PHY Security Design for Mobile Crowd Computing in ICV Networks Based on Multi-Agent Reinforcement Learning
In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where vehicles within RSUs' coverage act as workers to provide their computation and communication resources for computing resource limited vehicle...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 22; no. 10; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where vehicles within RSUs' coverage act as workers to provide their computation and communication resources for computing resource limited vehicle user equipments (VUEs). Physical (PHY) layer security is used to secure computation task offloading and results feedback in time-varying vehicular channels. Artificial noise (AN) assisted adaptive wiretap coding is adopted to enhance the security of offloading links. With PHY security, the intended receiver can decode secret message while eavesdropper cannot. A modified exhaustive two-dimensional (2D) search algorithm is proposed to optimize transmission rate and secrecy rate in an effective secrecy throughput maximization problem, and a multi-agent twin delayed deep deterministic policy gradient algorithm (MATD3) is utilized to assign VUEs' tasks without a central controller, where a reward function is defined according to the computing costs, including execution time, energy consumption, and price paid for computing. Finally, simulations verify the effectiveness of the proposed framework. |
---|---|
AbstractList | In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where vehicles within RSUs' coverage act as workers to provide their computation and communication resources for computing resource limited vehicle user equipments (VUEs). Physical (PHY) layer security is used to secure computation task offloading and results feedback in time-varying vehicular channels. Artificial noise (AN) assisted adaptive wiretap coding is adopted to enhance the security of offloading links. With PHY security, the intended receiver can decode secret message while eavesdropper cannot. A modified exhaustive two-dimensional (2D) search algorithm is proposed to optimize transmission rate and secrecy rate in an effective secrecy throughput maximization problem, and a multi-agent twin delayed deep deterministic policy gradient algorithm (MATD3) is utilized to assign VUEs' tasks without a central controller, where a reward function is defined according to the computing costs, including execution time, energy consumption, and price paid for computing. Finally, simulations verify the effectiveness of the proposed framework. |
Author | Guo, Qing Chen, Hsiao-Hwa Luo, Xuewen Liu, Yiliang |
Author_xml | – sequence: 1 givenname: Xuewen orcidid: 0000-0003-2206-6134 surname: Luo fullname: Luo, Xuewen organization: Communications Research Center, Harbin Institute of Technology, China – sequence: 2 givenname: Yiliang orcidid: 0000-0002-6301-6347 surname: Liu fullname: Liu, Yiliang organization: School of Cyber Science and Engineering, Xi'an Jiaotong University, China – sequence: 3 givenname: Hsiao-Hwa orcidid: 0000-0001-8473-0729 surname: Chen fullname: Chen, Hsiao-Hwa organization: Department of Engineering Science, National Cheng Kung University, Taiwan – sequence: 4 givenname: Qing orcidid: 0000-0003-4209-5469 surname: Guo fullname: Guo, Qing organization: Communications Research Center, Harbin Institute of Technology, China |
BookMark | eNp9kL1PwzAQxS1UJEphZ2CwxJxiO3E-xhI-WqkFBAXEFDnxpXJp7WI7qvrfk6gdEAPT3ene753unaKeNhoQuqBkSCnJrucf-ZARFg5DFvE4TI5Qn3KeBoxFaa_rwzigLIlP0KlzS0JoEnPeR8vn8Sd-haqxyu_wLTi10Lg2Fs9MqVaAc2u2EudmvWm80gusNJ7k7_gR_NbYL4dvhAOJjcazZuVVMFqA9vgFlG49Klh30xSE1S17ho5rsXJwfqgD9HZ_N8_HwfTpYZKPpkHFMuYDYFUmKAWWEKAZjUSalTEvZQkRzeo0YjKUvCJS8rpqFzUtU5lJIbJW030ZDtDV3ndjzXcDzhdL01jdnixYmnCeMEqiVhXvVZU1zlmoi0p54ZXR3gq1KigpulyLNteiy7U45NqC5A-4sWot7O4_5HKPKAD4JSecxpyFP-FthWo |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1007_s10462_024_10968_z crossref_primary_10_1109_MWC_001_2300375 crossref_primary_10_32604_cmc_2024_059689 crossref_primary_10_1016_j_compeleceng_2024_109309 crossref_primary_10_1109_TVT_2024_3452513 |
Cites_doi | 10.1109/JSAC.2018.2869948 10.1109/TCOMM.2019.2949994 10.1109/TVT.2016.2532863 10.1109/MNET.011.1900628 10.1109/TIFS.2018.2883150 10.1109/TITS.2012.2188519 10.1109/TVT.2017.2681965 10.1109/TVT.2015.2477427 10.1109/JSAC.2020.3036962 10.1109/TVT.2016.2550032 10.1109/GLOCOM.2008.ECP.176 10.1109/TVT.2020.2966500 10.1109/TWC.2020.2979456 10.1109/TITS.2015.2416257 10.1109/TVT.2021.3088441 10.1109/JSYST.2020.3009723 10.1109/MWC.001.2000079 10.1109/TWC.2021.3051163 10.1109/26.668742 10.1109/TWC.2008.080570 10.1109/TVT.2020.3040596 10.1109/LWC.2020.2973985 10.1109/TCOMM.2014.2314664 10.1109/TVT.2021.3087399 10.1109/JIOT.2018.2875520 10.1109/LCOMM.2021.3114772 10.1109/TVT.2020.3041929 10.1109/LWC.2018.2845882 10.1109/TVT.2020.2967026 10.1002/j.1538-7305.1975.tb02040.x 10.1109/MNET.2018.1700320 10.1109/TVT.2021.3090179 10.1109/TVT.2019.2892176 10.1109/TWC.2013.013014.131248 10.1109/TWC.2021.3051772 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2023.3245637 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TWC_2023_3245637 10051652 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1764263, 62101429 funderid: 10.13039/501100001809 – fundername: Ministry of Science and Technology, Taiwan grantid: 109-2221-E-006-175-MY3, 109-2221-E-006-182-MY3 funderid: 10.13039/501100004663 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX AETIX AIBXA CITATION EJD H~9 RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-e2c9a11e270e1914a89b65bdbe419f842d3d5c0dd5fcb65f1b8d9daa95bd15363 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 19:14:52 EDT 2025 Tue Jul 01 04:13:35 EDT 2025 Thu Apr 24 22:50:55 EDT 2025 Wed Aug 27 02:21:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-e2c9a11e270e1914a89b65bdbe419f842d3d5c0dd5fcb65f1b8d9daa95bd15363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2206-6134 0000-0002-6301-6347 0000-0003-4209-5469 0000-0001-8473-0729 |
PQID | 2875572104 |
PQPubID | 105736 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2875572104 ieee_primary_10051652 crossref_primary_10_1109_TWC_2023_3245637 crossref_citationtrail_10_1109_TWC_2023_3245637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 (ref41) 2018 gradshteyn (ref34) 2007 fujimoto (ref38) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 lowe (ref39) 2017 ref28 ref27 lillicrap (ref37) 2016 ref29 ref8 ref7 ref9 ref4 (ref40) 2019 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1109/JSAC.2018.2869948 – ident: ref24 doi: 10.1109/TCOMM.2019.2949994 – ident: ref10 doi: 10.1109/TVT.2016.2532863 – ident: ref1 doi: 10.1109/MNET.011.1900628 – ident: ref20 doi: 10.1109/TIFS.2018.2883150 – ident: ref29 doi: 10.1109/TITS.2012.2188519 – ident: ref3 doi: 10.1109/TVT.2017.2681965 – year: 2007 ident: ref34 publication-title: Table of Integrals Series and Products – ident: ref17 doi: 10.1109/TVT.2015.2477427 – ident: ref36 doi: 10.1109/JSAC.2020.3036962 – ident: ref18 doi: 10.1109/TVT.2016.2550032 – ident: ref32 doi: 10.1109/GLOCOM.2008.ECP.176 – ident: ref7 doi: 10.1109/TVT.2020.2966500 – ident: ref26 doi: 10.1109/TWC.2020.2979456 – ident: ref28 doi: 10.1109/TITS.2015.2416257 – ident: ref4 doi: 10.1109/TVT.2021.3088441 – ident: ref25 doi: 10.1109/JSYST.2020.3009723 – ident: ref2 doi: 10.1109/MWC.001.2000079 – ident: ref35 doi: 10.1109/TWC.2021.3051163 – ident: ref33 doi: 10.1109/26.668742 – year: 2018 ident: ref41 publication-title: Study on Channel Model for Frequencies From 0 5 to 100 GHz – start-page: 1 year: 2016 ident: ref37 article-title: Continuous control with deep reinforcement learning publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref31 doi: 10.1109/TWC.2008.080570 – ident: ref9 doi: 10.1109/TVT.2020.3040596 – ident: ref12 doi: 10.1109/LWC.2020.2973985 – ident: ref15 doi: 10.1109/TCOMM.2014.2314664 – start-page: 1 year: 2017 ident: ref39 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Proc 31st Conf Neural Inf Process Syst (NIPS) – year: 2019 ident: ref40 publication-title: Everything (V2X) Use Cases for LTE NR Release 15 – ident: ref5 doi: 10.1109/TVT.2021.3087399 – ident: ref11 doi: 10.1109/JIOT.2018.2875520 – ident: ref27 doi: 10.1109/LCOMM.2021.3114772 – ident: ref14 doi: 10.1109/TVT.2020.3041929 – ident: ref23 doi: 10.1109/LWC.2018.2845882 – ident: ref22 doi: 10.1109/TVT.2020.2967026 – ident: ref30 doi: 10.1002/j.1538-7305.1975.tb02040.x – start-page: 1587 year: 2018 ident: ref38 article-title: Addressing function approximation error in actor-critic methods publication-title: Proc 35th Int Conf Mach Learn – ident: ref19 doi: 10.1109/MNET.2018.1700320 – ident: ref8 doi: 10.1109/TVT.2021.3090179 – ident: ref6 doi: 10.1109/TVT.2019.2892176 – ident: ref16 doi: 10.1109/TWC.2013.013014.131248 – ident: ref21 doi: 10.1109/TWC.2021.3051772 |
SSID | ssj0017655 |
Score | 2.4662015 |
Snippet | In this paper, we propose a multi-roadside unit (RSU) assisted mobile crowd computing framework for intelligently connected vehicle (ICV) networks, where... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | adaptive wiretap coding artificial noise Communication system security Computation offloading Computational modeling Computing costs computing task offloading Cybersecurity Encoding Energy consumption Energy costs Intelligently connected vehicle Mobile computing multi-agent reinforcement learning Multiagent systems Optimization PHY security Roadsides Search algorithms Security Servers Task analysis Wireless communication |
Title | PHY Security Design for Mobile Crowd Computing in ICV Networks Based on Multi-Agent Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/10051652 https://www.proquest.com/docview/2875572104 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygU5IGFIWmSxkk8lkBVkFohaHlMUWxfEA8liKYLv56zk1YVCMQWKbZl6bPvfPbd9xFywjP0KVkQWSnPAgxQnNTiDFwLuFAgRSQzQ6Q9HAWDiX_1wB7qYnVTCwMAJvkMbP1p3vJVIWf6qgx3OC6hgKHFXcXIrSrWWjwZhIGROMUdrIVlwsWbpMM74_vY1jLhdlc_82nJ8yUfZERVflhi4176m2Q0n1iVVfJqz0phy89vnI3_nvkW2agPmrRXrYxtsgL5Dllfoh_cJS_Xg0d6WwvY0XOTy0HxEEuHhUBjQWMM0RWtdB-wA33O6WV8R0dV5viUnqEHVLTIqanitXq6SovegOFilebakdb0rU9NMulfjOOBVWsvWNLjXmmBJ3nquuCFDmgKuDTiImBCCfBdnkW-p7qKSUcplkn8kbkiUlylKcc2GoLuHmnkRQ77hLrAQ4bjhAo8X0kZST_NogicENC8BF6LdOZoJLImJtf6GG-JCVAcniB-icYvqfFrkdNFj_eKlOOPtk0Nx1K7CokWac8RT-ptO00wfGQMY2LHP_il2yFZ06NX6Xxt0ig_ZnCEx5JSHJvl-AWXp93q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6MHtSDPzGiqD148bCxjXVbj4gSUCBGQfG0rO2b8UeGEbj41_vaDUI0Gm9L1m5Nvravr--97yPklKdoU9IgshKeBuigOInFGbgWcKFAikimhki72wtaA_9qyIZFsbqphQEAk3wGtn40sXw1klN9VYYrHKdQwHDHXUHDz9y8XGseNAgDI3KKa1hLy4TzqKTDq_2Hhq2Fwu2aDvRp0fMFK2RkVX7sxcbANDdJbza0PK_k1Z5OhC0_v7E2_nvsW2SjOGrSej43tskSZDtkfYGAcJe83LQe6V0hYUcvTDYHxWMs7Y4Ebhe0gU66ornyA3agzxltN-5pL88dH9NztIGKjjJq6nituq7Tordg2FiluXikBYHrU4kMmpf9Rssq1Bcs6XFvYoEneeK64IUOaBK4JOIiYEIJ8F2eRr6naopJRymWSnyRuiJSXCUJxzYagtoeWc5GGewT6gIPGX4nVOD5SspI-kkaReCEgBtM4JVJdYZGLAtqcq2Q8RYbF8XhMeIXa_ziAr8yOZv3eM9pOf5oW9JwLLTLkSiTygzxuFi44xgdSMbQK3b8g1-6nZDVVr_biTvt3vUhWdN_ypP7KmR58jGFIzykTMSxmZpfVSDhMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PHY+Security+Design+for+Mobile+Crowd+Computing+in+ICV+Networks+Based+on+Multi-Agent+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Luo%2C+Xuewen&rft.au=Liu%2C+Yiliang&rft.au=Chen%2C+Hsiao-Hwa&rft.au=Guo%2C+Qing&rft.date=2023-10-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=22&rft.issue=10&rft.spage=6810&rft.epage=6825&rft_id=info:doi/10.1109%2FTWC.2023.3245637&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2023_3245637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |