Analysis and sensitivity study of steam explosion loads

•A detailed analysis of the steam explosion characteristics is performed with the MC3D software.•A comprehensive review of the up-to-date knowledge and modeling issues is given.•1-D steam explosion calculations are performed with sensitivity of melt and void fractions.•The impacts of major modeling...

Full description

Saved in:
Bibliographic Details
Published inAnnals of nuclear energy Vol. 194; p. 110064
Main Authors Wei, Linkai, Meignen, Renaud, Picchi, Stéphane, Rimbert, Nicolas
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2023
Elsevier Masson
Subjects
Online AccessGet full text
ISSN0306-4549
1873-2100
DOI10.1016/j.anucene.2023.110064

Cover

Abstract •A detailed analysis of the steam explosion characteristics is performed with the MC3D software.•A comprehensive review of the up-to-date knowledge and modeling issues is given.•1-D steam explosion calculations are performed with sensitivity of melt and void fractions.•The impacts of major modeling uncertainties are discussed. Steam Explosion is a destructive event that may arise from the mixing of the molten fuel (corium) with the liquid coolant (water, sodium) during the course of a severe accident. Due to its high complexity and very specific related conditions, the phenomenon is still subject to numerous uncertainties. MC3D is a CFD software for the simulations of 3D multiphase flows and is used to evaluate steam explosion loads through a specific application called EXPLO. The present paper provides a comprehensive analysis of the characteristics of steam explosion, as computed with MC3D-EXPLO, using a simple one-dimensional test case. The ultimate goal is to better understand the behavior of the code itself in order to give orientations for improvements. An in-depth analysis of the current knowledge and main points of modeling is at first provided, highlighting the major uncertainties. The analysis of pressure shock propagation in two-phase liquid/gas flows is then performed. It allows to propose an explanation of the difficulties encountered to obtain strong explosions with UO2/ZrO2 melts from a distant trigger in one-dimensional geometries such as in the KROTOS installation. The general cases of 3-phase flows are then examined with details, as a function of the melt and vapor volume fractions. A comparison of the behavior with the classical analytical detonation model is given and the competition between the fragmentation and heat transfer in terms of time scales is outlined. Finally, the impact of major modeling issues are discussed and conclusions are provided for recommendations of improvements.
AbstractList •A detailed analysis of the steam explosion characteristics is performed with the MC3D software.•A comprehensive review of the up-to-date knowledge and modeling issues is given.•1-D steam explosion calculations are performed with sensitivity of melt and void fractions.•The impacts of major modeling uncertainties are discussed. Steam Explosion is a destructive event that may arise from the mixing of the molten fuel (corium) with the liquid coolant (water, sodium) during the course of a severe accident. Due to its high complexity and very specific related conditions, the phenomenon is still subject to numerous uncertainties. MC3D is a CFD software for the simulations of 3D multiphase flows and is used to evaluate steam explosion loads through a specific application called EXPLO. The present paper provides a comprehensive analysis of the characteristics of steam explosion, as computed with MC3D-EXPLO, using a simple one-dimensional test case. The ultimate goal is to better understand the behavior of the code itself in order to give orientations for improvements. An in-depth analysis of the current knowledge and main points of modeling is at first provided, highlighting the major uncertainties. The analysis of pressure shock propagation in two-phase liquid/gas flows is then performed. It allows to propose an explanation of the difficulties encountered to obtain strong explosions with UO2/ZrO2 melts from a distant trigger in one-dimensional geometries such as in the KROTOS installation. The general cases of 3-phase flows are then examined with details, as a function of the melt and vapor volume fractions. A comparison of the behavior with the classical analytical detonation model is given and the competition between the fragmentation and heat transfer in terms of time scales is outlined. Finally, the impact of major modeling issues are discussed and conclusions are provided for recommendations of improvements.
Steam Explosion is a destructive event that may arise from the mixing of the molten fuel (corium) with the liquid coolant (water, sodium) during the course of a severe accident. Due to its high complexity and very specific related conditions, the phenomenon is still subject to numerous uncertainties. MC3D is a CFD software for the simulations of 3D multiphase flows and is used to evaluate steam explosion loads through a specific application called EXPLO. The present paper provides a comprehensive analysis of the characteristics of steam explosion, as computed with MC3D-EXPLO, using a simple one-dimensional test case. The ultimate goal is to better understand the behavior of the code itself in order to give orientations for improvements. An in-depth analysis of the current knowledge and main points of modeling is at first provided, highlighting the major uncertainties. The analysis of pressure shock propagation in two-phase liquid/gas flows is then performed. It allows to propose an explanation of the difficulties encountered to obtain strong explosions with UO 2 /ZrO 2 melts from a distant trigger in onedimensional geometries such as in the KROTOS installation. The general cases of 3-phase flows are then examined with details, as a function of the melt and vapor volume fractions. A comparison of the behavior with the classical analytical detonation model is given and the competition between the fragmentation and heat transfer in terms of time scales is outlined. Finally, the impact of major modeling issues are discussed and conclusions are provided for recommendations of improvements.
ArticleNumber 110064
Author Meignen, Renaud
Wei, Linkai
Picchi, Stéphane
Rimbert, Nicolas
Author_xml – sequence: 1
  givenname: Linkai
  surname: Wei
  fullname: Wei, Linkai
  organization: IRSN, Radioprotection and Nuclear Safety Institute, PSN-RES/SAM, BP 3, 13115 Saint-Paul-Lez-Durance Cedex, France
– sequence: 2
  givenname: Renaud
  orcidid: 0000-0001-7793-4707
  surname: Meignen
  fullname: Meignen, Renaud
  email: renaud.meignen@irsn.fr
  organization: IRSN, Radioprotection and Nuclear Safety Institute, PSN-RES/SAM, BP 3, 13115 Saint-Paul-Lez-Durance Cedex, France
– sequence: 3
  givenname: Stéphane
  surname: Picchi
  fullname: Picchi, Stéphane
  organization: IRSN, Radioprotection and Nuclear Safety Institute, PSN-RES/SAM, BP 3, 13115 Saint-Paul-Lez-Durance Cedex, France
– sequence: 4
  givenname: Nicolas
  surname: Rimbert
  fullname: Rimbert, Nicolas
  organization: LEMTA CNRS, University of Lorraine, 2 Avenue de la Forêt de Haye, 54518 Vandoeuvre-lès-Nancy, France
BackLink https://asnr.hal.science/irsn-04399956$$DView record in HAL
BookMark eNqFkNFKwzAUhoNMcJs-gtBroTVJ07S5kjF0Ewbe6HU4TU8wo0tG0w379nZ0eOvVOQf-74fzLcjMB4-EPDKaMcrk8z4DfzLoMeOU5xljlEpxQ-asKvOUj9eMzGlOZSoKoe7IIsY9pYxXQsxJufLQDtHFBHyTRPTR9e7s-iGJ_akZkmDHBeGQ4M-xDdEFn7QBmnhPbi20ER-uc0m-3l4_19t097F5X692qeGK92lTirqurbG8LnhRi6KoBBpVC2MrVJWUYMGoRhnKBECprLWypLQsQSoBdZUvydPU-w2tPnbuAN2gAzi9Xe2066LXVORKqUKe2RguprDpQowd2j-CUX1Rpff6qkpfVOlJ1ci9TByOn5wddjoah95g4zo0vW6C-6fhF4UhdtQ
Cites_doi 10.1016/j.nucengdes.2013.06.014
10.1016/j.ijheatmasstransfer.2016.11.055
10.1016/0017-9310(80)90195-7
10.1017/jfm.2020.675
10.1016/j.ces.2005.07.014
10.1088/0022-3727/9/9/006
10.1063/5.0062430
10.1016/S0029-5493(99)00030-8
10.1016/j.anucene.2014.07.008
10.1016/j.ijthermalsci.2009.01.012
10.1016/S0377-0273(02)00425-0
10.1098/rsfs.2015.0024
10.1016/S0029-5493(99)00032-1
10.1016/j.nucengdes.2014.08.028
10.1016/j.nucengdes.2010.05.001
10.1016/S0301-9322(99)00064-6
10.13182/NSE89-A23594
10.1016/j.ijmultiphaseflow.2017.01.016
10.1016/0017-9310(72)90185-8
10.1016/0029-5493(94)00889-7
10.1115/1.3450737
10.1016/j.nucengdes.2017.01.029
10.1038/254319a0
10.2172/4623717
10.1016/S0377-0273(01)00280-3
10.1016/j.nucengdes.2008.08.006
10.1016/j.ijheatmasstransfer.2022.123289
10.1016/j.anucene.2018.05.029
10.1016/j.nucengdes.2013.02.017
10.1016/j.nucengdes.2019.02.008
10.1016/S0029-5493(98)00269-6
10.1016/S0029-5493(01)00504-0
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.anucene.2023.110064
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2100
ExternalDocumentID oai_HAL_irsn_04399956v1
10_1016_j_anucene_2023_110064
S0306454923003833
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KCYFY
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSJ
SSR
SSZ
T5K
~G-
.GJ
53G
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SSH
UHS
WUQ
1XC
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c292t-d74bbbfcf2b525b45584ec9b4cf8e9866afac9d9c014aa79fff670077a694ab83
IEDL.DBID AIKHN
ISSN 0306-4549
IngestDate Wed Sep 17 06:26:13 EDT 2025
Tue Jul 01 03:12:28 EDT 2025
Tue Jun 18 08:52:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuel Coolant Interaction
Steam explosion
MC3D
Fragmentation
Coolant
Interaction
Fuel
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-d74bbbfcf2b525b45584ec9b4cf8e9866afac9d9c014aa79fff670077a694ab83
ORCID 0000-0001-7793-4707
0009-0007-8017-9213
0000-0001-8067-0327
ParticipantIDs hal_primary_oai_HAL_irsn_04399956v1
crossref_primary_10_1016_j_anucene_2023_110064
elsevier_sciencedirect_doi_10_1016_j_anucene_2023_110064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Annals of nuclear energy
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Masson
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Masson
References Zambaux J. A., Manickam L., Meignen R., Ma W. M., Bechta S., and Picchi S., 2018. Study on thermal fragmentation characteristics of a superheated alumina droplet, Ann. Nucl. Energy, 119, 352–361.
Wei, L., Meignen, R. Rimbert, N., 2022. Heat transfer of liquid drops subject to fragmentation, 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, March 6 - 11, 2022.
Epstein (b0080) 1977; 99
Hansson, Dinh, Manickam (b0105) 2013; 264
Lamome J., Meignen R., 2008. On the explosivity of a molten drop submitted to a small pressure perturbation, Nucl. Eng. Des., 238 (12), 3445–3456.
Theofanous T. G., Yuen W. W., Freeman K., and Chen X., 1999. The verification basis of the ESPROSE.m code, Nucl. Eng. Des., 189 (1–3), 103–138.
Cho D. H., Armstrong D. R., Gunther W.H., 1998. Experiments on interactions between Zirconium-containing melt and water, Argonne National Lab., Ill., Technical Report NUREG/CR-5372, 1998.
(b0070) 2013
De Malmazet E., 2019. New film boiling correlations for drops and fragments in Fuel-Coolant Interaction codes, 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18)At: Portland, Oregon, US.
Hadj-Achour, Rimbert, Gradeck, Meignen (b0100) 2021; 33
Park, Kim, Min, Hong (b0195) 2013; 263
Theofanous, Yuen (b0260) 1995; 155
Yuen, Theofanous (b0290) 1999; 25
Sairanen R. et al., 2006. OECD research programme on fuel-coolant interaction steam explosion resolution for nuclear applications - SERENA. Final Report - December 2006, OECD, NEA-CSNI-R--2007-11, 2007. Available: http://inis.iaea.org/Search/search.aspx?orig_q=RN:44037878.
Steam explosion Review Group (SERG), NUREG-1524.
Chu, Corradini (b0060) 1989; 101
Picchi S., Meignen R., 2020c. MC3D version 3.10, Description of the physical models of the EXPLOSION application, IRSN/2020-00133 (internal report, on demand).
Kim D. S., Burger M., Frohlich G., and Unger H., 1983. Experimental investigation of hydrodynamic fragmentation of gallium drops in water flows, International meeting on light-water reactor severe accident evaluation; Cambridge, MA (USA); 28 Aug - 1 Sep 1983.
Berthoud, D’Aillon (b0020) 2009; 48
Dullforce, Buchanan, Peckover (b0075) 1976; 9
Scott E., Berthoud G., 1978. Mutiphase thermal detonation, ASME, San Francisco, USA, Dec. 1978.
Zeldovich, Y.B., 1950. On the theory of the propagation of detonation in gaseous systems (No. NACA-TM-1261).
Li, Haraldsson, Dinh, Green, Sehgal (b0145) 1998
Meignen, Raverdy, Buck, Pohlner, Kudinov, Ma, Brayer, Piluso, Hong, Leskovar, Uršič, Albrecht, Lindholm, Ivanov (b0170) 2014; 74
Frolov, Avdeev, Aksenov, Borisov, Frolov, Shamshin, Tukhvatullina, Basara, Edelbauer, Pachler (b0095) 2017; 92
Castrillon Escobar S., 2016. Instabilité et dispersion de jets de corium liquides : analyse des processus physiques et modélisation dans le logiciel MC3D, phd-thesis, Université de Lorraine, 2016, https://tel.archives-ouvertes.fr/tel-01438841.
.
OECD/SERENA Project Report, Summary and Conclusions, NEA/CSNI/R(2014)15, February 2015.
Epstein, M., Hauser, G.M., 1980. Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder, Int. J. Heat Mass Transfer 23(2), 179–189.
Cho D. H., Ivins R. O., and Wright R.W., 1972. Rate-limited model of molten fuel/coolant interactions: model development and preliminary calculations., Argonne National Lab., Ill., ANL-7919, 1972.
Kudinov P., Grishchenko D., Konovalenko A., Karbojian A., 2017. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials, Nucl. Eng. Des., 314(1) 182–197.
Wohletz K., 2002. Water/magma interaction: some theory and experiments on peperite formation, J. Volcanol. Geothermal Res., 114 (1–2), 19–35.
Berman, M., 1981. Light water reactor safety research program Quarterly report, January-march 1981 (Technical Report No. NUREG/CR-2163/lof4). Sandia National Labs.
Nelson L. S., Duda P.M., 1985. Steam explosion experiments with single drops of iron oxide melted with a CO
Head, Wilson (b0110) 2003; 121
Meignen, Raverdy, Picchi, Lamome (b0165) 2014; 280
Hadj Achour M., 2021. Fragmentation de métal liquide dans l’eau, phd-thesis, Université de Lorraine, 2017.
Wei L., 2023. Development of a new steam explosion model for the MC3D software, PhD University of Lorraine, March 2023.
Simons, Bellemans, Crivits, Verbeken (b0245) 2022; 196
Loisel V., Zambaux J.-A., Hadj-Achour M., Picchi S., Coindreau O., and Meignen R., 2019. Oxidation during fuel-coolant interaction: advances and modeling, Nuclear Engineering and Design, vol. 346, pp. 200–208, May 2019.
Brayer, C., Berthoud, G., 1997. First vapor explosion calculations performed with MC3D thermal-hydraulic code, Proceedings of the OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions, Tokai-Mura, 1997.
Popinet S. (2018), Basilisk, a Free-Software program for the solution of partial differential equations on adaptive Cartesian meshes, http://basilisk.fr.
Meignen R et al. (2005), Comparative Review of FCI Computer Models Used in the OECD-SERENA Program, Proceedings of ICAPP ’05 Seoul, KOREA, May 15-19, 2005 Paper 5087 .
Piluso P. et al., 2015. Fuel coolant interaction studies in the frame of CEA programs: impact of material effect and hydrogen production on steam explosion, ICAPP 2015: Nuclear Innovations for a low-carbon future; Nice (France); 3-6 May 2015.
Picchi S., Meignen R., 2020a. MC3D version 3.10, Validation report, IRSN/2020-00134 (internal report, on demand).
Uršič, Meignen, Leskovar (b0270) 2017; 107
Meignen, R., Raverdy, B., Buck, M., Bürger, M., Pohlner, G., 2012. On the role of void on steam explosion loads.
Mitropetros K., Hieronymus H., and Steinbach J., 2006. Single bubble ignition after shock wave impact, Chem. Eng. Sci., 61 (2), 397–416.
Bürger M., Buck M., Saied-Ahmad S., and Schatz A., 1996. Experimental and Theoretical investigations on the Fragmentation of Melt Drops in Relative Flows, Report INV-MFC (98)—D016, pp. 2–135, 1996.
Prosperetti (b0220) 2015; 5
Rimbert, Castrillon, Meignen, Hadj-Achour, Gradeck (b0230) 2020; 904
Uršič, Leskovar, Mavko (b0265) 2011; 241
Hicks, Menzies (b0115) 1965; 654
Basu S., Ginsberg T., 1996. A reassessement of the potential for an Alpha mode containement failure and a review of the current understanding of broader Fuel-Coolant Intraction Issues, 2
5th European Review Meeting on Severe Accident Research (ERMSAR-2012) Cologne (Germany)..
Board, Hall, Hall (b0025) 1975; 254
Ranger, Nicholls (b0225) 1972; 15
Chen, Luo, Yuen, Theofanous (b0045) 1999; 189
Huhtiniemi I., Magallon D., and Hohmann H., 1999. Results of recent KROTOS FCI tests: alumina versus corium melts, Nuclear engineering and design, vol. 189, no. 1–3, pp. 379–389.
Song (b0250) 2002; 213
Meignen, Picchi, Lamome, Raverdy, Castrillon, Nicaise (b0160) 2014; 280
Fisher M., 2017. Corium spreading under water and its possible consequences, ERMSAR 2017, Warsaw, Poland, May 16-18, 2017.
laser. Part II. Parametric studies, NUREG, CR-2718.
Picchi S., Meignen R., 2020b. MC3D version 3.10, Description of the physical models of the PREMIXING application, IRSN/2020-00132 (internal report, on demand).
10.1016/j.anucene.2023.110064_b0240
10.1016/j.anucene.2023.110064_b0085
Hicks (10.1016/j.anucene.2023.110064_b0115) 1965; 654
10.1016/j.anucene.2023.110064_b0120
10.1016/j.anucene.2023.110064_b0285
10.1016/j.anucene.2023.110064_b0200
Uršič (10.1016/j.anucene.2023.110064_b0270) 2017; 107
Prosperetti (10.1016/j.anucene.2023.110064_b0220) 2015; 5
10.1016/j.anucene.2023.110064_b0125
10.1016/j.anucene.2023.110064_b0005
10.1016/j.anucene.2023.110064_b0205
Head (10.1016/j.anucene.2023.110064_b0110) 2003; 121
Park (10.1016/j.anucene.2023.110064_b0195) 2013; 263
10.1016/j.anucene.2023.110064_b0090
Yuen (10.1016/j.anucene.2023.110064_b0290) 1999; 25
10.1016/j.anucene.2023.110064_b0050
10.1016/j.anucene.2023.110064_b0130
10.1016/j.anucene.2023.110064_b0295
10.1016/j.anucene.2023.110064_b0055
10.1016/j.anucene.2023.110064_b0010
10.1016/j.anucene.2023.110064_b0175
10.1016/j.anucene.2023.110064_b0255
10.1016/j.anucene.2023.110064_b0210
10.1016/j.anucene.2023.110064_b0015
10.1016/j.anucene.2023.110064_b0135
10.1016/j.anucene.2023.110064_b0215
Dullforce (10.1016/j.anucene.2023.110064_b0075) 1976; 9
Chen (10.1016/j.anucene.2023.110064_b0045) 1999; 189
Berthoud (10.1016/j.anucene.2023.110064_b0020) 2009; 48
10.1016/j.anucene.2023.110064_b0180
10.1016/j.anucene.2023.110064_b0185
10.1016/j.anucene.2023.110064_b0140
10.1016/j.anucene.2023.110064_b0065
Hansson (10.1016/j.anucene.2023.110064_b0105) 2013; 264
Song (10.1016/j.anucene.2023.110064_b0250) 2002; 213
10.1016/j.anucene.2023.110064_b0300
(10.1016/j.anucene.2023.110064_b0070) 2013
Ranger (10.1016/j.anucene.2023.110064_b0225) 1972; 15
Meignen (10.1016/j.anucene.2023.110064_b0165) 2014; 280
Hadj-Achour (10.1016/j.anucene.2023.110064_b0100) 2021; 33
Epstein (10.1016/j.anucene.2023.110064_b0080) 1977; 99
Meignen (10.1016/j.anucene.2023.110064_b0170) 2014; 74
Simons (10.1016/j.anucene.2023.110064_b0245) 2022; 196
Frolov (10.1016/j.anucene.2023.110064_b0095) 2017; 92
Chu (10.1016/j.anucene.2023.110064_b0060) 1989; 101
Meignen (10.1016/j.anucene.2023.110064_b0160) 2014; 280
10.1016/j.anucene.2023.110064_b0190
10.1016/j.anucene.2023.110064_b0150
10.1016/j.anucene.2023.110064_b0030
10.1016/j.anucene.2023.110064_b0275
10.1016/j.anucene.2023.110064_b0035
10.1016/j.anucene.2023.110064_b0155
Rimbert (10.1016/j.anucene.2023.110064_b0230) 2020; 904
10.1016/j.anucene.2023.110064_b0235
Uršič (10.1016/j.anucene.2023.110064_b0265) 2011; 241
Board (10.1016/j.anucene.2023.110064_b0025) 1975; 254
Theofanous (10.1016/j.anucene.2023.110064_b0260) 1995; 155
Li (10.1016/j.anucene.2023.110064_b0145) 1998
10.1016/j.anucene.2023.110064_b0280
10.1016/j.anucene.2023.110064_b0040
References_xml – reference: laser. Part II. Parametric studies, NUREG, CR-2718.
– reference: OECD/SERENA Project Report, Summary and Conclusions, NEA/CSNI/R(2014)15, February 2015.
– reference: Sairanen R. et al., 2006. OECD research programme on fuel-coolant interaction steam explosion resolution for nuclear applications - SERENA. Final Report - December 2006, OECD, NEA-CSNI-R--2007-11, 2007. Available: http://inis.iaea.org/Search/search.aspx?orig_q=RN:44037878.
– reference: Hadj Achour M., 2021. Fragmentation de métal liquide dans l’eau, phd-thesis, Université de Lorraine, 2017.
– reference: Nelson L. S., Duda P.M., 1985. Steam explosion experiments with single drops of iron oxide melted with a CO
– volume: 263
  start-page: 419
  year: 2013
  end-page: 430
  ident: b0195
  article-title: Thermal-hydraulic aspects of FCIs in TROI corium/water interaction tests
  publication-title: Nucl. Eng. Des.
– reference: Mitropetros K., Hieronymus H., and Steinbach J., 2006. Single bubble ignition after shock wave impact, Chem. Eng. Sci., 61 (2), 397–416.
– reference: Bürger M., Buck M., Saied-Ahmad S., and Schatz A., 1996. Experimental and Theoretical investigations on the Fragmentation of Melt Drops in Relative Flows, Report INV-MFC (98)—D016, pp. 2–135, 1996.
– volume: 92
  start-page: 20
  year: 2017
  end-page: 38
  ident: b0095
  article-title: Experimental and computational studies of shock wave-to-bubbly water momentum transfer
  publication-title: Int. J. Multiph. Flow
– volume: 121
  start-page: 155
  year: 2003
  end-page: 193
  ident: b0110
  article-title: Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits
  publication-title: J. Volcanol. Geoth. Res.
– reference: 5th European Review Meeting on Severe Accident Research (ERMSAR-2012) Cologne (Germany)..
– reference: Popinet S. (2018), Basilisk, a Free-Software program for the solution of partial differential equations on adaptive Cartesian meshes, http://basilisk.fr.
– volume: 155
  start-page: 459
  year: 1995
  end-page: 473
  ident: b0260
  article-title: The probability of alpha-mode containment failure
  publication-title: Nucl. Eng. Des.
– volume: 280
  start-page: 528
  year: 2014
  end-page: 541
  ident: b0160
  article-title: The challenge of modeling fuel–coolant interaction: Part I – Premixing
  publication-title: Nucl. Eng. Des.
– reference: Picchi S., Meignen R., 2020a. MC3D version 3.10, Validation report, IRSN/2020-00134 (internal report, on demand).
– volume: 213
  start-page: 97
  year: 2002
  end-page: 110
  ident: b0250
  article-title: Experiments on the interactions of molten ZrO2 with water using TROI facility
  publication-title: Nucl. Eng. Des.
– volume: 15
  start-page: 1203
  year: 1972
  end-page: 1211
  ident: b0225
  article-title: Atomization of liquid droplets in a convective gas stream
  publication-title: Int. J. Heat Mass Transf.
– volume: 904
  start-page: A15
  year: 2020
  ident: b0230
  article-title: Spheroidal droplet deformation, oscillation and breakup in uniform outer flow
  publication-title: J. Fluid Mechanics
– reference: Basu S., Ginsberg T., 1996. A reassessement of the potential for an Alpha mode containement failure and a review of the current understanding of broader Fuel-Coolant Intraction Issues, 2
– reference: Zeldovich, Y.B., 1950. On the theory of the propagation of detonation in gaseous systems (No. NACA-TM-1261).
– reference: Wei, L., Meignen, R. Rimbert, N., 2022. Heat transfer of liquid drops subject to fragmentation, 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, March 6 - 11, 2022.
– volume: 25
  start-page: 1505
  year: 1999
  end-page: 1519
  ident: b0290
  article-title: On the existence of multiphase thermal detonations
  publication-title: Int. J. Multiph. Flow
– reference: Kim D. S., Burger M., Frohlich G., and Unger H., 1983. Experimental investigation of hydrodynamic fragmentation of gallium drops in water flows, International meeting on light-water reactor severe accident evaluation; Cambridge, MA (USA); 28 Aug - 1 Sep 1983.
– reference: Cho D. H., Ivins R. O., and Wright R.W., 1972. Rate-limited model of molten fuel/coolant interactions: model development and preliminary calculations., Argonne National Lab., Ill., ANL-7919, 1972.
– year: 2013
  ident: b0070
  publication-title: Bubble Dynamics and Shock Waves
– volume: 280
  start-page: 528
  year: 2014
  end-page: 541
  ident: b0165
  article-title: The challenge of modeling fuel–coolant interaction: Part II – Steam explosion
  publication-title: Nucl. Eng. Des.
– volume: 33
  year: 2021
  ident: b0100
  article-title: Fragmentation of a liquid metal droplet falling in a water pool
  publication-title: Phys. Fluids
– volume: 9
  start-page: 1976
  year: 1976
  ident: b0075
  article-title: Self-triggering of small-scale fuel-coolant interactions: I. Experiments
  publication-title: J. Phys. D: Appl. Phys.
– volume: 196
  start-page: 123289
  year: 2022
  ident: b0245
  article-title: The effect of vapour formation and metal droplet temperature and mass on vapour explosion behaviour
  publication-title: Int. J. Heat Mass Transf.
– volume: 654
  start-page: 1965
  year: 1965
  ident: b0115
  article-title: Theoretical studies on the fast reactor maximum accident
  publication-title: ANL-7120
– reference: Kudinov P., Grishchenko D., Konovalenko A., Karbojian A., 2017. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials, Nucl. Eng. Des., 314(1) 182–197.
– volume: 107
  start-page: 622
  year: 2017
  end-page: 630
  ident: b0270
  article-title: Analysis of film boiling heat transfer during fuel-coolant interaction
  publication-title: Int. J. Heat Mass Transf.
– volume: 48
  start-page: 1728
  year: 2009
  end-page: 1740
  ident: b0020
  article-title: Film boiling heat transfer around a very high temperature thin wire immersed into water at pressure from 1 to 210bar: Experimental results and analysis
  publication-title: Int. J. Therm. Sci.
– reference: Meignen R et al. (2005), Comparative Review of FCI Computer Models Used in the OECD-SERENA Program, Proceedings of ICAPP ’05 Seoul, KOREA, May 15-19, 2005 Paper 5087 .
– reference: Picchi S., Meignen R., 2020c. MC3D version 3.10, Description of the physical models of the EXPLOSION application, IRSN/2020-00133 (internal report, on demand).
– reference: Meignen, R., Raverdy, B., Buck, M., Bürger, M., Pohlner, G., 2012. On the role of void on steam explosion loads.
– volume: 99
  start-page: 527
  year: 1977
  end-page: 532
  ident: b0080
  article-title: Stability of submerged frozen crust
  publication-title: J. Heat Transfer
– reference: De Malmazet E., 2019. New film boiling correlations for drops and fragments in Fuel-Coolant Interaction codes, 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18)At: Portland, Oregon, US.
– reference: Steam explosion Review Group (SERG), NUREG-1524.
– volume: 254
  start-page: 319
  year: 1975
  end-page: 321
  ident: b0025
  article-title: Detonation of fuel–coolant explosions
  publication-title: Nature
– volume: 74
  start-page: 125
  year: 2014
  end-page: 133
  ident: b0170
  article-title: Status of steam explosion understanding and modelling
  publication-title: Ann. Nucl. Energy
– reference: Cho D. H., Armstrong D. R., Gunther W.H., 1998. Experiments on interactions between Zirconium-containing melt and water, Argonne National Lab., Ill., Technical Report NUREG/CR-5372, 1998.
– volume: 241
  start-page: 1206
  year: 2011
  end-page: 1216
  ident: b0265
  article-title: Improved solidification influence modelling for Eulerian fuel–coolant interaction codes
  publication-title: Nucl. Eng. Des.
– reference: Zambaux J. A., Manickam L., Meignen R., Ma W. M., Bechta S., and Picchi S., 2018. Study on thermal fragmentation characteristics of a superheated alumina droplet, Ann. Nucl. Energy, 119, 352–361.
– volume: 5
  start-page: 20150024
  year: 2015
  ident: b0220
  article-title: The speed of sound in a gas–vapour bubbly liquid
  publication-title: Interface Focus
– reference: Fisher M., 2017. Corium spreading under water and its possible consequences, ERMSAR 2017, Warsaw, Poland, May 16-18, 2017.
– reference: Loisel V., Zambaux J.-A., Hadj-Achour M., Picchi S., Coindreau O., and Meignen R., 2019. Oxidation during fuel-coolant interaction: advances and modeling, Nuclear Engineering and Design, vol. 346, pp. 200–208, May 2019.
– reference: Castrillon Escobar S., 2016. Instabilité et dispersion de jets de corium liquides : analyse des processus physiques et modélisation dans le logiciel MC3D, phd-thesis, Université de Lorraine, 2016, https://tel.archives-ouvertes.fr/tel-01438841.
– reference: Theofanous T. G., Yuen W. W., Freeman K., and Chen X., 1999. The verification basis of the ESPROSE.m code, Nucl. Eng. Des., 189 (1–3), 103–138.
– reference: Scott E., Berthoud G., 1978. Mutiphase thermal detonation, ASME, San Francisco, USA, Dec. 1978.
– reference: Huhtiniemi I., Magallon D., and Hohmann H., 1999. Results of recent KROTOS FCI tests: alumina versus corium melts, Nuclear engineering and design, vol. 189, no. 1–3, pp. 379–389.
– reference: .
– reference: Brayer, C., Berthoud, G., 1997. First vapor explosion calculations performed with MC3D thermal-hydraulic code, Proceedings of the OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions, Tokai-Mura, 1997.
– reference: Berman, M., 1981. Light water reactor safety research program Quarterly report, January-march 1981 (Technical Report No. NUREG/CR-2163/lof4). Sandia National Labs.
– year: 1998
  ident: b0145
  article-title: Fragmentation behaviour of melt drops in coolant: effects of melt drop solidification
  publication-title: Third International Conference on Multiphase Flow
– reference: Epstein, M., Hauser, G.M., 1980. Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder, Int. J. Heat Mass Transfer 23(2), 179–189.
– volume: 264
  start-page: 168
  year: 2013
  end-page: 175
  ident: b0105
  article-title: A study of the effect of binary oxide materials in a single droplet vapor explosion
  publication-title: Nucl. Eng. Des.
– reference: Lamome J., Meignen R., 2008. On the explosivity of a molten drop submitted to a small pressure perturbation, Nucl. Eng. Des., 238 (12), 3445–3456.
– reference: Wei L., 2023. Development of a new steam explosion model for the MC3D software, PhD University of Lorraine, March 2023.
– volume: 189
  start-page: 163
  year: 1999
  end-page: 178
  ident: b0045
  article-title: Experimental simulation of micro-interactions in largescale explosions
  publication-title: Nucl. Eng. Des.
– reference: Picchi S., Meignen R., 2020b. MC3D version 3.10, Description of the physical models of the PREMIXING application, IRSN/2020-00132 (internal report, on demand).
– volume: 101
  start-page: 48
  year: 1989
  end-page: 71
  ident: b0060
  article-title: One-dimensional transient fluid model for fuel/coolant interaction analysis
  publication-title: Nucl. Sci. Eng.
– reference: Piluso P. et al., 2015. Fuel coolant interaction studies in the frame of CEA programs: impact of material effect and hydrogen production on steam explosion, ICAPP 2015: Nuclear Innovations for a low-carbon future; Nice (France); 3-6 May 2015.
– reference: Wohletz K., 2002. Water/magma interaction: some theory and experiments on peperite formation, J. Volcanol. Geothermal Res., 114 (1–2), 19–35.
– ident: 10.1016/j.anucene.2023.110064_b0205
– volume: 263
  start-page: 419
  issue: 2013
  year: 2013
  ident: 10.1016/j.anucene.2023.110064_b0195
  article-title: Thermal-hydraulic aspects of FCIs in TROI corium/water interaction tests
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.06.014
– volume: 107
  start-page: 622
  year: 2017
  ident: 10.1016/j.anucene.2023.110064_b0270
  article-title: Analysis of film boiling heat transfer during fuel-coolant interaction
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.055
– ident: 10.1016/j.anucene.2023.110064_b0085
  doi: 10.1016/0017-9310(80)90195-7
– ident: 10.1016/j.anucene.2023.110064_b0215
– volume: 904
  start-page: A15
  year: 2020
  ident: 10.1016/j.anucene.2023.110064_b0230
  article-title: Spheroidal droplet deformation, oscillation and breakup in uniform outer flow
  publication-title: J. Fluid Mechanics
  doi: 10.1017/jfm.2020.675
– ident: 10.1016/j.anucene.2023.110064_b0140
– ident: 10.1016/j.anucene.2023.110064_b0035
– ident: 10.1016/j.anucene.2023.110064_b0125
– ident: 10.1016/j.anucene.2023.110064_b0180
  doi: 10.1016/j.ces.2005.07.014
– volume: 9
  start-page: 1976
  year: 1976
  ident: 10.1016/j.anucene.2023.110064_b0075
  article-title: Self-triggering of small-scale fuel-coolant interactions: I. Experiments
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/9/9/006
– ident: 10.1016/j.anucene.2023.110064_b0015
– volume: 33
  issue: 10
  year: 2021
  ident: 10.1016/j.anucene.2023.110064_b0100
  article-title: Fragmentation of a liquid metal droplet falling in a water pool
  publication-title: Phys. Fluids
  doi: 10.1063/5.0062430
– ident: 10.1016/j.anucene.2023.110064_b0090
– ident: 10.1016/j.anucene.2023.110064_b0255
  doi: 10.1016/S0029-5493(99)00030-8
– volume: 74
  start-page: 125
  year: 2014
  ident: 10.1016/j.anucene.2023.110064_b0170
  article-title: Status of steam explosion understanding and modelling
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2014.07.008
– year: 2013
  ident: 10.1016/j.anucene.2023.110064_b0070
– ident: 10.1016/j.anucene.2023.110064_b0005
– ident: 10.1016/j.anucene.2023.110064_b0155
– volume: 48
  start-page: 1728
  issue: 9
  year: 2009
  ident: 10.1016/j.anucene.2023.110064_b0020
  article-title: Film boiling heat transfer around a very high temperature thin wire immersed into water at pressure from 1 to 210bar: Experimental results and analysis
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.01.012
– volume: 121
  start-page: 155
  issue: 3–4
  year: 2003
  ident: 10.1016/j.anucene.2023.110064_b0110
  article-title: Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits
  publication-title: J. Volcanol. Geoth. Res.
  doi: 10.1016/S0377-0273(02)00425-0
– volume: 5
  start-page: 20150024
  year: 2015
  ident: 10.1016/j.anucene.2023.110064_b0220
  article-title: The speed of sound in a gas–vapour bubbly liquid
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2015.0024
– volume: 189
  start-page: 163
  issue: 1-3
  year: 1999
  ident: 10.1016/j.anucene.2023.110064_b0045
  article-title: Experimental simulation of micro-interactions in largescale explosions
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(99)00032-1
– volume: 280
  start-page: 528
  year: 2014
  ident: 10.1016/j.anucene.2023.110064_b0165
  article-title: The challenge of modeling fuel–coolant interaction: Part II – Steam explosion
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.08.028
– ident: 10.1016/j.anucene.2023.110064_b0300
– ident: 10.1016/j.anucene.2023.110064_b0240
– volume: 241
  start-page: 1206
  issue: 4
  year: 2011
  ident: 10.1016/j.anucene.2023.110064_b0265
  article-title: Improved solidification influence modelling for Eulerian fuel–coolant interaction codes
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2010.05.001
– volume: 25
  start-page: 1505
  issue: 6–7
  year: 1999
  ident: 10.1016/j.anucene.2023.110064_b0290
  article-title: On the existence of multiphase thermal detonations
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(99)00064-6
– ident: 10.1016/j.anucene.2023.110064_b0275
– volume: 101
  start-page: 48
  issue: 1989
  year: 1989
  ident: 10.1016/j.anucene.2023.110064_b0060
  article-title: One-dimensional transient fluid model for fuel/coolant interaction analysis
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE89-A23594
– volume: 92
  start-page: 20
  year: 2017
  ident: 10.1016/j.anucene.2023.110064_b0095
  article-title: Experimental and computational studies of shock wave-to-bubbly water momentum transfer
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.01.016
– ident: 10.1016/j.anucene.2023.110064_b0280
– ident: 10.1016/j.anucene.2023.110064_b0190
– ident: 10.1016/j.anucene.2023.110064_b0175
– volume: 15
  start-page: 1203
  issue: 6
  year: 1972
  ident: 10.1016/j.anucene.2023.110064_b0225
  article-title: Atomization of liquid droplets in a convective gas stream
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(72)90185-8
– volume: 155
  start-page: 459
  issue: 1
  year: 1995
  ident: 10.1016/j.anucene.2023.110064_b0260
  article-title: The probability of alpha-mode containment failure
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(94)00889-7
– volume: 99
  start-page: 527
  year: 1977
  ident: 10.1016/j.anucene.2023.110064_b0080
  article-title: Stability of submerged frozen crust
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3450737
– ident: 10.1016/j.anucene.2023.110064_b0130
  doi: 10.1016/j.nucengdes.2017.01.029
– ident: 10.1016/j.anucene.2023.110064_b0010
– volume: 254
  start-page: 319
  issue: 5498
  year: 1975
  ident: 10.1016/j.anucene.2023.110064_b0025
  article-title: Detonation of fuel–coolant explosions
  publication-title: Nature
  doi: 10.1038/254319a0
– ident: 10.1016/j.anucene.2023.110064_b0040
– ident: 10.1016/j.anucene.2023.110064_b0050
  doi: 10.2172/4623717
– year: 1998
  ident: 10.1016/j.anucene.2023.110064_b0145
  article-title: Fragmentation behaviour of melt drops in coolant: effects of melt drop solidification
– ident: 10.1016/j.anucene.2023.110064_b0065
– ident: 10.1016/j.anucene.2023.110064_b0210
– ident: 10.1016/j.anucene.2023.110064_b0285
  doi: 10.1016/S0377-0273(01)00280-3
– ident: 10.1016/j.anucene.2023.110064_b0135
  doi: 10.1016/j.nucengdes.2008.08.006
– volume: 280
  start-page: 528
  year: 2014
  ident: 10.1016/j.anucene.2023.110064_b0160
  article-title: The challenge of modeling fuel–coolant interaction: Part I – Premixing
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2014.08.028
– volume: 196
  start-page: 123289
  year: 2022
  ident: 10.1016/j.anucene.2023.110064_b0245
  article-title: The effect of vapour formation and metal droplet temperature and mass on vapour explosion behaviour
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123289
– ident: 10.1016/j.anucene.2023.110064_b0295
  doi: 10.1016/j.anucene.2018.05.029
– volume: 264
  start-page: 168
  issue: 2013
  year: 2013
  ident: 10.1016/j.anucene.2023.110064_b0105
  article-title: A study of the effect of binary oxide materials in a single droplet vapor explosion
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.02.017
– ident: 10.1016/j.anucene.2023.110064_b0150
  doi: 10.1016/j.nucengdes.2019.02.008
– ident: 10.1016/j.anucene.2023.110064_b0185
– ident: 10.1016/j.anucene.2023.110064_b0120
  doi: 10.1016/S0029-5493(98)00269-6
– ident: 10.1016/j.anucene.2023.110064_b0055
– ident: 10.1016/j.anucene.2023.110064_b0200
– volume: 654
  start-page: 1965
  year: 1965
  ident: 10.1016/j.anucene.2023.110064_b0115
  article-title: Theoretical studies on the fast reactor maximum accident
  publication-title: ANL-7120
– ident: 10.1016/j.anucene.2023.110064_b0235
– volume: 213
  start-page: 97
  issue: 2
  year: 2002
  ident: 10.1016/j.anucene.2023.110064_b0250
  article-title: Experiments on the interactions of molten ZrO2 with water using TROI facility
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(01)00504-0
– ident: 10.1016/j.anucene.2023.110064_b0030
SSID ssj0012844
Score 2.3436806
Snippet •A detailed analysis of the steam explosion characteristics is performed with the MC3D software.•A comprehensive review of the up-to-date knowledge and...
Steam Explosion is a destructive event that may arise from the mixing of the molten fuel (corium) with the liquid coolant (water, sodium) during the course of...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 110064
SubjectTerms Fragmentation
Fuel Coolant Interaction
MC3D
Physics
Steam explosion
Title Analysis and sensitivity study of steam explosion loads
URI https://dx.doi.org/10.1016/j.anucene.2023.110064
https://asnr.hal.science/irsn-04399956
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH7YiqAHccW1BPQ6bSeTmUyOpSh1vajgLWTFik6LrR797ebN4nIQweMMhAxfhpf3ku_7HsAx9XEofaiNEmNNxHwcR8rpNGLM5t45T1UppL26zkZ37Pw-vV-AYaOFQVplHfurmF5G6_pNr0azNx2PezeY7bLSYAyvt5KkBYs0EVnahsXB2cXo-vMyIUTgykUqFM844EvI03tEga8JUaWLbcSRE9_P2G9bVOuhOWwtN5_TNVits0YyqD5sHRZcsQEr37wEN2Cp5HKa2SbwxmiEqMKSGTLUqxYRpPSSJRNPcGmfiUP-HZ6WkaeJsrMtuDs9uR2Ooro_QmSooPPIcqa19sZTndJUszQkE84IzYzPncizTHllhBUmlEFKceG9R1EO5yoTTOk82YZ2MSncDhCd6T5VuVU0D2D1E2Gp5jzJFdrTZJzvQreBRE4rGwzZ8MMeZY2hRAxlheEu5A1w8sd6yhCq_xp6FID-nAb9r0eDSzl-mRUShbyoxX2L9_4_wT4s4xOSUuL0ANrzl1d3GFKLue5Aq_sed-of6AP8MMzf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VEAIOiFXsWIJr2sZx4uRYIVCBwoVW4mZ5Fa0grdrCkW_Hk4XlgJC4ZpGjZ2s847z3BuCcutCXPtQEkTY6YC4MA2lVHDBmUmeto7IQ0t7dJ90Bu3mMHxtwUWthkFZZxf4yphfRurrSqtBsTYbD1gNmu6wwGMPfW1G0AEssjjjy-prvnzwPjL-lh5QvnfHxLxlPa4TyXu1jShObiCMjvp2w3zaohaf6qLXYeq42YL3KGUmn_KxNaNh8C9a-OQluwXLB5NSzbeC1zQiRuSEz5KeXDSJI4SRLxo7gxL4Qi-w7PCsjz2NpZjswuLrsX3SDqjtCoGlG54HhTCnltKMqprFisU8lrM4U0y61WZok0kmdmUz7IkhKnjnnUJLDuUwyJlUa7cJiPs7tHhCVqDaVqZE09WC1o8xQxXmUSjSnSTjfh2YNiZiUJhiiZoeNRIWhQAxFieE-pDVw4sdsCh-o_3r1zAP9OQy6X3c7PTGcznKBMl5U4r6FB_8f4BRWuv27nuhd398ewireQXpKGB_B4nz6ao99kjFXJ8Ui-gCwHM2q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+sensitivity+study+of+steam+explosion+loads&rft.jtitle=Annals+of+nuclear+energy&rft.au=Wei%2C+Linkai&rft.au=Meignen%2C+Renaud&rft.au=Picchi%2C+St%C3%A9phane&rft.au=Rimbert%2C+Nicolas&rft.date=2023-12-15&rft.pub=Elsevier+Masson&rft.issn=0306-4549&rft.volume=194&rft_id=info:doi/10.1016%2Fj.anucene.2023.110064&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_irsn_04399956v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon