New Constructions of Optimal Linear Codes From Simplicial Complexes

In this paper, we construct a large family of projective linear codes over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> from the general simplicial complexes of <inline-formula> <tex-math notation="LaTeX"...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 70; no. 3; pp. 1823 - 1835
Main Authors Hu, Zhao, Xu, Yunge, Li, Nian, Zeng, Xiangyong, Wang, Lisha, Tang, Xiaohu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2023.3305609

Cover

Abstract In this paper, we construct a large family of projective linear codes over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> from the general simplicial complexes of <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q}^{m} </tex-math></inline-formula> via the defining-set construction, which generalizes the results of [IEEE Trans. Inf. Theory 66(11):6762-6773, 2020]. The parameters and weight distributions of this class of codes are completely determined. By using the Griesmer bound, we give a necessary and sufficient condition such that the codes are Griesmer codes and a sufficient condition such that the codes are distance-optimal. For a special case, we also present a necessary and sufficient condition for the codes to be near Griesmer codes. Moreover, by discussing the cases of simplicial complexes with one, two and three maximal elements respectively, the parameters and weight distributions of the codes are given more explicitly, which shows that the codes are at most 2-weight, 5-weight and 19-weight respectively. By studying the optimality of the codes for the three cases in detail, many infinite families of optimal linear codes with few weights over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> are obtained, including Griesmer codes, near Griesmer codes and distance-optimal codes.
AbstractList In this paper, we construct a large family of projective linear codes over [Formula Omitted] from the general simplicial complexes of [Formula Omitted] via the defining-set construction, which generalizes the results of [IEEE Trans. Inf. Theory 66(11):6762-6773, 2020]. The parameters and weight distributions of this class of codes are completely determined. By using the Griesmer bound, we give a necessary and sufficient condition such that the codes are Griesmer codes and a sufficient condition such that the codes are distance-optimal. For a special case, we also present a necessary and sufficient condition for the codes to be near Griesmer codes. Moreover, by discussing the cases of simplicial complexes with one, two and three maximal elements respectively, the parameters and weight distributions of the codes are given more explicitly, which shows that the codes are at most 2-weight, 5-weight and 19-weight respectively. By studying the optimality of the codes for the three cases in detail, many infinite families of optimal linear codes with few weights over [Formula Omitted] are obtained, including Griesmer codes, near Griesmer codes and distance-optimal codes.
In this paper, we construct a large family of projective linear codes over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> from the general simplicial complexes of <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q}^{m} </tex-math></inline-formula> via the defining-set construction, which generalizes the results of [IEEE Trans. Inf. Theory 66(11):6762-6773, 2020]. The parameters and weight distributions of this class of codes are completely determined. By using the Griesmer bound, we give a necessary and sufficient condition such that the codes are Griesmer codes and a sufficient condition such that the codes are distance-optimal. For a special case, we also present a necessary and sufficient condition for the codes to be near Griesmer codes. Moreover, by discussing the cases of simplicial complexes with one, two and three maximal elements respectively, the parameters and weight distributions of the codes are given more explicitly, which shows that the codes are at most 2-weight, 5-weight and 19-weight respectively. By studying the optimality of the codes for the three cases in detail, many infinite families of optimal linear codes with few weights over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q} </tex-math></inline-formula> are obtained, including Griesmer codes, near Griesmer codes and distance-optimal codes.
Author Tang, Xiaohu
Wang, Lisha
Hu, Zhao
Li, Nian
Xu, Yunge
Zeng, Xiangyong
Author_xml – sequence: 1
  givenname: Zhao
  orcidid: 0000-0001-9512-3422
  surname: Hu
  fullname: Hu, Zhao
  email: zhao.hu@aliyun.com
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
– sequence: 2
  givenname: Yunge
  orcidid: 0000-0002-0287-2828
  surname: Xu
  fullname: Xu, Yunge
  email: xuy@hubu.edu.cn
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
– sequence: 3
  givenname: Nian
  orcidid: 0000-0003-4913-7844
  surname: Li
  fullname: Li, Nian
  email: nian.li@hubu.edu.cn
  organization: State Key Laboratory of Integrated Service Networks, Xi'an, China
– sequence: 4
  givenname: Xiangyong
  orcidid: 0000-0002-8351-8766
  surname: Zeng
  fullname: Zeng, Xiangyong
  email: xiangyongzeng@aliyun.com
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
– sequence: 5
  givenname: Lisha
  surname: Wang
  fullname: Wang, Lisha
  email: wangtaolisha@163.com
  organization: Hubei Key Laboratory of Applied Mathematics, School of Cyber Science and Technology, Hubei University, Wuhan, China
– sequence: 6
  givenname: Xiaohu
  orcidid: 0000-0002-7938-7812
  surname: Tang
  fullname: Tang, Xiaohu
  email: xhutang@swjtu.edu.cn
  organization: Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, China
BookMark eNp9kD1PwzAQhi1UJNrCzsAQiTnF365HFFGoVNGBMluOe5FcpXGwUwH_HlftgBiY7k73vvfxTNCoCx0gdEvwjBCsHzbLzYxiymaMYSGxvkBjIoQqtRR8hMYYk3mpOZ9foUlKu1xyQegYVa_wWVShS0M8uMHnpAhNse4Hv7dtsfId2Jj7W0jFIoZ98eb3feudz80q5BS-IF2jy8a2CW7OcYreF0-b6qVcrZ-X1eOqdFTTodyqutYNF6qhmuUDrGR6yyzhFogFzWsQDNeM1c4yzpTmc4kBGgLcEaKUZlN0f5rbx_BxgDSYXTjELq80eYGSRCqqskqeVC6GlCI0xvnBHl8bovWtIdgcgZkMzByBmTOwbMR_jH3MFOL3f5a7k8UDwC85zSrM2Q-v9Xb9
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2024_3519672
crossref_primary_10_1016_j_disc_2024_114240
crossref_primary_10_1016_j_ffa_2025_102589
crossref_primary_10_1109_TIT_2025_3538921
crossref_primary_10_1016_j_ffa_2025_102586
crossref_primary_10_1007_s10623_024_01424_8
crossref_primary_10_1109_TIT_2024_3449899
Cites_doi 10.1007/s10623-017-0442-5
10.1007/s12095-021-00470-6
10.1109/TIT.2019.2946840
10.1016/j.dam.2018.07.007
10.3934/math.2021303
10.1016/j.dam.2020.01.019
10.1007/s10623-020-00793-0
10.1007/s10623-021-00960-x
10.1016/j.dam.2020.10.027
10.1007/s12190-021-01594-x
10.1007/s10623-016-0267-7
10.1016/j.ffa.2022.101994
10.1109/TIT.2022.3142300
10.1007/s10623-018-0556-4
10.1109/TIT.2020.2978387
10.1109/18.705584
10.1109/TIT.2021.3087082
10.3934/math.2022239
10.1109/TIT.2015.2473861
10.1016/j.ffa.2021.101926
10.1109/TIT.2022.3163651
10.1109/TIT.2016.2518678
10.1109/LCOMM.2020.3024907
10.1109/TIT.2007.896872
10.1109/TIT.2022.3203380
10.1109/LCOMM.2020.2982381
10.1109/TIT.2007.896886
10.1007/s10623-017-0454-1
10.1016/S0019-9958(65)90080-X
10.1147/rd.45.0532
10.1007/s10623-015-0144-9
10.1109/TIT.2015.2420118
10.1016/j.disc.2016.03.029
10.1109/TIT.2019.2956130
10.1007/s12190-021-01549-2
10.1109/TIT.2015.2444013
10.1007/s12095-016-0186-5
10.1016/j.tcs.2004.09.011
10.1109/TIT.2020.2970405
10.1017/CBO9780511807077
10.1142/9283
10.4169/amer.math.monthly.122.04.367
10.1109/TIT.2020.2993179
10.1142/11101
10.1142/SCTC
10.1109/TIT.2005.847722
10.1023/A:1026421315292
10.1109/TIT.2021.3088146
10.1109/TIT.2017.2742499
10.1109/TCOMM.2021.3083320
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2023.3305609
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1557-9654
EndPage 1835
ExternalDocumentID 10_1109_TIT_2023_3305609
10220204
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFA1000600
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62072162; 12001176
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hubei Province of China
  grantid: 2021CFA079
  funderid: 10.13039/501100003819
– fundername: Knowledge Innovation Program of Wuhan-Basic Research
  grantid: 2022010801010319
– fundername: Innovation Group Project of the Natural Science Foundation of Hubei Province of China
  grantid: 2003AFA021
  funderid: 10.13039/501100003819
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-d7bb9f457f293001a639d3a14ae1ae94be530b33bca343794860eef1e4c117793
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Jun 29 13:13:05 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Tue Jul 01 02:16:22 EDT 2025
Wed Aug 27 02:17:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-d7bb9f457f293001a639d3a14ae1ae94be530b33bca343794860eef1e4c117793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8351-8766
0000-0002-7938-7812
0000-0003-4913-7844
0000-0002-0287-2828
0000-0001-9512-3422
PQID 2927616727
PQPubID 36024
PageCount 13
ParticipantIDs proquest_journals_2927616727
crossref_citationtrail_10_1109_TIT_2023_3305609
ieee_primary_10220204
crossref_primary_10_1109_TIT_2023_3305609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref10
ref54
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Grassl (ref17) 2023
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
Xiang (ref50) 2016
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
Ding (ref11) 2020
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Calderbank (ref4) 1984; 39
References_xml – ident: ref6
  doi: 10.1007/s10623-017-0442-5
– ident: ref15
  doi: 10.1007/s12095-021-00470-6
– ident: ref49
  doi: 10.1109/TIT.2019.2946840
– ident: ref24
  doi: 10.1016/j.dam.2018.07.007
– ident: ref54
  doi: 10.3934/math.2021303
– ident: ref46
  doi: 10.1016/j.dam.2020.01.019
– ident: ref25
  doi: 10.1007/s10623-020-00793-0
– ident: ref30
  doi: 10.1007/s10623-021-00960-x
– ident: ref39
  doi: 10.1016/j.dam.2020.10.027
– ident: ref44
  doi: 10.1007/s12190-021-01594-x
– ident: ref43
  doi: 10.1007/s10623-016-0267-7
– volume: 39
  start-page: 143
  issue: 4
  year: 1984
  ident: ref4
  article-title: Three-weight codes and association schemes
  publication-title: Philips J. Res.
– ident: ref40
  doi: 10.1016/j.ffa.2022.101994
– ident: ref48
  doi: 10.1109/TIT.2022.3142300
– ident: ref34
  doi: 10.1007/s10623-018-0556-4
– ident: ref35
  doi: 10.1109/TIT.2020.2978387
– ident: ref3
  doi: 10.1109/18.705584
– ident: ref31
  doi: 10.1109/TIT.2021.3087082
– ident: ref37
  doi: 10.3934/math.2022239
– ident: ref12
  doi: 10.1109/TIT.2015.2473861
– ident: ref22
  doi: 10.1016/j.ffa.2021.101926
– ident: ref21
  doi: 10.1109/TIT.2022.3163651
– ident: ref42
  doi: 10.1109/TIT.2016.2518678
– ident: ref28
  doi: 10.1109/LCOMM.2020.3024907
– ident: ref13
  doi: 10.1109/TIT.2007.896872
– ident: ref19
  doi: 10.1109/TIT.2022.3203380
– ident: ref47
  doi: 10.1109/LCOMM.2020.2982381
– ident: ref14
  doi: 10.1109/TIT.2007.896886
– ident: ref52
  doi: 10.1007/s10623-017-0454-1
– volume-title: Bounds on the Minimum Distance of Linear Codes and Quantum Codes
  year: 2023
  ident: ref17
– ident: ref41
  doi: 10.1016/S0019-9958(65)90080-X
– ident: ref18
  doi: 10.1147/rd.45.0532
– ident: ref53
  doi: 10.1007/s10623-015-0144-9
– ident: ref10
  doi: 10.1109/TIT.2015.2420118
– year: 2020
  ident: ref11
  article-title: The construction and weight distributions of all projective binary linear codes
  publication-title: arXiv:2010.03184
– ident: ref9
  doi: 10.1016/j.disc.2016.03.029
– ident: ref36
  doi: 10.1109/TIT.2019.2956130
– year: 2016
  ident: ref50
  article-title: It is indeed a fundamental construction of all linear codes
  publication-title: arXiv:1610.06355
– ident: ref29
  doi: 10.1007/s12190-021-01549-2
– ident: ref51
  doi: 10.1109/TIT.2015.2444013
– ident: ref33
  doi: 10.1007/s12095-016-0186-5
– ident: ref16
  doi: 10.1016/j.tcs.2004.09.011
– ident: ref20
  doi: 10.1109/TIT.2020.2970405
– ident: ref23
  doi: 10.1017/CBO9780511807077
– ident: ref7
  doi: 10.1142/9283
– ident: ref1
  doi: 10.4169/amer.math.monthly.122.04.367
– ident: ref26
  doi: 10.1109/TIT.2020.2993179
– ident: ref8
  doi: 10.1142/11101
– ident: ref27
  doi: 10.1142/SCTC
– ident: ref5
  doi: 10.1109/TIT.2005.847722
– ident: ref2
  doi: 10.1023/A:1026421315292
– ident: ref45
  doi: 10.1109/TIT.2021.3088146
– ident: ref38
  doi: 10.1109/TIT.2017.2742499
– ident: ref32
  doi: 10.1109/TCOMM.2021.3083320
SSID ssj0014512
Score 2.5273037
Snippet In this paper, we construct a large family of projective linear codes over <inline-formula> <tex-math notation="LaTeX">{\mathbb F}_{q}...
In this paper, we construct a large family of projective linear codes over [Formula Omitted] from the general simplicial complexes of [Formula Omitted] via the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1823
SubjectTerms Codes
Cryptography
Encoding
Griesmer code
Hamming weight
Linear codes
Mathematics
near Griesmer code
Optimal linear code
Optimization
Parameters
simplicial complex
Technological innovation
weight distribution
Title New Constructions of Optimal Linear Codes From Simplicial Complexes
URI https://ieeexplore.ieee.org/document/10220204
https://www.proquest.com/docview/2927616727
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzgwGCDGSzlw4dCuXdPXESEmQNo4MCRuVZK6EgJWRDcJ8eux03aaQCBObdWkTWM7sWv7M8AZ2chJqnTkYFJEDKrtOUke5o6WIZLt5hu0uVXjSXT9IG8fw8cmWd3mwiCiDT5Dl0-tLz8vzYJ_lQ3YOuFkznVYJz6rk7WWLgMZ-jU0uE8STEZH65P00sH0ZupymXA3YIWZYw9X9iBbVOXHSmy3l1EXJu3A6qiSZ3cx1675_IbZ-O-Rb8NWo2iKi5ozdmANZz3otkUcRCPTPdhcQSSkq_ESxrXahUtaAgWX9GxBZitRFuKOVplXejSZsSQmdD_HSozey1dx_2Tj04mlBb_oBT-w2oOH0dX08tppqi44ZpgO504ea50WMowL0gRoNhXpMHmgfKnQV5hKjWHg6SDQRgUMZshVrBALH6VhB3Aa7ENnVs7wAEQcxSoJFXqyoIWiyNmFSH38xBShGSrVh0FLh8w0kORcGeMls6aJl2ZEuYwplzWU68P5ssdbDcfxR9s9JsRKu5oGfThuaZ01Altl9Olx5LNb-vCXbkewQUdZx58dQ4dmHk9IIZnrU8uIX7192dw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4VegAOUAKIlLTdQy8c7Njxrh9HhIhCm4RDg5SbtbseSwhIEA5S1V_fmbUdRSCq3vxae-1vZ3fGM_MNwHeykdNMm9jDtIyZVDvw0kIVnpEKyXYLLbrcqsk0Ht3KH3M1b5LVXS4MIrrgM_R50_nyi6V94V9lfbZOOJlzCz7Swi9Vna61dhpIFdbk4CHJMJkdrVcyyPqz65nPhcL9iFVmjj7cWIVcWZU3c7FbYIYHMG27VseV3PsvK-PbP69YG_-7759gv1E1xUU9Ng7hAy46cNCWcRCNVHdgb4OTkPYmayLX6gguaRIUXNSzpZmtxLIUNzTPPNKtyZAlQaHzBVZi-Lx8FL_uXIQ6DWrBD3rA31gdw-3wanY58pq6C54dZIOVVyTGZKVUSUm6AH1NTVpMEelQagw1ZtKgigITRcbqiOkMuY4VYhmitOwCzqIT2F4sF3gKIokTnSqNgSxpqigLdiJSmzC1pbIDrbvQb3HIbUNKzrUxHnJnnARZTsjljFzeINeF83WLp5qQ4x_XHjMQG9fVGHSh12KdNyJb5fTqSRyyY_rzO82-wc5oNhnn4-vpzzPYpWOyjkbrwTahgF9IPVmZr25Q_gVRjd0p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Constructions+of+Optimal+Linear+Codes+From+Simplicial+Complexes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Hu%2C+Zhao&rft.au=Xu%2C+Yunge&rft.au=Li%2C+Nian&rft.au=Zeng%2C+Xiangyong&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=3&rft.spage=1823&rft_id=info:doi/10.1109%2FTIT.2023.3305609&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon