PHY Security Design for Mobile Crowd Computing in ICV Networks Based on Multi-Agent Reinforcement Learning

In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where vehicles within RSUs' coverage act as workers to provide their computation and communication resources for computing resource limited vehicle...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 22; no. 10; p. 1
Main Authors Luo, Xuewen, Liu, Yiliang, Chen, Hsiao-Hwa, Guo, Qing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where vehicles within RSUs' coverage act as workers to provide their computation and communication resources for computing resource limited vehicle user equipments (VUEs). Physical (PHY) layer security is used to secure computation task offloading and results feedback in time-varying vehicular channels. Artificial noise (AN) assisted adaptive wiretap coding is adopted to enhance the security of offloading links. With PHY security, the intended receiver can decode secret message while eavesdropper cannot. A modified exhaustive two-dimensional (2D) search algorithm is proposed to optimize transmission rate and secrecy rate in an effective secrecy throughput maximization problem, and a multi-agent twin delayed deep deterministic policy gradient algorithm (MATD3) is utilized to assign VUEs' tasks without a central controller, where a reward function is defined according to the computing costs, including execution time, energy consumption, and price paid for computing. Finally, simulations verify the effectiveness of the proposed framework.
AbstractList In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where vehicles within RSUs' coverage act as workers to provide their computation and communication resources for computing resource limited vehicle user equipments (VUEs). Physical (PHY) layer security is used to secure computation task offloading and results feedback in time-varying vehicular channels. Artificial noise (AN) assisted adaptive wiretap coding is adopted to enhance the security of offloading links. With PHY security, the intended receiver can decode secret message while eavesdropper cannot. A modified exhaustive two-dimensional (2D) search algorithm is proposed to optimize transmission rate and secrecy rate in an effective secrecy throughput maximization problem, and a multi-agent twin delayed deep deterministic policy gradient algorithm (MATD3) is utilized to assign VUEs' tasks without a central controller, where a reward function is defined according to the computing costs, including execution time, energy consumption, and price paid for computing. Finally, simulations verify the effectiveness of the proposed framework.
Author Guo, Qing
Chen, Hsiao-Hwa
Luo, Xuewen
Liu, Yiliang
Author_xml – sequence: 1
  givenname: Xuewen
  orcidid: 0000-0003-2206-6134
  surname: Luo
  fullname: Luo, Xuewen
  organization: Communications Research Center, Harbin Institute of Technology, China
– sequence: 2
  givenname: Yiliang
  orcidid: 0000-0002-6301-6347
  surname: Liu
  fullname: Liu, Yiliang
  organization: School of Cyber Science and Engineering, Xi'an Jiaotong University, China
– sequence: 3
  givenname: Hsiao-Hwa
  orcidid: 0000-0001-8473-0729
  surname: Chen
  fullname: Chen, Hsiao-Hwa
  organization: Department of Engineering Science, National Cheng Kung University, Taiwan
– sequence: 4
  givenname: Qing
  orcidid: 0000-0003-4209-5469
  surname: Guo
  fullname: Guo, Qing
  organization: Communications Research Center, Harbin Institute of Technology, China
BookMark eNp9kL1PwzAQxS1UJEphZ2CwxJxiO3E-xhI-WqkFBAXEFDnxpXJp7WI7qvrfk6gdEAPT3ene753unaKeNhoQuqBkSCnJrucf-ZARFg5DFvE4TI5Qn3KeBoxFaa_rwzigLIlP0KlzS0JoEnPeR8vn8Sd-haqxyu_wLTi10Lg2Fs9MqVaAc2u2EudmvWm80gusNJ7k7_gR_NbYL4dvhAOJjcazZuVVMFqA9vgFlG49Klh30xSE1S17ho5rsXJwfqgD9HZ_N8_HwfTpYZKPpkHFMuYDYFUmKAWWEKAZjUSalTEvZQkRzeo0YjKUvCJS8rpqFzUtU5lJIbJW030ZDtDV3ndjzXcDzhdL01jdnixYmnCeMEqiVhXvVZU1zlmoi0p54ZXR3gq1KigpulyLNteiy7U45NqC5A-4sWot7O4_5HKPKAD4JSecxpyFP-FthWo
CODEN ITWCAX
CitedBy_id crossref_primary_10_1007_s10462_024_10968_z
crossref_primary_10_1109_MWC_001_2300375
crossref_primary_10_32604_cmc_2024_059689
crossref_primary_10_1016_j_compeleceng_2024_109309
crossref_primary_10_1109_TVT_2024_3452513
Cites_doi 10.1109/JSAC.2018.2869948
10.1109/TCOMM.2019.2949994
10.1109/TVT.2016.2532863
10.1109/MNET.011.1900628
10.1109/TIFS.2018.2883150
10.1109/TITS.2012.2188519
10.1109/TVT.2017.2681965
10.1109/TVT.2015.2477427
10.1109/JSAC.2020.3036962
10.1109/TVT.2016.2550032
10.1109/GLOCOM.2008.ECP.176
10.1109/TVT.2020.2966500
10.1109/TWC.2020.2979456
10.1109/TITS.2015.2416257
10.1109/TVT.2021.3088441
10.1109/JSYST.2020.3009723
10.1109/MWC.001.2000079
10.1109/TWC.2021.3051163
10.1109/26.668742
10.1109/TWC.2008.080570
10.1109/TVT.2020.3040596
10.1109/LWC.2020.2973985
10.1109/TCOMM.2014.2314664
10.1109/TVT.2021.3087399
10.1109/JIOT.2018.2875520
10.1109/LCOMM.2021.3114772
10.1109/TVT.2020.3041929
10.1109/LWC.2018.2845882
10.1109/TVT.2020.2967026
10.1002/j.1538-7305.1975.tb02040.x
10.1109/MNET.2018.1700320
10.1109/TVT.2021.3090179
10.1109/TVT.2019.2892176
10.1109/TWC.2013.013014.131248
10.1109/TWC.2021.3051772
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2023.3245637
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 1
ExternalDocumentID 10_1109_TWC_2023_3245637
10051652
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1764263, 62101429
  funderid: 10.13039/501100001809
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 109-2221-E-006-175-MY3, 109-2221-E-006-182-MY3
  funderid: 10.13039/501100004663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
AETIX
AIBXA
CITATION
EJD
H~9
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-e2c9a11e270e1914a89b65bdbe419f842d3d5c0dd5fcb65f1b8d9daa95bd15363
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 19:14:52 EDT 2025
Tue Jul 01 04:13:35 EDT 2025
Thu Apr 24 22:50:55 EDT 2025
Wed Aug 27 02:21:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-e2c9a11e270e1914a89b65bdbe419f842d3d5c0dd5fcb65f1b8d9daa95bd15363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2206-6134
0000-0002-6301-6347
0000-0003-4209-5469
0000-0001-8473-0729
PQID 2875572104
PQPubID 105736
PageCount 1
ParticipantIDs proquest_journals_2875572104
ieee_primary_10051652
crossref_primary_10_1109_TWC_2023_3245637
crossref_citationtrail_10_1109_TWC_2023_3245637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
(ref41) 2018
gradshteyn (ref34) 2007
fujimoto (ref38) 2018
ref24
ref23
ref26
ref25
ref20
ref22
ref21
lowe (ref39) 2017
ref28
ref27
lillicrap (ref37) 2016
ref29
ref8
ref7
ref9
ref4
(ref40) 2019
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/JSAC.2018.2869948
– ident: ref24
  doi: 10.1109/TCOMM.2019.2949994
– ident: ref10
  doi: 10.1109/TVT.2016.2532863
– ident: ref1
  doi: 10.1109/MNET.011.1900628
– ident: ref20
  doi: 10.1109/TIFS.2018.2883150
– ident: ref29
  doi: 10.1109/TITS.2012.2188519
– ident: ref3
  doi: 10.1109/TVT.2017.2681965
– year: 2007
  ident: ref34
  publication-title: Table of Integrals Series and Products
– ident: ref17
  doi: 10.1109/TVT.2015.2477427
– ident: ref36
  doi: 10.1109/JSAC.2020.3036962
– ident: ref18
  doi: 10.1109/TVT.2016.2550032
– ident: ref32
  doi: 10.1109/GLOCOM.2008.ECP.176
– ident: ref7
  doi: 10.1109/TVT.2020.2966500
– ident: ref26
  doi: 10.1109/TWC.2020.2979456
– ident: ref28
  doi: 10.1109/TITS.2015.2416257
– ident: ref4
  doi: 10.1109/TVT.2021.3088441
– ident: ref25
  doi: 10.1109/JSYST.2020.3009723
– ident: ref2
  doi: 10.1109/MWC.001.2000079
– ident: ref35
  doi: 10.1109/TWC.2021.3051163
– ident: ref33
  doi: 10.1109/26.668742
– year: 2018
  ident: ref41
  publication-title: Study on Channel Model for Frequencies From 0 5 to 100 GHz
– start-page: 1
  year: 2016
  ident: ref37
  article-title: Continuous control with deep reinforcement learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref31
  doi: 10.1109/TWC.2008.080570
– ident: ref9
  doi: 10.1109/TVT.2020.3040596
– ident: ref12
  doi: 10.1109/LWC.2020.2973985
– ident: ref15
  doi: 10.1109/TCOMM.2014.2314664
– start-page: 1
  year: 2017
  ident: ref39
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Proc 31st Conf Neural Inf Process Syst (NIPS)
– year: 2019
  ident: ref40
  publication-title: Everything (V2X) Use Cases for LTE NR Release 15
– ident: ref5
  doi: 10.1109/TVT.2021.3087399
– ident: ref11
  doi: 10.1109/JIOT.2018.2875520
– ident: ref27
  doi: 10.1109/LCOMM.2021.3114772
– ident: ref14
  doi: 10.1109/TVT.2020.3041929
– ident: ref23
  doi: 10.1109/LWC.2018.2845882
– ident: ref22
  doi: 10.1109/TVT.2020.2967026
– ident: ref30
  doi: 10.1002/j.1538-7305.1975.tb02040.x
– start-page: 1587
  year: 2018
  ident: ref38
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: Proc 35th Int Conf Mach Learn
– ident: ref19
  doi: 10.1109/MNET.2018.1700320
– ident: ref8
  doi: 10.1109/TVT.2021.3090179
– ident: ref6
  doi: 10.1109/TVT.2019.2892176
– ident: ref16
  doi: 10.1109/TWC.2013.013014.131248
– ident: ref21
  doi: 10.1109/TWC.2021.3051772
SSID ssj0017655
Score 2.4662015
Snippet In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms adaptive wiretap coding
artificial noise
Communication system security
Computation offloading
Computational modeling
Computing costs
computing task offloading
Cybersecurity
Encoding
Energy consumption
Energy costs
Intelligently connected vehicle
Mobile computing
multi-agent reinforcement learning
Multiagent systems
Optimization
PHY security
Roadsides
Search algorithms
Security
Servers
Task analysis
Wireless communication
Title PHY Security Design for Mobile Crowd Computing in ICV Networks Based on Multi-Agent Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10051652
https://www.proquest.com/docview/2875572104
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygU5IGFIWmSxkk8lkBVkFohaHlMUWxfEA8liKYLv56zk1YVCMQWKbZl6bPvfPbd9xFywjP0KVkQWSnPAgxQnNTiDFwLuFAgRSQzQ6Q9HAWDiX_1wB7qYnVTCwMAJvkMbP1p3vJVIWf6qgx3OC6hgKHFXcXIrSrWWjwZhIGROMUdrIVlwsWbpMM74_vY1jLhdlc_82nJ8yUfZERVflhi4176m2Q0n1iVVfJqz0phy89vnI3_nvkW2agPmrRXrYxtsgL5Dllfoh_cJS_Xg0d6WwvY0XOTy0HxEEuHhUBjQWMM0RWtdB-wA33O6WV8R0dV5viUnqEHVLTIqanitXq6SovegOFilebakdb0rU9NMulfjOOBVWsvWNLjXmmBJ3nquuCFDmgKuDTiImBCCfBdnkW-p7qKSUcplkn8kbkiUlylKcc2GoLuHmnkRQ77hLrAQ4bjhAo8X0kZST_NogicENC8BF6LdOZoJLImJtf6GG-JCVAcniB-icYvqfFrkdNFj_eKlOOPtk0Nx1K7CokWac8RT-ptO00wfGQMY2LHP_il2yFZ06NX6Xxt0ig_ZnCEx5JSHJvl-AWXp93q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6MHtSDPzGiqD148bCxjXVbj4gSUCBGQfG0rO2b8UeGEbj41_vaDUI0Gm9L1m5Nvravr--97yPklKdoU9IgshKeBuigOInFGbgWcKFAikimhki72wtaA_9qyIZFsbqphQEAk3wGtn40sXw1klN9VYYrHKdQwHDHXUHDz9y8XGseNAgDI3KKa1hLy4TzqKTDq_2Hhq2Fwu2aDvRp0fMFK2RkVX7sxcbANDdJbza0PK_k1Z5OhC0_v7E2_nvsW2SjOGrSej43tskSZDtkfYGAcJe83LQe6V0hYUcvTDYHxWMs7Y4Ebhe0gU66ornyA3agzxltN-5pL88dH9NztIGKjjJq6nituq7Tordg2FiluXikBYHrU4kMmpf9Rssq1Bcs6XFvYoEneeK64IUOaBK4JOIiYEIJ8F2eRr6naopJRymWSnyRuiJSXCUJxzYagtoeWc5GGewT6gIPGX4nVOD5SspI-kkaReCEgBtM4JVJdYZGLAtqcq2Q8RYbF8XhMeIXa_ziAr8yOZv3eM9pOf5oW9JwLLTLkSiTygzxuFi44xgdSMbQK3b8g1-6nZDVVr_biTvt3vUhWdN_ypP7KmR58jGFIzykTMSxmZpfVSDhMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PHY+Security+Design+for+Mobile+Crowd+Computing+in+ICV+Networks+Based+on+Multi-Agent+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Luo%2C+Xuewen&rft.au=Liu%2C+Yiliang&rft.au=Chen%2C+Hsiao-Hwa&rft.au=Guo%2C+Qing&rft.date=2023-10-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=22&rft.issue=10&rft.spage=6810&rft.epage=6825&rft_id=info:doi/10.1109%2FTWC.2023.3245637&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2023_3245637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon