Attribute-Based Robotic Grasping With Data-Efficient Adaptation
Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to grasp a novel target object in clutter remains challenging. This article attempts to address the challenge by leveraging object attributes t...
Saved in:
Published in | IEEE transactions on robotics Vol. 40; pp. 1566 - 1579 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to grasp a novel target object in clutter remains challenging. This article attempts to address the challenge by leveraging object attributes that facilitate recognition, grasping, and rapid adaptation to new domains. In this work, we present an end-to-end encoder-decoder network to learn attribute-based robotic grasping with data-efficient adaptation capability. We first pretrain the end-to-end model with a variety of basic objects to learn generic attribute representation for recognition and grasping. Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances. To train the joint embedding space of visual and textual attributes, the robot utilizes object persistence before and after grasping. Our model is self-supervised in a simulation that only uses basic objects of various colors and shapes but generalizes to novel objects in new environments. To further facilitate generalization, we propose two adaptation methods, adversarial adaption and one-grasp adaptation. Adversarial adaptation regulates the image encoder using augmented data of unlabeled images, whereas one-grasp adaptation updates the overall end-to-end model using augmented data from one grasp trial. Both adaptation methods are data-efficient and considerably improve instance grasping performance. Experimental results in both simulation and the real world demonstrate that our approach achieves over 81% instance grasping success rate on unknown objects, which outperforms several baselines by large margins. |
---|---|
AbstractList | Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to grasp a novel target object in clutter remains challenging. This article attempts to address the challenge by leveraging object attributes that facilitate recognition, grasping, and rapid adaptation to new domains. In this work, we present an end-to-end encoder–decoder network to learn attribute-based robotic grasping with data-efficient adaptation capability. We first pretrain the end-to-end model with a variety of basic objects to learn generic attribute representation for recognition and grasping. Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances. To train the joint embedding space of visual and textual attributes, the robot utilizes object persistence before and after grasping. Our model is self-supervised in a simulation that only uses basic objects of various colors and shapes but generalizes to novel objects in new environments. To further facilitate generalization, we propose two adaptation methods, adversarial adaption and one-grasp adaptation. Adversarial adaptation regulates the image encoder using augmented data of unlabeled images, whereas one-grasp adaptation updates the overall end-to-end model using augmented data from one grasp trial. Both adaptation methods are data-efficient and considerably improve instance grasping performance. Experimental results in both simulation and the real world demonstrate that our approach achieves over 81% instance grasping success rate on unknown objects, which outperforms several baselines by large margins. |
Author | Yu, Houjian Lou, Xibai Yang, Yang Choi, Changhyun Liu, Yuanhao |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0001-5814-1170 surname: Yang fullname: Yang, Yang email: yang5276@umn.edu organization: University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Houjian orcidid: 0000-0001-8869-5078 surname: Yu fullname: Yu, Houjian email: yu000487@umn.edu organization: University of Minnesota, Minneapolis, MN, USA – sequence: 3 givenname: Xibai orcidid: 0009-0006-4242-847X surname: Lou fullname: Lou, Xibai email: lou00015@umn.edu organization: University of Minnesota, Minneapolis, MN, USA – sequence: 4 givenname: Yuanhao orcidid: 0009-0000-0680-4753 surname: Liu fullname: Liu, Yuanhao email: liu00800@umn.edu organization: University of Minnesota, Minneapolis, MN, USA – sequence: 5 givenname: Changhyun orcidid: 0000-0003-4715-3576 surname: Choi fullname: Choi, Changhyun email: cchoi@umn.edu organization: University of Minnesota, Minneapolis, MN, USA |
BookMark | eNp9kD1PwzAQhi1UJNrCzsAQiTnl_JXaEyqlFKRKlaoiRstJbHBVkmC7A_8eV-mAGJjuhve5V_eM0KBpG4PQNYYJxiDvtpv1hABhE0o5ZYKdoSGWDOfACjFIO-ckpyDFBRqFsIOUlECH6H4Wo3flIZr8QQdTZ5u2bKOrsqXXoXPNe_bm4kf2qKPOF9a6ypkmZrNad1FH1zaX6NzqfTBXpzlGr0-L7fw5X62XL_PZKq-IJDE3vCSEQDFlUk5rxmrDRUWE4WALXEpuawyiAMklZ5ZbKDGmpbQ1rYgVurB0jG77u51vvw4mRLVrD75JlSoVAJE0nU8p6FOVb0PwxqrOu0_tvxUGddSkkiZ11KROmhJS_EEq178WvXb7_8CbHnTGmF89VAoOnP4A0B51Kw |
CODEN | ITREAE |
CitedBy_id | crossref_primary_10_3390_machines13030247 |
Cites_doi | 10.1609/aaai.v32i1.11832 10.1007/978-3-031-19842-7_36 10.1109/ICRA.2013.6630858 10.1109/CVPR.2015.7298965 10.1109/ICRA40945.2020.9197413 10.3115/v1/P15-1162 10.1109/ICRA48506.2021.9561139 10.1007/978-3-030-15413-4_10 10.1109/TPAMI.2006.79 10.7551/mitpress/7503.003.0022 10.1016/S0031-3203(99)00079-5 10.1109/CVPR.2015.7298682 10.1109/MRA.2011.2181749 10.1109/LRA.2018.2852786 10.1109/CVPR.2016.90 10.1109/tnn.1998.712192 10.1109/CVPR.2009.5206848 10.1109/IROS40897.2019.8968603 10.1109/LRA.2020.2970622 10.5555/3104322.3104425 10.1109/ICRA48506.2021.9561737 10.1109/MRA.2005.1577023 10.1109/CVPR.2017.316 10.1109/ICRA40945.2020.9197182 10.15607/RSS.2017.XIII.034 10.1109/TKDE.2009.191 10.1007/978-3-030-30671-7_2 10.1109/IROS.2013.6696520 10.1109/CVPR.2016.319 10.1109/ICRA48891.2023.10160213 10.1109/IROS.2018.8593986 10.1016/j.robot.2011.07.016 10.1109/CVPR.2009.5206772 10.5555/2946645.2946704 10.1109/ICRA.2018.8461041 10.1109/ICRA.2019.8794143 10.1109/ICAR.2015.7251504 10.1109/IROS.2017.8202133 10.1109/ICRA40945.2020.9196567 10.3115/v1/D14-1086 10.1109/TRO.2013.2289018 10.1109/IROS.2018.8593933 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TRO.2024.3353484 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0468 |
EndPage | 1579 |
ExternalDocumentID | 10_1109_TRO_2024_3353484 10398505 |
Genre | orig-research |
GrantInformation_xml | – fundername: MnDRIVE Initiative on Robotics, Sensors, and Advanced Manufacturing – fundername: NSF grantid: 2143730 – fundername: Sony Research Award Program – fundername: UMII-MnDRIVE Ph.D. Graduate Assistantship |
GroupedDBID | .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS VJK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-e5b2220674997d44de58c28e50f61b95fd1086095954f5f0b113b9fd3c2f8a6f3 |
IEDL.DBID | RIE |
ISSN | 1552-3098 |
IngestDate | Sun Jun 29 13:58:42 EDT 2025 Tue Jul 01 00:42:41 EDT 2025 Thu Apr 24 23:20:39 EDT 2025 Wed Aug 27 01:53:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-e5b2220674997d44de58c28e50f61b95fd1086095954f5f0b113b9fd3c2f8a6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5814-1170 0000-0001-8869-5078 0009-0006-4242-847X 0009-0000-0680-4753 0000-0003-4715-3576 |
PQID | 2920293220 |
PQPubID | 27625 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2920293220 crossref_primary_10_1109_TRO_2024_3353484 crossref_citationtrail_10_1109_TRO_2024_3353484 ieee_primary_10398505 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on robotics |
PublicationTitleAbbrev | TRO |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref12 Hermans (ref19) 2011 Radford (ref59) 2021 ref15 ref58 ref53 Andrychowicz (ref48) 2017 ref11 ref55 ref10 ref54 Goodfellow (ref49) 2014; 27 Koch (ref31) 2015; 2 ref17 ref16 ref18 Lin (ref44) 2013 Zeng (ref6) 2019 ref51 ref50 ref46 ref45 Mikolov (ref40) 2013 ref47 ref42 ref41 ref43 Jaderberg (ref52) 2015 ref8 ref7 ref9 ref3 ref5 Jang (ref13) 2018 Quionero-Candela (ref4) 2008 ref35 ref37 ref36 ref30 ref2 ref1 ref39 ref38 Snell (ref32) 2017 Jang (ref14) 2017 Dhillon (ref34) 2019 Mehta (ref26) 2020 Motiian (ref33) 2017 ref24 ref23 ref25 ref20 ref22 ref21 Chopra (ref56) 2012 ref28 ref27 ref29 |
References_xml | – ident: ref41 doi: 10.1609/aaai.v32i1.11832 – ident: ref11 doi: 10.1007/978-3-031-19842-7_36 – ident: ref18 doi: 10.1109/ICRA.2013.6630858 – ident: ref42 doi: 10.1109/CVPR.2015.7298965 – ident: ref9 doi: 10.1109/ICRA40945.2020.9197413 – ident: ref38 doi: 10.3115/v1/P15-1162 – ident: ref1 doi: 10.1109/ICRA48506.2021.9561139 – ident: ref53 doi: 10.1007/978-3-030-15413-4_10 – ident: ref30 doi: 10.1109/TPAMI.2006.79 – ident: ref5 doi: 10.7551/mitpress/7503.003.0022 – ident: ref17 doi: 10.1016/S0031-3203(99)00079-5 – ident: ref46 doi: 10.1109/CVPR.2015.7298682 – ident: ref58 doi: 10.1109/MRA.2011.2181749 – ident: ref22 doi: 10.1109/LRA.2018.2852786 – ident: ref37 doi: 10.1109/CVPR.2016.90 – ident: ref47 doi: 10.1109/tnn.1998.712192 – start-page: 5048 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref48 article-title: Hindsight experience replay – ident: ref36 doi: 10.1109/CVPR.2009.5206848 – ident: ref21 doi: 10.1109/IROS40897.2019.8968603 – ident: ref3 doi: 10.1109/LRA.2020.2970622 – volume-title: Proc. Int. Conf. Learn. Representations year: 2019 ident: ref34 article-title: A baseline for few-shot image classification – ident: ref39 doi: 10.5555/3104322.3104425 – ident: ref43 doi: 10.1109/ICRA48506.2021.9561737 – ident: ref57 doi: 10.1109/MRA.2005.1577023 – volume: 2 volume-title: Proc. ICML Deep Learn. Workshop year: 2015 ident: ref31 article-title: Siamese neural networks for one-shot image recognition – ident: ref28 doi: 10.1109/CVPR.2017.316 – ident: ref15 doi: 10.1109/ICRA40945.2020.9197182 – start-page: 6670 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref33 article-title: Few-shot adversarial domain adaptation – start-page: 8748 volume-title: Proc. Int. Conf. Mach. Learn. year: 2021 ident: ref59 article-title: Learning transferable visual models from natural language supervision – start-page: 1162 volume-title: Proc. Conf. Robot Learn. year: 2020 ident: ref26 article-title: Active domain randomization – start-page: 4077 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref32 article-title: Prototypical networks for few-shot learning – ident: ref23 doi: 10.15607/RSS.2017.XIII.034 – volume: 27 start-page: 139 year: 2014 ident: ref49 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – ident: ref27 doi: 10.1109/TKDE.2009.191 – ident: ref51 doi: 10.1007/978-3-030-30671-7_2 – ident: ref54 doi: 10.1109/IROS.2013.6696520 – start-page: 181 volume-title: Proc. IEEE Int. Conf. Robot. Automat. (ICRA): Workshop Semantic Perception, Mapping, Exploration year: 2011 ident: ref19 article-title: Affordance prediction via learned object attributes – ident: ref45 doi: 10.1109/CVPR.2016.319 – start-page: 131 year: 2008 ident: ref4 article-title: Covariate shift and local learning by distribution matching publication-title: Dataset Shift Mach. Learn. – ident: ref29 doi: 10.1109/ICRA48891.2023.10160213 – ident: ref10 doi: 10.1109/IROS.2018.8593986 – start-page: 99 volume-title: Proc. Conf. Robot Learn. year: 2018 ident: ref13 article-title: Grasp2vec: Learning object representations from self-supervised grasping – ident: ref7 doi: 10.1016/j.robot.2011.07.016 – ident: ref16 doi: 10.1109/CVPR.2009.5206772 – year: 2013 ident: ref40 article-title: Efficient estimation of word representations in vector space – year: 2013 ident: ref44 article-title: Network in network – ident: ref50 doi: 10.5555/2946645.2946704 – volume-title: Introduction to Google Sketchup year: 2012 ident: ref56 – ident: ref2 doi: 10.1109/ICRA.2018.8461041 – ident: ref12 doi: 10.1109/ICRA.2019.8794143 – ident: ref55 doi: 10.1109/ICAR.2015.7251504 – year: 2019 ident: ref6 article-title: Learning visual affordances for robotic manipulation – ident: ref24 doi: 10.1109/IROS.2017.8202133 – ident: ref20 doi: 10.1109/ICRA40945.2020.9196567 – start-page: 119 volume-title: Proc. Conf. Robot Learn. year: 2017 ident: ref14 article-title: End-to-end learning of semantic grasping – ident: ref35 doi: 10.3115/v1/D14-1086 – ident: ref8 doi: 10.1109/TRO.2013.2289018 – ident: ref25 doi: 10.1109/IROS.2018.8593933 – start-page: 2017 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2015 ident: ref52 article-title: Spatial transformer networks |
SSID | ssj0024903 |
Score | 2.4497983 |
Snippet | Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1566 |
SubjectTerms | Adaptation Adaptation models Affordances Clutter Coders Data augmentation Data models Deep learning Deep learning in grasping and manipulation Grasping Grasping (robotics) perception for grasping and manipulation Robotics Robots Visualization |
Title | Attribute-Based Robotic Grasping With Data-Efficient Adaptation |
URI | https://ieeexplore.ieee.org/document/10398505 https://www.proquest.com/docview/2920293220 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ukx78xIii2cGLh8K2tqM9GVSQmIgJgchtadc2Gg0QGBf_el-74Wc03rakXT9e1_deX9_vh9BZqDOmqIywNjrGtMUlFomOsKEyVlzbqGVcRPeun_RG9HbMxmWyus-FMcb4y2em4R59LF9Ps6U7Kmu6sCVnDrF0HTy3IlnrA1hPeBpkBymGSSj4KiYZiuZwcA-eYEwbhDBCOf2igzypyo-d2KuX7jbqrzpW3Cp5bixz1chev2E2_rvnO2irNDSDdrEydtGameyhzU_wg_voop0XfFcGX4Iy08FgqqZQPLiZy4XLowoenvLH4FrmEnc81AQ0ErS1nBXx-yoadTvDqx4uCRVwFos4x4YpMAdAP4Gb09KUasN4FnPDQptESjCrHe-SOxlk1DIbqigiSlhNsthymVhygCqT6cQcokCDYyihemKZAReNS7dzEgGvMYdGSA01V1OcZiXauCO9eEm91xGKFISSOqGkpVBq6Py9xqxA2vijbNXN8adyxfTWUH0lxrT8Fxep4-MCowYGfvRLtWO04b5enKzUUSWfL80J2Bq5OvVr7A2WuM1b |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1EokIGFwW0S26k9ofIoBdoiVUWwRXZsCwRqEU0Xfj1nJ-UpEFsi2bJz5_jufL7vQ-gg1BlTVEZYGx1j2uASi0RH2FAZK65t1DAuo9vtJe0bennH7spidV8LY4zxl89MzT36XL4eZRN3VFZ3aUvOHGLpHBh-FhXlWh_QesITITtQMUxCwadZyVDUB_1riAVjWiOEEcrpFyvkaVV-7MXewLSWUW86teJeyWNtkqta9voNtfHfc19BS6WrGTSLtbGKZsxwDS1-AiBcR0fNvGC8MvgYzJkO-iM1gubB-Yscu0qq4PYhvw9OZS7xmQebgEGCppbPRQZ_A920zgYnbVxSKuAsFnGODVPgEICFgkCnoSnVhvEs5oaFNomUYFY75iV3NsioZTZUUUSUsJpkseUysWQTzQ5HQ7OFAg2hoYTuiWUGgjQu3d5JBLzGHAYhFVSfijjNSrxxR3vxlPq4IxQpKCV1SklLpVTQ4XuP5wJr44-2G07Gn9oV4q2g6lSNafk3jlPHyAVuDXz49i_d9tF8e9DtpJ2L3tUOWnAjFecsVTSbv0zMLngeudrz6-0NfcXQpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribute-Based+Robotic+Grasping+With+Data-Efficient+Adaptation&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Yang%2C+Yang&rft.au=Yu%2C+Houjian&rft.au=Lou%2C+Xibai&rft.au=Liu%2C+Yuanhao&rft.date=2024&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=40&rft.spage=1566&rft.epage=1579&rft_id=info:doi/10.1109%2FTRO.2024.3353484&rft.externalDocID=10398505 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |