Attribute-Based Robotic Grasping With Data-Efficient Adaptation

Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to grasp a novel target object in clutter remains challenging. This article attempts to address the challenge by leveraging object attributes t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 40; pp. 1566 - 1579
Main Authors Yang, Yang, Yu, Houjian, Lou, Xibai, Liu, Yuanhao, Choi, Changhyun
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to grasp a novel target object in clutter remains challenging. This article attempts to address the challenge by leveraging object attributes that facilitate recognition, grasping, and rapid adaptation to new domains. In this work, we present an end-to-end encoder-decoder network to learn attribute-based robotic grasping with data-efficient adaptation capability. We first pretrain the end-to-end model with a variety of basic objects to learn generic attribute representation for recognition and grasping. Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances. To train the joint embedding space of visual and textual attributes, the robot utilizes object persistence before and after grasping. Our model is self-supervised in a simulation that only uses basic objects of various colors and shapes but generalizes to novel objects in new environments. To further facilitate generalization, we propose two adaptation methods, adversarial adaption and one-grasp adaptation. Adversarial adaptation regulates the image encoder using augmented data of unlabeled images, whereas one-grasp adaptation updates the overall end-to-end model using augmented data from one grasp trial. Both adaptation methods are data-efficient and considerably improve instance grasping performance. Experimental results in both simulation and the real world demonstrate that our approach achieves over 81% instance grasping success rate on unknown objects, which outperforms several baselines by large margins.
AbstractList Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to grasp a novel target object in clutter remains challenging. This article attempts to address the challenge by leveraging object attributes that facilitate recognition, grasping, and rapid adaptation to new domains. In this work, we present an end-to-end encoder–decoder network to learn attribute-based robotic grasping with data-efficient adaptation capability. We first pretrain the end-to-end model with a variety of basic objects to learn generic attribute representation for recognition and grasping. Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances. To train the joint embedding space of visual and textual attributes, the robot utilizes object persistence before and after grasping. Our model is self-supervised in a simulation that only uses basic objects of various colors and shapes but generalizes to novel objects in new environments. To further facilitate generalization, we propose two adaptation methods, adversarial adaption and one-grasp adaptation. Adversarial adaptation regulates the image encoder using augmented data of unlabeled images, whereas one-grasp adaptation updates the overall end-to-end model using augmented data from one grasp trial. Both adaptation methods are data-efficient and considerably improve instance grasping performance. Experimental results in both simulation and the real world demonstrate that our approach achieves over 81% instance grasping success rate on unknown objects, which outperforms several baselines by large margins.
Author Yu, Houjian
Lou, Xibai
Yang, Yang
Choi, Changhyun
Liu, Yuanhao
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0001-5814-1170
  surname: Yang
  fullname: Yang, Yang
  email: yang5276@umn.edu
  organization: University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Houjian
  orcidid: 0000-0001-8869-5078
  surname: Yu
  fullname: Yu, Houjian
  email: yu000487@umn.edu
  organization: University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Xibai
  orcidid: 0009-0006-4242-847X
  surname: Lou
  fullname: Lou, Xibai
  email: lou00015@umn.edu
  organization: University of Minnesota, Minneapolis, MN, USA
– sequence: 4
  givenname: Yuanhao
  orcidid: 0009-0000-0680-4753
  surname: Liu
  fullname: Liu, Yuanhao
  email: liu00800@umn.edu
  organization: University of Minnesota, Minneapolis, MN, USA
– sequence: 5
  givenname: Changhyun
  orcidid: 0000-0003-4715-3576
  surname: Choi
  fullname: Choi, Changhyun
  email: cchoi@umn.edu
  organization: University of Minnesota, Minneapolis, MN, USA
BookMark eNp9kD1PwzAQhi1UJNrCzsAQiTnl_JXaEyqlFKRKlaoiRstJbHBVkmC7A_8eV-mAGJjuhve5V_eM0KBpG4PQNYYJxiDvtpv1hABhE0o5ZYKdoSGWDOfACjFIO-ckpyDFBRqFsIOUlECH6H4Wo3flIZr8QQdTZ5u2bKOrsqXXoXPNe_bm4kf2qKPOF9a6ypkmZrNad1FH1zaX6NzqfTBXpzlGr0-L7fw5X62XL_PZKq-IJDE3vCSEQDFlUk5rxmrDRUWE4WALXEpuawyiAMklZ5ZbKDGmpbQ1rYgVurB0jG77u51vvw4mRLVrD75JlSoVAJE0nU8p6FOVb0PwxqrOu0_tvxUGddSkkiZ11KROmhJS_EEq178WvXb7_8CbHnTGmF89VAoOnP4A0B51Kw
CODEN ITREAE
CitedBy_id crossref_primary_10_3390_machines13030247
Cites_doi 10.1609/aaai.v32i1.11832
10.1007/978-3-031-19842-7_36
10.1109/ICRA.2013.6630858
10.1109/CVPR.2015.7298965
10.1109/ICRA40945.2020.9197413
10.3115/v1/P15-1162
10.1109/ICRA48506.2021.9561139
10.1007/978-3-030-15413-4_10
10.1109/TPAMI.2006.79
10.7551/mitpress/7503.003.0022
10.1016/S0031-3203(99)00079-5
10.1109/CVPR.2015.7298682
10.1109/MRA.2011.2181749
10.1109/LRA.2018.2852786
10.1109/CVPR.2016.90
10.1109/tnn.1998.712192
10.1109/CVPR.2009.5206848
10.1109/IROS40897.2019.8968603
10.1109/LRA.2020.2970622
10.5555/3104322.3104425
10.1109/ICRA48506.2021.9561737
10.1109/MRA.2005.1577023
10.1109/CVPR.2017.316
10.1109/ICRA40945.2020.9197182
10.15607/RSS.2017.XIII.034
10.1109/TKDE.2009.191
10.1007/978-3-030-30671-7_2
10.1109/IROS.2013.6696520
10.1109/CVPR.2016.319
10.1109/ICRA48891.2023.10160213
10.1109/IROS.2018.8593986
10.1016/j.robot.2011.07.016
10.1109/CVPR.2009.5206772
10.5555/2946645.2946704
10.1109/ICRA.2018.8461041
10.1109/ICRA.2019.8794143
10.1109/ICAR.2015.7251504
10.1109/IROS.2017.8202133
10.1109/ICRA40945.2020.9196567
10.3115/v1/D14-1086
10.1109/TRO.2013.2289018
10.1109/IROS.2018.8593933
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2024.3353484
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 1579
ExternalDocumentID 10_1109_TRO_2024_3353484
10398505
Genre orig-research
GrantInformation_xml – fundername: MnDRIVE Initiative on Robotics, Sensors, and Advanced Manufacturing
– fundername: NSF
  grantid: 2143730
– fundername: Sony Research Award Program
– fundername: UMII-MnDRIVE Ph.D. Graduate Assistantship
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-e5b2220674997d44de58c28e50f61b95fd1086095954f5f0b113b9fd3c2f8a6f3
IEDL.DBID RIE
ISSN 1552-3098
IngestDate Sun Jun 29 13:58:42 EDT 2025
Tue Jul 01 00:42:41 EDT 2025
Thu Apr 24 23:20:39 EDT 2025
Wed Aug 27 01:53:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-e5b2220674997d44de58c28e50f61b95fd1086095954f5f0b113b9fd3c2f8a6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5814-1170
0000-0001-8869-5078
0009-0006-4242-847X
0009-0000-0680-4753
0000-0003-4715-3576
PQID 2920293220
PQPubID 27625
PageCount 14
ParticipantIDs proquest_journals_2920293220
crossref_primary_10_1109_TRO_2024_3353484
crossref_citationtrail_10_1109_TRO_2024_3353484
ieee_primary_10398505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
Hermans (ref19) 2011
Radford (ref59) 2021
ref15
ref58
ref53
Andrychowicz (ref48) 2017
ref11
ref55
ref10
ref54
Goodfellow (ref49) 2014; 27
Koch (ref31) 2015; 2
ref17
ref16
ref18
Lin (ref44) 2013
Zeng (ref6) 2019
ref51
ref50
ref46
ref45
Mikolov (ref40) 2013
ref47
ref42
ref41
ref43
Jaderberg (ref52) 2015
ref8
ref7
ref9
ref3
ref5
Jang (ref13) 2018
Quionero-Candela (ref4) 2008
ref35
ref37
ref36
ref30
ref2
ref1
ref39
ref38
Snell (ref32) 2017
Jang (ref14) 2017
Dhillon (ref34) 2019
Mehta (ref26) 2020
Motiian (ref33) 2017
ref24
ref23
ref25
ref20
ref22
ref21
Chopra (ref56) 2012
ref28
ref27
ref29
References_xml – ident: ref41
  doi: 10.1609/aaai.v32i1.11832
– ident: ref11
  doi: 10.1007/978-3-031-19842-7_36
– ident: ref18
  doi: 10.1109/ICRA.2013.6630858
– ident: ref42
  doi: 10.1109/CVPR.2015.7298965
– ident: ref9
  doi: 10.1109/ICRA40945.2020.9197413
– ident: ref38
  doi: 10.3115/v1/P15-1162
– ident: ref1
  doi: 10.1109/ICRA48506.2021.9561139
– ident: ref53
  doi: 10.1007/978-3-030-15413-4_10
– ident: ref30
  doi: 10.1109/TPAMI.2006.79
– ident: ref5
  doi: 10.7551/mitpress/7503.003.0022
– ident: ref17
  doi: 10.1016/S0031-3203(99)00079-5
– ident: ref46
  doi: 10.1109/CVPR.2015.7298682
– ident: ref58
  doi: 10.1109/MRA.2011.2181749
– ident: ref22
  doi: 10.1109/LRA.2018.2852786
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref47
  doi: 10.1109/tnn.1998.712192
– start-page: 5048
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref48
  article-title: Hindsight experience replay
– ident: ref36
  doi: 10.1109/CVPR.2009.5206848
– ident: ref21
  doi: 10.1109/IROS40897.2019.8968603
– ident: ref3
  doi: 10.1109/LRA.2020.2970622
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref34
  article-title: A baseline for few-shot image classification
– ident: ref39
  doi: 10.5555/3104322.3104425
– ident: ref43
  doi: 10.1109/ICRA48506.2021.9561737
– ident: ref57
  doi: 10.1109/MRA.2005.1577023
– volume: 2
  volume-title: Proc. ICML Deep Learn. Workshop
  year: 2015
  ident: ref31
  article-title: Siamese neural networks for one-shot image recognition
– ident: ref28
  doi: 10.1109/CVPR.2017.316
– ident: ref15
  doi: 10.1109/ICRA40945.2020.9197182
– start-page: 6670
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref33
  article-title: Few-shot adversarial domain adaptation
– start-page: 8748
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2021
  ident: ref59
  article-title: Learning transferable visual models from natural language supervision
– start-page: 1162
  volume-title: Proc. Conf. Robot Learn.
  year: 2020
  ident: ref26
  article-title: Active domain randomization
– start-page: 4077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref32
  article-title: Prototypical networks for few-shot learning
– ident: ref23
  doi: 10.15607/RSS.2017.XIII.034
– volume: 27
  start-page: 139
  year: 2014
  ident: ref49
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref27
  doi: 10.1109/TKDE.2009.191
– ident: ref51
  doi: 10.1007/978-3-030-30671-7_2
– ident: ref54
  doi: 10.1109/IROS.2013.6696520
– start-page: 181
  volume-title: Proc. IEEE Int. Conf. Robot. Automat. (ICRA): Workshop Semantic Perception, Mapping, Exploration
  year: 2011
  ident: ref19
  article-title: Affordance prediction via learned object attributes
– ident: ref45
  doi: 10.1109/CVPR.2016.319
– start-page: 131
  year: 2008
  ident: ref4
  article-title: Covariate shift and local learning by distribution matching
  publication-title: Dataset Shift Mach. Learn.
– ident: ref29
  doi: 10.1109/ICRA48891.2023.10160213
– ident: ref10
  doi: 10.1109/IROS.2018.8593986
– start-page: 99
  volume-title: Proc. Conf. Robot Learn.
  year: 2018
  ident: ref13
  article-title: Grasp2vec: Learning object representations from self-supervised grasping
– ident: ref7
  doi: 10.1016/j.robot.2011.07.016
– ident: ref16
  doi: 10.1109/CVPR.2009.5206772
– year: 2013
  ident: ref40
  article-title: Efficient estimation of word representations in vector space
– year: 2013
  ident: ref44
  article-title: Network in network
– ident: ref50
  doi: 10.5555/2946645.2946704
– volume-title: Introduction to Google Sketchup
  year: 2012
  ident: ref56
– ident: ref2
  doi: 10.1109/ICRA.2018.8461041
– ident: ref12
  doi: 10.1109/ICRA.2019.8794143
– ident: ref55
  doi: 10.1109/ICAR.2015.7251504
– year: 2019
  ident: ref6
  article-title: Learning visual affordances for robotic manipulation
– ident: ref24
  doi: 10.1109/IROS.2017.8202133
– ident: ref20
  doi: 10.1109/ICRA40945.2020.9196567
– start-page: 119
  volume-title: Proc. Conf. Robot Learn.
  year: 2017
  ident: ref14
  article-title: End-to-end learning of semantic grasping
– ident: ref35
  doi: 10.3115/v1/D14-1086
– ident: ref8
  doi: 10.1109/TRO.2013.2289018
– ident: ref25
  doi: 10.1109/IROS.2018.8593933
– start-page: 2017
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2015
  ident: ref52
  article-title: Spatial transformer networks
SSID ssj0024903
Score 2.4497983
Snippet Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1566
SubjectTerms Adaptation
Adaptation models
Affordances
Clutter
Coders
Data augmentation
Data models
Deep learning
Deep learning in grasping and manipulation
Grasping
Grasping (robotics)
perception for grasping and manipulation
Robotics
Robots
Visualization
Title Attribute-Based Robotic Grasping With Data-Efficient Adaptation
URI https://ieeexplore.ieee.org/document/10398505
https://www.proquest.com/docview/2920293220
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ukx78xIii2cGLh8K2tqM9GVSQmIgJgchtadc2Gg0QGBf_el-74Wc03rakXT9e1_deX9_vh9BZqDOmqIywNjrGtMUlFomOsKEyVlzbqGVcRPeun_RG9HbMxmWyus-FMcb4y2em4R59LF9Ps6U7Kmu6sCVnDrF0HTy3IlnrA1hPeBpkBymGSSj4KiYZiuZwcA-eYEwbhDBCOf2igzypyo-d2KuX7jbqrzpW3Cp5bixz1chev2E2_rvnO2irNDSDdrEydtGameyhzU_wg_voop0XfFcGX4Iy08FgqqZQPLiZy4XLowoenvLH4FrmEnc81AQ0ErS1nBXx-yoadTvDqx4uCRVwFos4x4YpMAdAP4Gb09KUasN4FnPDQptESjCrHe-SOxlk1DIbqigiSlhNsthymVhygCqT6cQcokCDYyihemKZAReNS7dzEgGvMYdGSA01V1OcZiXauCO9eEm91xGKFISSOqGkpVBq6Py9xqxA2vijbNXN8adyxfTWUH0lxrT8Fxep4-MCowYGfvRLtWO04b5enKzUUSWfL80J2Bq5OvVr7A2WuM1b
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1EokIGFwW0S26k9ofIoBdoiVUWwRXZsCwRqEU0Xfj1nJ-UpEFsi2bJz5_jufL7vQ-gg1BlTVEZYGx1j2uASi0RH2FAZK65t1DAuo9vtJe0bennH7spidV8LY4zxl89MzT36XL4eZRN3VFZ3aUvOHGLpHBh-FhXlWh_QesITITtQMUxCwadZyVDUB_1riAVjWiOEEcrpFyvkaVV-7MXewLSWUW86teJeyWNtkqta9voNtfHfc19BS6WrGTSLtbGKZsxwDS1-AiBcR0fNvGC8MvgYzJkO-iM1gubB-Yscu0qq4PYhvw9OZS7xmQebgEGCppbPRQZ_A920zgYnbVxSKuAsFnGODVPgEICFgkCnoSnVhvEs5oaFNomUYFY75iV3NsioZTZUUUSUsJpkseUysWQTzQ5HQ7OFAg2hoYTuiWUGgjQu3d5JBLzGHAYhFVSfijjNSrxxR3vxlPq4IxQpKCV1SklLpVTQ4XuP5wJr44-2G07Gn9oV4q2g6lSNafk3jlPHyAVuDXz49i_d9tF8e9DtpJ2L3tUOWnAjFecsVTSbv0zMLngeudrz6-0NfcXQpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribute-Based+Robotic+Grasping+With+Data-Efficient+Adaptation&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Yang%2C+Yang&rft.au=Yu%2C+Houjian&rft.au=Lou%2C+Xibai&rft.au=Liu%2C+Yuanhao&rft.date=2024&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=40&rft.spage=1566&rft.epage=1579&rft_id=info:doi/10.1109%2FTRO.2024.3353484&rft.externalDocID=10398505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon