicated radar signals to perform downlink multiuser communication and radar target sensing simultaneously. We consider two radar sensing design criteria, including the conventional sensing beampattern matching and the newly proposed minimum weighted beampattern gain maximization, respectively. Under this setup, we maximize the radar sensing performance while ensuring the communication users' individual signal-to-interference-plus-noise ratio (SINR) requirements subject to the BS's maximum transmit power constraints. In particular, we consider two types of communication receivers, namely Type-I and Type-II receivers, which do not have and do have the capability of cancelling the interference from the a-priori known dedicated radar signals, respectively. Under both Type-I and Type-II receivers, the beampattern matching and minimum weighted beampattern gain maximization problems are non-convex and thus difficult to be optimally solved in general. Fortunately, via applying the semidefinite relaxation (SDR) technique, we obtain the globally optimal solutions to these problems by rigorously proving the tightness of their SDRs. Besides, for both design criteria, we show that dedicated radar signals are generally beneficial in enhancing the system performance with both types of receivers under general channel conditions, while the dedicated radar signals are not required with Type-I receivers under the special case with line-of-sight (LOS) communication channels. Numerical results show that the minimum weighted beampattern gain maximization design significantly outperforms the beampattern matching design, in terms of much higher beampattern gains at the worst-case sensing angles and much lower computational complexity in solving the corresponding problems. It is also shown that by exploiting the capability of cancelling the interference caused by the dedicated radar signals, the case with Type-II receivers results in better sensing performance than that with Type-I receivers and other conventional designs. |
Author | Hua, Haocheng Xu, Jie Han, Tony Xiao |
Author_xml | – sequence: 1 givenname: Haocheng orcidid: 0000-0001-9136-7067 surname: Hua fullname: Hua, Haocheng email: haochenghua@link.cuhk.edu.cn organization: School of Science and Engineering and the Future Network of Intelligence Institute, Chinese University of Hong Kong-Shenzhen, Shenzhen, China – sequence: 2 givenname: Jie orcidid: 0000-0002-4854-8839 surname: Xu fullname: Xu, Jie email: xujie@cuhk.edu.cn organization: School of Science and Engineering and the Future Network of Intelligence Institute, Chinese University of Hong Kong-Shenzhen, Shenzhen, China – sequence: 3 givenname: Tony Xiao surname: Han fullname: Han, Tony Xiao email: tony.hanxiao@huawei.com organization: 2012 Laboratory, Huawei, Shenzhen, China |
BookMark | eNp9UD1PwzAUtFCRaAs7A0Mk5hR_xK49QlWgUqUOBFbLSV4qV41TbHfg3-PQDoiB6d57ununuwkaud4BQrcEzwjB6qH8KGcUUzZjVFBO2AUaE8VUrhhXIzTGmMhc8YJfoUkIu7QWhSJjtNwcou3MPiu9caGzMXsC07W976zbZgmzlYuw9SZCk72BC8PZuCZb9F13dLY20fbuGl22Zh_g5oxT9P68LBev-Xrzslo8rvOaKhpzqA2vMaW0krzBjZnLtmKqmheYcSBYClnAMDBFwAghKJNtKwVpZNW0WNRsiu5Pfw--_zxCiHrXH71LlppKPieEcKUSC59Yte9D8NDqg08Z_ZcmWA9l6VSWHsrS57KSRPyR1Db-RIve2P1_wruT0ALAL58URlDBvgFk73h0 |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3411695 crossref_primary_10_1109_TWC_2024_3516375 crossref_primary_10_1109_TWC_2024_3357349 crossref_primary_10_3390_s24082498 crossref_primary_10_1109_MWC_015_2200559 crossref_primary_10_1109_TSP_2023_3280715 crossref_primary_10_1109_JIOT_2024_3397709 crossref_primary_10_1109_OJCOMS_2024_3353770 crossref_primary_10_1109_TCOMM_2023_3332856 crossref_primary_10_3390_app14167196 crossref_primary_10_1109_TCOMM_2024_3406382 crossref_primary_10_1049_ell2_13238 crossref_primary_10_1109_JIOT_2024_3430894 crossref_primary_10_1109_LWC_2024_3501395 crossref_primary_10_1109_TVT_2024_3465897 crossref_primary_10_1109_TWC_2024_3491356 crossref_primary_10_1109_JIOT_2024_3361939 crossref_primary_10_1109_JSAC_2024_3413996 crossref_primary_10_1109_LWC_2025_3528080 crossref_primary_10_1109_TWC_2024_3372033 crossref_primary_10_1016_j_phycom_2024_102576 crossref_primary_10_1109_TWC_2023_3312723 crossref_primary_10_1109_TWC_2024_3519351 crossref_primary_10_1109_LCOMM_2024_3434421 crossref_primary_10_1109_TWC_2024_3458190 crossref_primary_10_1109_TVT_2024_3355899 crossref_primary_10_1109_LWC_2024_3448528 crossref_primary_10_1049_cmu2_12732 crossref_primary_10_1109_JSAS_2024_3458888 crossref_primary_10_1109_TSP_2024_3441815 crossref_primary_10_1109_TWC_2023_3280179 crossref_primary_10_1109_TVT_2024_3422036 crossref_primary_10_1109_TWC_2024_3459036 crossref_primary_10_1109_JPROC_2024_3476675 crossref_primary_10_1049_cmu2_70015 crossref_primary_10_1360_SSI_2023_0056 crossref_primary_10_1109_LWC_2024_3356230 crossref_primary_10_1109_TVT_2024_3451480 crossref_primary_10_1109_TWC_2024_3509978 crossref_primary_10_1016_j_dcan_2025_03_001 crossref_primary_10_1109_JSTSP_2024_3408071 crossref_primary_10_1109_TWC_2024_3470873 crossref_primary_10_1109_TWC_2024_3435864 crossref_primary_10_1109_TWC_2024_3454987 crossref_primary_10_1109_LCOMM_2024_3481032 crossref_primary_10_1109_TCOMM_2024_3462681 crossref_primary_10_3390_e26090773 crossref_primary_10_1109_JSAC_2024_3431582 crossref_primary_10_1109_JSTSP_2024_3463403 crossref_primary_10_1109_TCOMM_2024_3446610 crossref_primary_10_1007_s11432_024_4205_8 crossref_primary_10_1109_TITS_2024_3362515 crossref_primary_10_3390_s24010295 crossref_primary_10_1109_TVT_2024_3399935 crossref_primary_10_1109_JIOT_2024_3406930 crossref_primary_10_1109_TCOMM_2024_3387870 crossref_primary_10_1109_TCOMM_2024_3455231 crossref_primary_10_1109_JSAC_2025_3531545 crossref_primary_10_1109_TCOMM_2023_3286461 crossref_primary_10_1109_JSAC_2022_3156632 crossref_primary_10_1109_TWC_2023_3348109 crossref_primary_10_1109_TVT_2024_3453194 crossref_primary_10_1109_MWC_010_2400063 crossref_primary_10_1016_j_phycom_2024_102429 crossref_primary_10_1109_TWC_2024_3428705 crossref_primary_10_1109_JSAC_2023_3287540 crossref_primary_10_1109_TWC_2024_3364913 crossref_primary_10_1109_TVT_2023_3294338 crossref_primary_10_1109_TWC_2024_3435912 crossref_primary_10_1109_COMST_2024_3408899 crossref_primary_10_1109_OJCOMS_2025_3527860 crossref_primary_10_1109_JIOT_2024_3362937 crossref_primary_10_1109_TVT_2024_3446821 crossref_primary_10_1109_ACCESS_2024_3470896 crossref_primary_10_1109_JPROC_2024_3449807 crossref_primary_10_1109_TWC_2023_3325849 |
Cites_doi | 10.1109/JSTSP.2022.3172788 10.1109/NCC.2012.6176764 10.23919/URSIRSB.2017.8267374 10.1109/ACCESS.2021.3059488 10.1109/GLOCOM.2012.6503914 10.1109/RADAR.2017.7944480 10.1109/VETECS.2009.5073387 10.1109/TCOMM.2020.2973976 10.1109/TVT.2014.2317831 10.1002/9780470391488 10.1017/9781139049276 10.1109/MSP.2019.2907329 10.1109/COMST.2021.3122519 10.1109/TSP.2007.897903 10.1109/NRC.2004.1316398 10.1109/TSP.2020.2994394 10.1109/TWC.2018.2803045 10.1109/TSP.2018.2847648 10.1109/LCOMM.2022.3140271 10.1109/TVT.2022.3194139 10.1109/TAES.2017.2651698 10.1109/TAES.2019.2899797 10.1109/GCWkshps50303.2020.9367442 10.1109/TSP.2018.2831624 10.1109/JSAC.2012.121106 10.1049/iet-rsn.2015.0484 10.1109/TSP.2019.2956689 10.1109/MSP.2007.904812 10.1109/MAES.2016.150225 10.1109/MSP.2010.936019 10.1109/GCWkshps56602.2022.10008725 10.1109/RADAR.2017.7944478 10.1109/VTCSpring.2017.8108563 10.1109/TSP.2018.2833813 10.1017/CBO9780511841224 10.1109/LWC.2019.2911948 10.1109/TVT.2018.2872917 10.1109/TSP.2020.3004739 10.1109/TAES.2019.2939611 10.1109/JSTSP.2016.2523924 10.1109/JCS52304.2021.9376319 10.1109/JPROC.2011.2131110 10.1109/WCNC51071.2022.9771801 10.1109/TSP.2016.2569479 10.1109/EUSIPCO.2016.7760521 10.1109/TAES.2018.2866038 10.1109/LWC.2017.2693985 10.1109/JSTSP.2021.3110312 10.1109/JSAC.2022.3155548 10.1109/ICASSP.2018.8462475 10.1109/TCOMM.2020.3034357 10.1109/JSAC.2022.3155546 10.1109/TCCN.2017.2666266 10.1109/RADAR.2017.7944446 10.1109/MCOM.2014.6736761 10.1109/TSP.2007.894398 10.1109/EURAD.2006.280267 10.1109/JSAC.2022.3156632 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2023.3262513 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 10603 |
ExternalDocumentID | 10_1109_TVT_2023_3262513 10086626 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 92267202 funderid: 10.13039/501100001809 – fundername: Guangdong Provincial Key Laboratory of Future Networks of Intelligence grantid: 2022B1212010001 – fundername: Shenzhen Fundamental Research Program grantid: JCYJ20210324133405015 – fundername: National Natural Science Foundation of China grantid: U2001208 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c292t-eca5c0222b85d0da78fb39b74035e108684e5e10391ea666238ff861d8bdf06c3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:05:17 EDT 2025 Tue Jul 01 01:44:22 EDT 2025 Thu Apr 24 23:00:38 EDT 2025 Wed Aug 27 02:25:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-eca5c0222b85d0da78fb39b74035e108684e5e10391ea666238ff861d8bdf06c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4854-8839 0000-0001-9136-7067 |
PQID | 2857111599 |
PQPubID | 85454 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TVT_2023_3262513 proquest_journals_2857111599 ieee_primary_10086626 crossref_citationtrail_10_1109_TVT_2023_3262513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 zhang (ref1) 2021; 24 richards (ref49) 2005 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 grant (ref55) 2014 ref9 ref4 ref3 ref6 ref5 ref40 tan (ref22) 0 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 szeg (ref63) 1939; 23 ref21 ref28 ref27 ref29 (ref20) 2021 ref60 ref62 ref61 |
References_xml | – ident: ref56 doi: 10.1109/JSTSP.2022.3172788 – ident: ref50 doi: 10.1109/NCC.2012.6176764 – ident: ref24 doi: 10.23919/URSIRSB.2017.8267374 – ident: ref19 doi: 10.1109/ACCESS.2021.3059488 – ident: ref25 doi: 10.1109/GLOCOM.2012.6503914 – year: 2021 ident: ref20 article-title: IEEE p802.11 - task group bf (WLAN sensing) – ident: ref14 doi: 10.1109/RADAR.2017.7944480 – ident: ref8 doi: 10.1109/VETECS.2009.5073387 – ident: ref2 doi: 10.1109/TCOMM.2020.2973976 – ident: ref52 doi: 10.1109/TVT.2014.2317831 – ident: ref53 doi: 10.1002/9780470391488 – ident: ref44 doi: 10.1017/9781139049276 – ident: ref23 doi: 10.1109/MSP.2019.2907329 – volume: 24 start-page: 306 year: 2021 ident: ref1 article-title: Enabling joint communication and radio sensing in mobile networks-A survey publication-title: IEEE Commun Surveys Tut doi: 10.1109/COMST.2021.3122519 – ident: ref62 doi: 10.1109/TSP.2007.897903 – ident: ref45 doi: 10.1109/NRC.2004.1316398 – ident: ref37 doi: 10.1109/TSP.2020.2994394 – ident: ref11 doi: 10.1109/TWC.2018.2803045 – ident: ref5 doi: 10.1109/TSP.2018.2847648 – ident: ref17 doi: 10.1109/LCOMM.2022.3140271 – ident: ref60 doi: 10.1109/TVT.2022.3194139 – ident: ref26 doi: 10.1109/TAES.2017.2651698 – ident: ref10 doi: 10.1109/TAES.2019.2899797 – ident: ref21 doi: 10.1109/GCWkshps50303.2020.9367442 – ident: ref30 doi: 10.1109/TSP.2018.2831624 – ident: ref27 doi: 10.1109/JSAC.2012.121106 – ident: ref42 doi: 10.1049/iet-rsn.2015.0484 – ident: ref3 doi: 10.1109/TSP.2019.2956689 – ident: ref46 doi: 10.1109/MSP.2007.904812 – ident: ref4 doi: 10.1109/MAES.2016.150225 – year: 2005 ident: ref49 publication-title: Fundamentals of Radar Signal Processing – ident: ref54 doi: 10.1109/MSP.2010.936019 – ident: ref58 doi: 10.1109/GCWkshps56602.2022.10008725 – ident: ref13 doi: 10.1109/RADAR.2017.7944478 – ident: ref36 doi: 10.1109/VTCSpring.2017.8108563 – ident: ref29 doi: 10.1109/TSP.2018.2833813 – ident: ref43 doi: 10.1017/CBO9780511841224 – ident: ref34 doi: 10.1109/LWC.2019.2911948 – ident: ref28 doi: 10.1109/TVT.2018.2872917 – ident: ref12 doi: 10.1109/TSP.2020.3004739 – ident: ref61 doi: 10.1109/TAES.2019.2939611 – ident: ref48 doi: 10.1109/JSTSP.2016.2523924 – ident: ref15 doi: 10.1109/JCS52304.2021.9376319 – volume: 23 year: 1939 ident: ref63 publication-title: Orthogonal Polynomials – ident: ref6 doi: 10.1109/JPROC.2011.2131110 – year: 2014 ident: ref55 article-title: CVX: Matlab software for disciplined convex programming, version 2.1 – ident: ref59 doi: 10.1109/WCNC51071.2022.9771801 – ident: ref31 doi: 10.1109/TSP.2016.2569479 – ident: ref41 doi: 10.1109/EUSIPCO.2016.7760521 – ident: ref39 doi: 10.1109/TAES.2018.2866038 – ident: ref32 doi: 10.1109/LWC.2017.2693985 – ident: ref18 doi: 10.1109/JSTSP.2021.3110312 – ident: ref16 doi: 10.1109/JSAC.2022.3155548 – ident: ref40 doi: 10.1109/ICASSP.2018.8462475 – ident: ref38 doi: 10.1109/TCOMM.2020.3034357 – ident: ref57 doi: 10.1109/JSAC.2022.3155546 – ident: ref33 doi: 10.1109/TCCN.2017.2666266 – ident: ref35 doi: 10.1109/RADAR.2017.7944446 – ident: ref47 doi: 10.1109/MCOM.2014.6736761 – ident: ref51 doi: 10.1109/TSP.2007.894398 – ident: ref9 doi: 10.1109/EURAD.2006.280267 – start-page: 1 year: 0 ident: ref22 article-title: Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions publication-title: Proc IEEE 1st Int Online Symp Joint Commun Sens – ident: ref7 doi: 10.1109/JSAC.2022.3156632 |
SSID | ssj0014491 |
Score | 2.6636758 |
Snippet | This paper studies the transmit beamforming in a downlink integrated sensing and communication (ISAC) system, where a base station (BS) equipped with a uniform... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10588 |
SubjectTerms | Array signal processing Beamforming Communication Design criteria Downlink Downlinking Integrated sensing and communication (ISAC) Interference Line of sight communication Linear arrays Matching Maximization multiple antennas Optimization Radar Radar antennas Radar targets Receivers semidefinite relaxation (SDR) Sensors Tightness transmit beamforming uniform linear array (ULA) |
Title | Optimal Transmit Beamforming for Integrated Sensing and Communication |
URI | https://ieeexplore.ieee.org/document/10086626 https://www.proquest.com/docview/2857111599 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoKAMLQ9I8bMceAbUqSJSBFnWL_IqEoCmCdOHXc3aSioJATLGSc2T57Lvv7HsgdB4xg2kcSZ9LanzMeO4LykI_piRXkaB57KLe78Z0NMW3MzKrg9VdLIwxxjmfmcA23V2-XqilPSrr20Q0FBB4C7XAcquCtVZXBhjX5fEi2MGAC5o7yZD3J4-TwJYJDwCrgD5P1nSQK6ryQxI79TLcQeNmYJVXyXOwLGWgPr7lbPz3yHfRdg00vctqZeyhDVPso60v6QcP0OAe5MUciJzCmj-V3pURc4ti4bMHT--mSSahvQfr6Q6vRaG9taiSDpoOB5PrkV-XVfBVzOPSN0oQZe08yYgOtUhZLhMuUxwmxNjCSwwb20h4ZARYN6DU85zRSDOp85Cq5BC1i0VhjpCnhQH8lyiGpcBKKxYLApBCilQkkaJhF_Wbic5UnXPclr54yZztEfIMWJNZ1mQ1a7roYtXjtcq38Qdtx870F7pqkruo1zAzq3fkexYzkoJcJ5wf_9LtBG3av1fefT3ULt-W5hQQRynP3Er7BO1t0Lk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6JQIAMLQ9I8bNceAYFaHmWgILbIr0gIWhCkC7-es5MgHgIxxUrOinVn33227wGwn3BLWJqoUChmQ8JFEUrG4zBltNCJZEXqo94vB6x3Q87u6F0drO5jYay13vnMRq7p7_LNk564o7KOS0TDEIFPwywafppU4VoflwaE1AXyElzDSNDcSsaiM7wdRq5QeIRoBS169sUK-bIqP3SxNzCnSzBohlb5lTxEk1JF-u1b1sZ_j30ZFmuoGRxWc2MFpux4FRY-JSBcg5Mr1BgjJPIma3RfBkdWjhyOxc8BPoN-k07CBNfO1x1fy7EJvsSVrMPN6cnwuBfWhRVCnYq0DK2WVLudnuLUxEZ2eaEyobokzqh1pZc4sa6RicRK3N-gWS8KzhLDlSliprMNmBk_je0mBEZaRICZ5kRJoo3mqaQIKpTsyizRLG5Bp2F0ruus4674xWPudx-xyFE0uRNNXoumBQcfPZ6rjBt_0K47Tn-iq5jcgnYjzLxek695ymkXNTsVYuuXbnsw1xteXuQX_cH5Nsy7P1W-fm2YKV8mdgfxR6l2_ax7B_0O1AI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Transmit+Beamforming+for+Integrated+Sensing+and+Communication&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Hua%2C+Haocheng&rft.au=Xu%2C+Jie&rft.au=Han%2C+Tony+Xiao&rft.date=2023-08-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=72&rft.issue=8&rft.spage=10588&rft.epage=10603&rft_id=info:doi/10.1109%2FTVT.2023.3262513&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2023_3262513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |