New Constructions of Optimal Linear Codes From Simplicial Complexes
In this paper, we construct a large family of projective linear codes over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> from the general simplicial complexes of <inline-formula> <tex-math notation="LaTeX"...
Saved in:
Published in | IEEE transactions on information theory Vol. 70; no. 3; pp. 1823 - 1835 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9448 1557-9654 |
DOI | 10.1109/TIT.2023.3305609 |
Cover
Abstract | In this paper, we construct a large family of projective linear codes over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> from the general simplicial complexes of <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q}^{m} </tex-math></inline-formula> via the defining-set construction, which generalizes the results of [IEEE Trans. Inf. Theory 66(11):6762-6773, 2020]. The parameters and weight distributions of this class of codes are completely determined. By using the Griesmer bound, we give a necessary and sufficient condition such that the codes are Griesmer codes and a sufficient condition such that the codes are distance-optimal. For a special case, we also present a necessary and sufficient condition for the codes to be near Griesmer codes. Moreover, by discussing the cases of simplicial complexes with one, two and three maximal elements respectively, the parameters and weight distributions of the codes are given more explicitly, which shows that the codes are at most 2-weight, 5-weight and 19-weight respectively. By studying the optimality of the codes for the three cases in detail, many infinite families of optimal linear codes with few weights over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> are obtained, including Griesmer codes, near Griesmer codes and distance-optimal codes. |
---|---|
AbstractList | In this paper, we construct a large family of projective linear codes over [Formula Omitted] from the general simplicial complexes of [Formula Omitted] via the defining-set construction, which generalizes the results of [IEEE Trans. Inf. Theory 66(11):6762-6773, 2020]. The parameters and weight distributions of this class of codes are completely determined. By using the Griesmer bound, we give a necessary and sufficient condition such that the codes are Griesmer codes and a sufficient condition such that the codes are distance-optimal. For a special case, we also present a necessary and sufficient condition for the codes to be near Griesmer codes. Moreover, by discussing the cases of simplicial complexes with one, two and three maximal elements respectively, the parameters and weight distributions of the codes are given more explicitly, which shows that the codes are at most 2-weight, 5-weight and 19-weight respectively. By studying the optimality of the codes for the three cases in detail, many infinite families of optimal linear codes with few weights over [Formula Omitted] are obtained, including Griesmer codes, near Griesmer codes and distance-optimal codes. In this paper, we construct a large family of projective linear codes over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> from the general simplicial complexes of <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q}^{m} </tex-math></inline-formula> via the defining-set construction, which generalizes the results of [IEEE Trans. Inf. Theory 66(11):6762-6773, 2020]. The parameters and weight distributions of this class of codes are completely determined. By using the Griesmer bound, we give a necessary and sufficient condition such that the codes are Griesmer codes and a sufficient condition such that the codes are distance-optimal. For a special case, we also present a necessary and sufficient condition for the codes to be near Griesmer codes. Moreover, by discussing the cases of simplicial complexes with one, two and three maximal elements respectively, the parameters and weight distributions of the codes are given more explicitly, which shows that the codes are at most 2-weight, 5-weight and 19-weight respectively. By studying the optimality of the codes for the three cases in detail, many infinite families of optimal linear codes with few weights over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> are obtained, including Griesmer codes, near Griesmer codes and distance-optimal codes. |
Author | Tang, Xiaohu Wang, Lisha Hu, Zhao Li, Nian Xu, Yunge Zeng, Xiangyong |
Author_xml | – sequence: 1 givenname: Zhao orcidid: 0000-0001-9512-3422 surname: Hu fullname: Hu, Zhao email: zhao.hu@aliyun.com organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China – sequence: 2 givenname: Yunge orcidid: 0000-0002-0287-2828 surname: Xu fullname: Xu, Yunge email: xuy@hubu.edu.cn organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China – sequence: 3 givenname: Nian orcidid: 0000-0003-4913-7844 surname: Li fullname: Li, Nian email: nian.li@hubu.edu.cn organization: State Key Laboratory of Integrated Service Networks, Xi'an, China – sequence: 4 givenname: Xiangyong orcidid: 0000-0002-8351-8766 surname: Zeng fullname: Zeng, Xiangyong email: xiangyongzeng@aliyun.com organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China – sequence: 5 givenname: Lisha surname: Wang fullname: Wang, Lisha email: wangtaolisha@163.com organization: Hubei Key Laboratory of Applied Mathematics, School of Cyber Science and Technology, Hubei University, Wuhan, China – sequence: 6 givenname: Xiaohu orcidid: 0000-0002-7938-7812 surname: Tang fullname: Tang, Xiaohu email: xhutang@swjtu.edu.cn organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China |
BookMark | eNp9kD1PwzAQhi1UJNrCzsAQiTnF365HFFGoVNGBMluOe5FcpXGwUwH_HlftgBiY7k73vvfxTNCoCx0gdEvwjBCsHzbLzYxiymaMYSGxvkBjIoQqtRR8hMYYk3mpOZ9foUlKu1xyQegYVa_wWVShS0M8uMHnpAhNse4Hv7dtsfId2Jj7W0jFIoZ98eb3feudz80q5BS-IF2jy8a2CW7OcYreF0-b6qVcrZ-X1eOqdFTTodyqutYNF6qhmuUDrGR6yyzhFogFzWsQDNeM1c4yzpTmc4kBGgLcEaKUZlN0f5rbx_BxgDSYXTjELq80eYGSRCqqskqeVC6GlCI0xvnBHl8bovWtIdgcgZkMzByBmTOwbMR_jH3MFOL3f5a7k8UDwC85zSrM2Q-v9Xb9 |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_TIT_2024_3519672 crossref_primary_10_1016_j_disc_2024_114240 crossref_primary_10_1016_j_ffa_2025_102589 crossref_primary_10_1109_TIT_2025_3538921 crossref_primary_10_1016_j_ffa_2025_102586 crossref_primary_10_1007_s10623_024_01424_8 crossref_primary_10_1109_TIT_2024_3449899 |
Cites_doi | 10.1007/s10623-017-0442-5 10.1007/s12095-021-00470-6 10.1109/TIT.2019.2946840 10.1016/j.dam.2018.07.007 10.3934/math.2021303 10.1016/j.dam.2020.01.019 10.1007/s10623-020-00793-0 10.1007/s10623-021-00960-x 10.1016/j.dam.2020.10.027 10.1007/s12190-021-01594-x 10.1007/s10623-016-0267-7 10.1016/j.ffa.2022.101994 10.1109/TIT.2022.3142300 10.1007/s10623-018-0556-4 10.1109/TIT.2020.2978387 10.1109/18.705584 10.1109/TIT.2021.3087082 10.3934/math.2022239 10.1109/TIT.2015.2473861 10.1016/j.ffa.2021.101926 10.1109/TIT.2022.3163651 10.1109/TIT.2016.2518678 10.1109/LCOMM.2020.3024907 10.1109/TIT.2007.896872 10.1109/TIT.2022.3203380 10.1109/LCOMM.2020.2982381 10.1109/TIT.2007.896886 10.1007/s10623-017-0454-1 10.1016/S0019-9958(65)90080-X 10.1147/rd.45.0532 10.1007/s10623-015-0144-9 10.1109/TIT.2015.2420118 10.1016/j.disc.2016.03.029 10.1109/TIT.2019.2956130 10.1007/s12190-021-01549-2 10.1109/TIT.2015.2444013 10.1007/s12095-016-0186-5 10.1016/j.tcs.2004.09.011 10.1109/TIT.2020.2970405 10.1017/CBO9780511807077 10.1142/9283 10.4169/amer.math.monthly.122.04.367 10.1109/TIT.2020.2993179 10.1142/11101 10.1142/SCTC 10.1109/TIT.2005.847722 10.1023/A:1026421315292 10.1109/TIT.2021.3088146 10.1109/TIT.2017.2742499 10.1109/TCOMM.2021.3083320 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2023.3305609 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Computer Science |
EISSN | 1557-9654 |
EndPage | 1835 |
ExternalDocumentID | 10_1109_TIT_2023_3305609 10220204 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFA1000600 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62072162; 12001176 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hubei Province of China grantid: 2021CFA079 funderid: 10.13039/501100003819 – fundername: Knowledge Innovation Program of Wuhan-Basic Research grantid: 2022010801010319 – fundername: Innovation Group Project of the Natural Science Foundation of Hubei Province of China grantid: 2003AFA021 funderid: 10.13039/501100003819 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-d7bb9f457f293001a639d3a14ae1ae94be530b33bca343794860eef1e4c117793 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Sun Jun 29 13:13:05 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Tue Jul 01 02:16:22 EDT 2025 Wed Aug 27 02:17:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-d7bb9f457f293001a639d3a14ae1ae94be530b33bca343794860eef1e4c117793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8351-8766 0000-0002-7938-7812 0000-0003-4913-7844 0000-0002-0287-2828 0000-0001-9512-3422 |
PQID | 2927616727 |
PQPubID | 36024 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2927616727 crossref_citationtrail_10_1109_TIT_2023_3305609 ieee_primary_10220204 crossref_primary_10_1109_TIT_2023_3305609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref10 ref54 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Grassl (ref17) 2023 ref43 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref40 Xiang (ref50) 2016 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 Ding (ref11) 2020 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Calderbank (ref4) 1984; 39 |
References_xml | – ident: ref6 doi: 10.1007/s10623-017-0442-5 – ident: ref15 doi: 10.1007/s12095-021-00470-6 – ident: ref49 doi: 10.1109/TIT.2019.2946840 – ident: ref24 doi: 10.1016/j.dam.2018.07.007 – ident: ref54 doi: 10.3934/math.2021303 – ident: ref46 doi: 10.1016/j.dam.2020.01.019 – ident: ref25 doi: 10.1007/s10623-020-00793-0 – ident: ref30 doi: 10.1007/s10623-021-00960-x – ident: ref39 doi: 10.1016/j.dam.2020.10.027 – ident: ref44 doi: 10.1007/s12190-021-01594-x – ident: ref43 doi: 10.1007/s10623-016-0267-7 – volume: 39 start-page: 143 issue: 4 year: 1984 ident: ref4 article-title: Three-weight codes and association schemes publication-title: Philips J. Res. – ident: ref40 doi: 10.1016/j.ffa.2022.101994 – ident: ref48 doi: 10.1109/TIT.2022.3142300 – ident: ref34 doi: 10.1007/s10623-018-0556-4 – ident: ref35 doi: 10.1109/TIT.2020.2978387 – ident: ref3 doi: 10.1109/18.705584 – ident: ref31 doi: 10.1109/TIT.2021.3087082 – ident: ref37 doi: 10.3934/math.2022239 – ident: ref12 doi: 10.1109/TIT.2015.2473861 – ident: ref22 doi: 10.1016/j.ffa.2021.101926 – ident: ref21 doi: 10.1109/TIT.2022.3163651 – ident: ref42 doi: 10.1109/TIT.2016.2518678 – ident: ref28 doi: 10.1109/LCOMM.2020.3024907 – ident: ref13 doi: 10.1109/TIT.2007.896872 – ident: ref19 doi: 10.1109/TIT.2022.3203380 – ident: ref47 doi: 10.1109/LCOMM.2020.2982381 – ident: ref14 doi: 10.1109/TIT.2007.896886 – ident: ref52 doi: 10.1007/s10623-017-0454-1 – volume-title: Bounds on the Minimum Distance of Linear Codes and Quantum Codes year: 2023 ident: ref17 – ident: ref41 doi: 10.1016/S0019-9958(65)90080-X – ident: ref18 doi: 10.1147/rd.45.0532 – ident: ref53 doi: 10.1007/s10623-015-0144-9 – ident: ref10 doi: 10.1109/TIT.2015.2420118 – year: 2020 ident: ref11 article-title: The construction and weight distributions of all projective binary linear codes publication-title: arXiv:2010.03184 – ident: ref9 doi: 10.1016/j.disc.2016.03.029 – ident: ref36 doi: 10.1109/TIT.2019.2956130 – year: 2016 ident: ref50 article-title: It is indeed a fundamental construction of all linear codes publication-title: arXiv:1610.06355 – ident: ref29 doi: 10.1007/s12190-021-01549-2 – ident: ref51 doi: 10.1109/TIT.2015.2444013 – ident: ref33 doi: 10.1007/s12095-016-0186-5 – ident: ref16 doi: 10.1016/j.tcs.2004.09.011 – ident: ref20 doi: 10.1109/TIT.2020.2970405 – ident: ref23 doi: 10.1017/CBO9780511807077 – ident: ref7 doi: 10.1142/9283 – ident: ref1 doi: 10.4169/amer.math.monthly.122.04.367 – ident: ref26 doi: 10.1109/TIT.2020.2993179 – ident: ref8 doi: 10.1142/11101 – ident: ref27 doi: 10.1142/SCTC – ident: ref5 doi: 10.1109/TIT.2005.847722 – ident: ref2 doi: 10.1023/A:1026421315292 – ident: ref45 doi: 10.1109/TIT.2021.3088146 – ident: ref38 doi: 10.1109/TIT.2017.2742499 – ident: ref32 doi: 10.1109/TCOMM.2021.3083320 |
SSID | ssj0014512 |
Score | 2.5273037 |
Snippet | In this paper, we construct a large family of projective linear codes over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q}... In this paper, we construct a large family of projective linear codes over [Formula Omitted] from the general simplicial complexes of [Formula Omitted] via the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1823 |
SubjectTerms | Codes Cryptography Encoding Griesmer code Hamming weight Linear codes Mathematics near Griesmer code Optimal linear code Optimization Parameters simplicial complex Technological innovation weight distribution |
Title | New Constructions of Optimal Linear Codes From Simplicial Complexes |
URI | https://ieeexplore.ieee.org/document/10220204 https://www.proquest.com/docview/2927616727 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzgwGCDGSzlw4dCuXdPXESEmQNo4MCRuVZK6EgJWRDcJ8eux03aaQCBObdWkTWM7sWv7M8AZ2chJqnTkYFJEDKrtOUke5o6WIZLt5hu0uVXjSXT9IG8fw8cmWd3mwiCiDT5Dl0-tLz8vzYJ_lQ3YOuFkznVYJz6rk7WWLgMZ-jU0uE8STEZH65P00sH0ZupymXA3YIWZYw9X9iBbVOXHSmy3l1EXJu3A6qiSZ3cx1675_IbZ-O-Rb8NWo2iKi5ozdmANZz3otkUcRCPTPdhcQSSkq_ESxrXahUtaAgWX9GxBZitRFuKOVplXejSZsSQmdD_HSozey1dx_2Tj04mlBb_oBT-w2oOH0dX08tppqi44ZpgO504ea50WMowL0gRoNhXpMHmgfKnQV5hKjWHg6SDQRgUMZshVrBALH6VhB3Aa7ENnVs7wAEQcxSoJFXqyoIWiyNmFSH38xBShGSrVh0FLh8w0kORcGeMls6aJl2ZEuYwplzWU68P5ssdbDcfxR9s9JsRKu5oGfThuaZ01Altl9Olx5LNb-vCXbkewQUdZx58dQ4dmHk9IIZnrU8uIX7192dw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4VegAOUAKIlLTdQy8c7Njxrh9HhIhCm4RDg5SbtbseSwhIEA5S1V_fmbUdRSCq3vxae-1vZ3fGM_MNwHeykdNMm9jDtIyZVDvw0kIVnpEKyXYLLbrcqsk0Ht3KH3M1b5LVXS4MIrrgM_R50_nyi6V94V9lfbZOOJlzCz7Swi9Vna61dhpIFdbk4CHJMJkdrVcyyPqz65nPhcL9iFVmjj7cWIVcWZU3c7FbYIYHMG27VseV3PsvK-PbP69YG_-7759gv1E1xUU9Ng7hAy46cNCWcRCNVHdgb4OTkPYmayLX6gguaRIUXNSzpZmtxLIUNzTPPNKtyZAlQaHzBVZi-Lx8FL_uXIQ6DWrBD3rA31gdw-3wanY58pq6C54dZIOVVyTGZKVUSUm6AH1NTVpMEelQagw1ZtKgigITRcbqiOkMuY4VYhmitOwCzqIT2F4sF3gKIokTnSqNgSxpqigLdiJSmzC1pbIDrbvQb3HIbUNKzrUxHnJnnARZTsjljFzeINeF83WLp5qQ4x_XHjMQG9fVGHSh12KdNyJb5fTqSRyyY_rzO82-wc5oNhnn4-vpzzPYpWOyjkbrwTahgF9IPVmZr25Q_gVRjd0p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Constructions+of+Optimal+Linear+Codes+From+Simplicial+Complexes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Hu%2C+Zhao&rft.au=Xu%2C+Yunge&rft.au=Li%2C+Nian&rft.au=Zeng%2C+Xiangyong&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=3&rft.spage=1823&rft_id=info:doi/10.1109%2FTIT.2023.3305609&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |