Analysis and sensitivity study of steam explosion loads
•A detailed analysis of the steam explosion characteristics is performed with the MC3D software.•A comprehensive review of the up-to-date knowledge and modeling issues is given.•1-D steam explosion calculations are performed with sensitivity of melt and void fractions.•The impacts of major modeling...
Saved in:
Published in | Annals of nuclear energy Vol. 194; p. 110064 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2023
Elsevier Masson |
Subjects | |
Online Access | Get full text |
ISSN | 0306-4549 1873-2100 |
DOI | 10.1016/j.anucene.2023.110064 |
Cover
Abstract | •A detailed analysis of the steam explosion characteristics is performed with the MC3D software.•A comprehensive review of the up-to-date knowledge and modeling issues is given.•1-D steam explosion calculations are performed with sensitivity of melt and void fractions.•The impacts of major modeling uncertainties are discussed.
Steam Explosion is a destructive event that may arise from the mixing of the molten fuel (corium) with the liquid coolant (water, sodium) during the course of a severe accident. Due to its high complexity and very specific related conditions, the phenomenon is still subject to numerous uncertainties. MC3D is a CFD software for the simulations of 3D multiphase flows and is used to evaluate steam explosion loads through a specific application called EXPLO. The present paper provides a comprehensive analysis of the characteristics of steam explosion, as computed with MC3D-EXPLO, using a simple one-dimensional test case. The ultimate goal is to better understand the behavior of the code itself in order to give orientations for improvements. An in-depth analysis of the current knowledge and main points of modeling is at first provided, highlighting the major uncertainties. The analysis of pressure shock propagation in two-phase liquid/gas flows is then performed. It allows to propose an explanation of the difficulties encountered to obtain strong explosions with UO2/ZrO2 melts from a distant trigger in one-dimensional geometries such as in the KROTOS installation. The general cases of 3-phase flows are then examined with details, as a function of the melt and vapor volume fractions. A comparison of the behavior with the classical analytical detonation model is given and the competition between the fragmentation and heat transfer in terms of time scales is outlined. Finally, the impact of major modeling issues are discussed and conclusions are provided for recommendations of improvements. |
---|---|
AbstractList | •A detailed analysis of the steam explosion characteristics is performed with the MC3D software.•A comprehensive review of the up-to-date knowledge and modeling issues is given.•1-D steam explosion calculations are performed with sensitivity of melt and void fractions.•The impacts of major modeling uncertainties are discussed.
Steam Explosion is a destructive event that may arise from the mixing of the molten fuel (corium) with the liquid coolant (water, sodium) during the course of a severe accident. Due to its high complexity and very specific related conditions, the phenomenon is still subject to numerous uncertainties. MC3D is a CFD software for the simulations of 3D multiphase flows and is used to evaluate steam explosion loads through a specific application called EXPLO. The present paper provides a comprehensive analysis of the characteristics of steam explosion, as computed with MC3D-EXPLO, using a simple one-dimensional test case. The ultimate goal is to better understand the behavior of the code itself in order to give orientations for improvements. An in-depth analysis of the current knowledge and main points of modeling is at first provided, highlighting the major uncertainties. The analysis of pressure shock propagation in two-phase liquid/gas flows is then performed. It allows to propose an explanation of the difficulties encountered to obtain strong explosions with UO2/ZrO2 melts from a distant trigger in one-dimensional geometries such as in the KROTOS installation. The general cases of 3-phase flows are then examined with details, as a function of the melt and vapor volume fractions. A comparison of the behavior with the classical analytical detonation model is given and the competition between the fragmentation and heat transfer in terms of time scales is outlined. Finally, the impact of major modeling issues are discussed and conclusions are provided for recommendations of improvements. Steam Explosion is a destructive event that may arise from the mixing of the molten fuel (corium) with the liquid coolant (water, sodium) during the course of a severe accident. Due to its high complexity and very specific related conditions, the phenomenon is still subject to numerous uncertainties. MC3D is a CFD software for the simulations of 3D multiphase flows and is used to evaluate steam explosion loads through a specific application called EXPLO. The present paper provides a comprehensive analysis of the characteristics of steam explosion, as computed with MC3D-EXPLO, using a simple one-dimensional test case. The ultimate goal is to better understand the behavior of the code itself in order to give orientations for improvements. An in-depth analysis of the current knowledge and main points of modeling is at first provided, highlighting the major uncertainties. The analysis of pressure shock propagation in two-phase liquid/gas flows is then performed. It allows to propose an explanation of the difficulties encountered to obtain strong explosions with UO 2 /ZrO 2 melts from a distant trigger in onedimensional geometries such as in the KROTOS installation. The general cases of 3-phase flows are then examined with details, as a function of the melt and vapor volume fractions. A comparison of the behavior with the classical analytical detonation model is given and the competition between the fragmentation and heat transfer in terms of time scales is outlined. Finally, the impact of major modeling issues are discussed and conclusions are provided for recommendations of improvements. |
ArticleNumber | 110064 |
Author | Meignen, Renaud Wei, Linkai Picchi, Stéphane Rimbert, Nicolas |
Author_xml | – sequence: 1 givenname: Linkai surname: Wei fullname: Wei, Linkai organization: IRSN, Radioprotection and Nuclear Safety Institute, PSN-RES/SAM, BP 3, 13115 Saint-Paul-Lez-Durance Cedex, France – sequence: 2 givenname: Renaud orcidid: 0000-0001-7793-4707 surname: Meignen fullname: Meignen, Renaud email: renaud.meignen@irsn.fr organization: IRSN, Radioprotection and Nuclear Safety Institute, PSN-RES/SAM, BP 3, 13115 Saint-Paul-Lez-Durance Cedex, France – sequence: 3 givenname: Stéphane surname: Picchi fullname: Picchi, Stéphane organization: IRSN, Radioprotection and Nuclear Safety Institute, PSN-RES/SAM, BP 3, 13115 Saint-Paul-Lez-Durance Cedex, France – sequence: 4 givenname: Nicolas surname: Rimbert fullname: Rimbert, Nicolas organization: LEMTA CNRS, University of Lorraine, 2 Avenue de la Forêt de Haye, 54518 Vandoeuvre-lès-Nancy, France |
BackLink | https://asnr.hal.science/irsn-04399956$$DView record in HAL |
BookMark | eNqFkNFKwzAUhoNMcJs-gtBroTVJ07S5kjF0Ewbe6HU4TU8wo0tG0w379nZ0eOvVOQf-74fzLcjMB4-EPDKaMcrk8z4DfzLoMeOU5xljlEpxQ-asKvOUj9eMzGlOZSoKoe7IIsY9pYxXQsxJufLQDtHFBHyTRPTR9e7s-iGJ_akZkmDHBeGQ4M-xDdEFn7QBmnhPbi20ER-uc0m-3l4_19t097F5X692qeGK92lTirqurbG8LnhRi6KoBBpVC2MrVJWUYMGoRhnKBECprLWypLQsQSoBdZUvydPU-w2tPnbuAN2gAzi9Xe2066LXVORKqUKe2RguprDpQowd2j-CUX1Rpff6qkpfVOlJ1ci9TByOn5wddjoah95g4zo0vW6C-6fhF4UhdtQ |
Cites_doi | 10.1016/j.nucengdes.2013.06.014 10.1016/j.ijheatmasstransfer.2016.11.055 10.1016/0017-9310(80)90195-7 10.1017/jfm.2020.675 10.1016/j.ces.2005.07.014 10.1088/0022-3727/9/9/006 10.1063/5.0062430 10.1016/S0029-5493(99)00030-8 10.1016/j.anucene.2014.07.008 10.1016/j.ijthermalsci.2009.01.012 10.1016/S0377-0273(02)00425-0 10.1098/rsfs.2015.0024 10.1016/S0029-5493(99)00032-1 10.1016/j.nucengdes.2014.08.028 10.1016/j.nucengdes.2010.05.001 10.1016/S0301-9322(99)00064-6 10.13182/NSE89-A23594 10.1016/j.ijmultiphaseflow.2017.01.016 10.1016/0017-9310(72)90185-8 10.1016/0029-5493(94)00889-7 10.1115/1.3450737 10.1016/j.nucengdes.2017.01.029 10.1038/254319a0 10.2172/4623717 10.1016/S0377-0273(01)00280-3 10.1016/j.nucengdes.2008.08.006 10.1016/j.ijheatmasstransfer.2022.123289 10.1016/j.anucene.2018.05.029 10.1016/j.nucengdes.2013.02.017 10.1016/j.nucengdes.2019.02.008 10.1016/S0029-5493(98)00269-6 10.1016/S0029-5493(01)00504-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.anucene.2023.110064 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2100 |
ExternalDocumentID | oai_HAL_irsn_04399956v1 10_1016_j_anucene_2023_110064 S0306454923003833 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KCYFY KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSJ SSR SSZ T5K ~G- .GJ 53G 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SSH UHS WUQ 1XC EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c292t-d74bbbfcf2b525b45584ec9b4cf8e9866afac9d9c014aa79fff670077a694ab83 |
IEDL.DBID | AIKHN |
ISSN | 0306-4549 |
IngestDate | Wed Sep 17 06:26:13 EDT 2025 Tue Jul 01 03:12:28 EDT 2025 Tue Jun 18 08:52:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fuel Coolant Interaction Steam explosion MC3D Fragmentation Coolant Interaction Fuel |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-d74bbbfcf2b525b45584ec9b4cf8e9866afac9d9c014aa79fff670077a694ab83 |
ORCID | 0000-0001-7793-4707 0009-0007-8017-9213 0000-0001-8067-0327 |
ParticipantIDs | hal_primary_oai_HAL_irsn_04399956v1 crossref_primary_10_1016_j_anucene_2023_110064 elsevier_sciencedirect_doi_10_1016_j_anucene_2023_110064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-15 |
PublicationDateYYYYMMDD | 2023-12-15 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Annals of nuclear energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier Masson |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Masson |
References | Zambaux J. A., Manickam L., Meignen R., Ma W. M., Bechta S., and Picchi S., 2018. Study on thermal fragmentation characteristics of a superheated alumina droplet, Ann. Nucl. Energy, 119, 352–361. Wei, L., Meignen, R. Rimbert, N., 2022. Heat transfer of liquid drops subject to fragmentation, 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, March 6 - 11, 2022. Epstein (b0080) 1977; 99 Hansson, Dinh, Manickam (b0105) 2013; 264 Lamome J., Meignen R., 2008. On the explosivity of a molten drop submitted to a small pressure perturbation, Nucl. Eng. Des., 238 (12), 3445–3456. Theofanous T. G., Yuen W. W., Freeman K., and Chen X., 1999. The verification basis of the ESPROSE.m code, Nucl. Eng. Des., 189 (1–3), 103–138. Cho D. H., Armstrong D. R., Gunther W.H., 1998. Experiments on interactions between Zirconium-containing melt and water, Argonne National Lab., Ill., Technical Report NUREG/CR-5372, 1998. (b0070) 2013 De Malmazet E., 2019. New film boiling correlations for drops and fragments in Fuel-Coolant Interaction codes, 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18)At: Portland, Oregon, US. Hadj-Achour, Rimbert, Gradeck, Meignen (b0100) 2021; 33 Park, Kim, Min, Hong (b0195) 2013; 263 Theofanous, Yuen (b0260) 1995; 155 Yuen, Theofanous (b0290) 1999; 25 Sairanen R. et al., 2006. OECD research programme on fuel-coolant interaction steam explosion resolution for nuclear applications - SERENA. Final Report - December 2006, OECD, NEA-CSNI-R--2007-11, 2007. Available: http://inis.iaea.org/Search/search.aspx?orig_q=RN:44037878. Steam explosion Review Group (SERG), NUREG-1524. Chu, Corradini (b0060) 1989; 101 Picchi S., Meignen R., 2020c. MC3D version 3.10, Description of the physical models of the EXPLOSION application, IRSN/2020-00133 (internal report, on demand). Kim D. S., Burger M., Frohlich G., and Unger H., 1983. Experimental investigation of hydrodynamic fragmentation of gallium drops in water flows, International meeting on light-water reactor severe accident evaluation; Cambridge, MA (USA); 28 Aug - 1 Sep 1983. Berthoud, D’Aillon (b0020) 2009; 48 Dullforce, Buchanan, Peckover (b0075) 1976; 9 Scott E., Berthoud G., 1978. Mutiphase thermal detonation, ASME, San Francisco, USA, Dec. 1978. Zeldovich, Y.B., 1950. On the theory of the propagation of detonation in gaseous systems (No. NACA-TM-1261). Li, Haraldsson, Dinh, Green, Sehgal (b0145) 1998 Meignen, Raverdy, Buck, Pohlner, Kudinov, Ma, Brayer, Piluso, Hong, Leskovar, Uršič, Albrecht, Lindholm, Ivanov (b0170) 2014; 74 Frolov, Avdeev, Aksenov, Borisov, Frolov, Shamshin, Tukhvatullina, Basara, Edelbauer, Pachler (b0095) 2017; 92 Castrillon Escobar S., 2016. Instabilité et dispersion de jets de corium liquides : analyse des processus physiques et modélisation dans le logiciel MC3D, phd-thesis, Université de Lorraine, 2016, https://tel.archives-ouvertes.fr/tel-01438841. . OECD/SERENA Project Report, Summary and Conclusions, NEA/CSNI/R(2014)15, February 2015. Epstein, M., Hauser, G.M., 1980. Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder, Int. J. Heat Mass Transfer 23(2), 179–189. Cho D. H., Ivins R. O., and Wright R.W., 1972. Rate-limited model of molten fuel/coolant interactions: model development and preliminary calculations., Argonne National Lab., Ill., ANL-7919, 1972. Kudinov P., Grishchenko D., Konovalenko A., Karbojian A., 2017. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials, Nucl. Eng. Des., 314(1) 182–197. Wohletz K., 2002. Water/magma interaction: some theory and experiments on peperite formation, J. Volcanol. Geothermal Res., 114 (1–2), 19–35. Berman, M., 1981. Light water reactor safety research program Quarterly report, January-march 1981 (Technical Report No. NUREG/CR-2163/lof4). Sandia National Labs. Nelson L. S., Duda P.M., 1985. Steam explosion experiments with single drops of iron oxide melted with a CO Head, Wilson (b0110) 2003; 121 Meignen, Raverdy, Picchi, Lamome (b0165) 2014; 280 Hadj Achour M., 2021. Fragmentation de métal liquide dans l’eau, phd-thesis, Université de Lorraine, 2017. Wei L., 2023. Development of a new steam explosion model for the MC3D software, PhD University of Lorraine, March 2023. Simons, Bellemans, Crivits, Verbeken (b0245) 2022; 196 Loisel V., Zambaux J.-A., Hadj-Achour M., Picchi S., Coindreau O., and Meignen R., 2019. Oxidation during fuel-coolant interaction: advances and modeling, Nuclear Engineering and Design, vol. 346, pp. 200–208, May 2019. Brayer, C., Berthoud, G., 1997. First vapor explosion calculations performed with MC3D thermal-hydraulic code, Proceedings of the OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions, Tokai-Mura, 1997. Popinet S. (2018), Basilisk, a Free-Software program for the solution of partial differential equations on adaptive Cartesian meshes, http://basilisk.fr. Meignen R et al. (2005), Comparative Review of FCI Computer Models Used in the OECD-SERENA Program, Proceedings of ICAPP ’05 Seoul, KOREA, May 15-19, 2005 Paper 5087 . Piluso P. et al., 2015. Fuel coolant interaction studies in the frame of CEA programs: impact of material effect and hydrogen production on steam explosion, ICAPP 2015: Nuclear Innovations for a low-carbon future; Nice (France); 3-6 May 2015. Picchi S., Meignen R., 2020a. MC3D version 3.10, Validation report, IRSN/2020-00134 (internal report, on demand). Uršič, Meignen, Leskovar (b0270) 2017; 107 Meignen, R., Raverdy, B., Buck, M., Bürger, M., Pohlner, G., 2012. On the role of void on steam explosion loads. Mitropetros K., Hieronymus H., and Steinbach J., 2006. Single bubble ignition after shock wave impact, Chem. Eng. Sci., 61 (2), 397–416. Bürger M., Buck M., Saied-Ahmad S., and Schatz A., 1996. Experimental and Theoretical investigations on the Fragmentation of Melt Drops in Relative Flows, Report INV-MFC (98)—D016, pp. 2–135, 1996. Prosperetti (b0220) 2015; 5 Rimbert, Castrillon, Meignen, Hadj-Achour, Gradeck (b0230) 2020; 904 Uršič, Leskovar, Mavko (b0265) 2011; 241 Hicks, Menzies (b0115) 1965; 654 Basu S., Ginsberg T., 1996. A reassessement of the potential for an Alpha mode containement failure and a review of the current understanding of broader Fuel-Coolant Intraction Issues, 2 5th European Review Meeting on Severe Accident Research (ERMSAR-2012) Cologne (Germany).. Board, Hall, Hall (b0025) 1975; 254 Ranger, Nicholls (b0225) 1972; 15 Chen, Luo, Yuen, Theofanous (b0045) 1999; 189 Huhtiniemi I., Magallon D., and Hohmann H., 1999. Results of recent KROTOS FCI tests: alumina versus corium melts, Nuclear engineering and design, vol. 189, no. 1–3, pp. 379–389. Song (b0250) 2002; 213 Meignen, Picchi, Lamome, Raverdy, Castrillon, Nicaise (b0160) 2014; 280 Fisher M., 2017. Corium spreading under water and its possible consequences, ERMSAR 2017, Warsaw, Poland, May 16-18, 2017. laser. Part II. Parametric studies, NUREG, CR-2718. Picchi S., Meignen R., 2020b. MC3D version 3.10, Description of the physical models of the PREMIXING application, IRSN/2020-00132 (internal report, on demand). 10.1016/j.anucene.2023.110064_b0240 10.1016/j.anucene.2023.110064_b0085 Hicks (10.1016/j.anucene.2023.110064_b0115) 1965; 654 10.1016/j.anucene.2023.110064_b0120 10.1016/j.anucene.2023.110064_b0285 10.1016/j.anucene.2023.110064_b0200 Uršič (10.1016/j.anucene.2023.110064_b0270) 2017; 107 Prosperetti (10.1016/j.anucene.2023.110064_b0220) 2015; 5 10.1016/j.anucene.2023.110064_b0125 10.1016/j.anucene.2023.110064_b0005 10.1016/j.anucene.2023.110064_b0205 Head (10.1016/j.anucene.2023.110064_b0110) 2003; 121 Park (10.1016/j.anucene.2023.110064_b0195) 2013; 263 10.1016/j.anucene.2023.110064_b0090 Yuen (10.1016/j.anucene.2023.110064_b0290) 1999; 25 10.1016/j.anucene.2023.110064_b0050 10.1016/j.anucene.2023.110064_b0130 10.1016/j.anucene.2023.110064_b0295 10.1016/j.anucene.2023.110064_b0055 10.1016/j.anucene.2023.110064_b0010 10.1016/j.anucene.2023.110064_b0175 10.1016/j.anucene.2023.110064_b0255 10.1016/j.anucene.2023.110064_b0210 10.1016/j.anucene.2023.110064_b0015 10.1016/j.anucene.2023.110064_b0135 10.1016/j.anucene.2023.110064_b0215 Dullforce (10.1016/j.anucene.2023.110064_b0075) 1976; 9 Chen (10.1016/j.anucene.2023.110064_b0045) 1999; 189 Berthoud (10.1016/j.anucene.2023.110064_b0020) 2009; 48 10.1016/j.anucene.2023.110064_b0180 10.1016/j.anucene.2023.110064_b0185 10.1016/j.anucene.2023.110064_b0140 10.1016/j.anucene.2023.110064_b0065 Hansson (10.1016/j.anucene.2023.110064_b0105) 2013; 264 Song (10.1016/j.anucene.2023.110064_b0250) 2002; 213 10.1016/j.anucene.2023.110064_b0300 (10.1016/j.anucene.2023.110064_b0070) 2013 Ranger (10.1016/j.anucene.2023.110064_b0225) 1972; 15 Meignen (10.1016/j.anucene.2023.110064_b0165) 2014; 280 Hadj-Achour (10.1016/j.anucene.2023.110064_b0100) 2021; 33 Epstein (10.1016/j.anucene.2023.110064_b0080) 1977; 99 Meignen (10.1016/j.anucene.2023.110064_b0170) 2014; 74 Simons (10.1016/j.anucene.2023.110064_b0245) 2022; 196 Frolov (10.1016/j.anucene.2023.110064_b0095) 2017; 92 Chu (10.1016/j.anucene.2023.110064_b0060) 1989; 101 Meignen (10.1016/j.anucene.2023.110064_b0160) 2014; 280 10.1016/j.anucene.2023.110064_b0190 10.1016/j.anucene.2023.110064_b0150 10.1016/j.anucene.2023.110064_b0030 10.1016/j.anucene.2023.110064_b0275 10.1016/j.anucene.2023.110064_b0035 10.1016/j.anucene.2023.110064_b0155 Rimbert (10.1016/j.anucene.2023.110064_b0230) 2020; 904 10.1016/j.anucene.2023.110064_b0235 Uršič (10.1016/j.anucene.2023.110064_b0265) 2011; 241 Board (10.1016/j.anucene.2023.110064_b0025) 1975; 254 Theofanous (10.1016/j.anucene.2023.110064_b0260) 1995; 155 Li (10.1016/j.anucene.2023.110064_b0145) 1998 10.1016/j.anucene.2023.110064_b0280 10.1016/j.anucene.2023.110064_b0040 |
References_xml | – reference: laser. Part II. Parametric studies, NUREG, CR-2718. – reference: OECD/SERENA Project Report, Summary and Conclusions, NEA/CSNI/R(2014)15, February 2015. – reference: Sairanen R. et al., 2006. OECD research programme on fuel-coolant interaction steam explosion resolution for nuclear applications - SERENA. Final Report - December 2006, OECD, NEA-CSNI-R--2007-11, 2007. Available: http://inis.iaea.org/Search/search.aspx?orig_q=RN:44037878. – reference: Hadj Achour M., 2021. Fragmentation de métal liquide dans l’eau, phd-thesis, Université de Lorraine, 2017. – reference: Nelson L. S., Duda P.M., 1985. Steam explosion experiments with single drops of iron oxide melted with a CO – volume: 263 start-page: 419 year: 2013 end-page: 430 ident: b0195 article-title: Thermal-hydraulic aspects of FCIs in TROI corium/water interaction tests publication-title: Nucl. Eng. Des. – reference: Mitropetros K., Hieronymus H., and Steinbach J., 2006. Single bubble ignition after shock wave impact, Chem. Eng. Sci., 61 (2), 397–416. – reference: Bürger M., Buck M., Saied-Ahmad S., and Schatz A., 1996. Experimental and Theoretical investigations on the Fragmentation of Melt Drops in Relative Flows, Report INV-MFC (98)—D016, pp. 2–135, 1996. – volume: 92 start-page: 20 year: 2017 end-page: 38 ident: b0095 article-title: Experimental and computational studies of shock wave-to-bubbly water momentum transfer publication-title: Int. J. Multiph. Flow – volume: 121 start-page: 155 year: 2003 end-page: 193 ident: b0110 article-title: Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits publication-title: J. Volcanol. Geoth. Res. – reference: 5th European Review Meeting on Severe Accident Research (ERMSAR-2012) Cologne (Germany).. – reference: Popinet S. (2018), Basilisk, a Free-Software program for the solution of partial differential equations on adaptive Cartesian meshes, http://basilisk.fr. – volume: 155 start-page: 459 year: 1995 end-page: 473 ident: b0260 article-title: The probability of alpha-mode containment failure publication-title: Nucl. Eng. Des. – volume: 280 start-page: 528 year: 2014 end-page: 541 ident: b0160 article-title: The challenge of modeling fuel–coolant interaction: Part I – Premixing publication-title: Nucl. Eng. Des. – reference: Picchi S., Meignen R., 2020a. MC3D version 3.10, Validation report, IRSN/2020-00134 (internal report, on demand). – volume: 213 start-page: 97 year: 2002 end-page: 110 ident: b0250 article-title: Experiments on the interactions of molten ZrO2 with water using TROI facility publication-title: Nucl. Eng. Des. – volume: 15 start-page: 1203 year: 1972 end-page: 1211 ident: b0225 article-title: Atomization of liquid droplets in a convective gas stream publication-title: Int. J. Heat Mass Transf. – volume: 904 start-page: A15 year: 2020 ident: b0230 article-title: Spheroidal droplet deformation, oscillation and breakup in uniform outer flow publication-title: J. Fluid Mechanics – reference: Basu S., Ginsberg T., 1996. A reassessement of the potential for an Alpha mode containement failure and a review of the current understanding of broader Fuel-Coolant Intraction Issues, 2 – reference: Zeldovich, Y.B., 1950. On the theory of the propagation of detonation in gaseous systems (No. NACA-TM-1261). – reference: Wei, L., Meignen, R. Rimbert, N., 2022. Heat transfer of liquid drops subject to fragmentation, 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, March 6 - 11, 2022. – volume: 25 start-page: 1505 year: 1999 end-page: 1519 ident: b0290 article-title: On the existence of multiphase thermal detonations publication-title: Int. J. Multiph. Flow – reference: Kim D. S., Burger M., Frohlich G., and Unger H., 1983. Experimental investigation of hydrodynamic fragmentation of gallium drops in water flows, International meeting on light-water reactor severe accident evaluation; Cambridge, MA (USA); 28 Aug - 1 Sep 1983. – reference: Cho D. H., Ivins R. O., and Wright R.W., 1972. Rate-limited model of molten fuel/coolant interactions: model development and preliminary calculations., Argonne National Lab., Ill., ANL-7919, 1972. – year: 2013 ident: b0070 publication-title: Bubble Dynamics and Shock Waves – volume: 280 start-page: 528 year: 2014 end-page: 541 ident: b0165 article-title: The challenge of modeling fuel–coolant interaction: Part II – Steam explosion publication-title: Nucl. Eng. Des. – volume: 33 year: 2021 ident: b0100 article-title: Fragmentation of a liquid metal droplet falling in a water pool publication-title: Phys. Fluids – volume: 9 start-page: 1976 year: 1976 ident: b0075 article-title: Self-triggering of small-scale fuel-coolant interactions: I. Experiments publication-title: J. Phys. D: Appl. Phys. – volume: 196 start-page: 123289 year: 2022 ident: b0245 article-title: The effect of vapour formation and metal droplet temperature and mass on vapour explosion behaviour publication-title: Int. J. Heat Mass Transf. – volume: 654 start-page: 1965 year: 1965 ident: b0115 article-title: Theoretical studies on the fast reactor maximum accident publication-title: ANL-7120 – reference: Kudinov P., Grishchenko D., Konovalenko A., Karbojian A., 2017. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials, Nucl. Eng. Des., 314(1) 182–197. – volume: 107 start-page: 622 year: 2017 end-page: 630 ident: b0270 article-title: Analysis of film boiling heat transfer during fuel-coolant interaction publication-title: Int. J. Heat Mass Transf. – volume: 48 start-page: 1728 year: 2009 end-page: 1740 ident: b0020 article-title: Film boiling heat transfer around a very high temperature thin wire immersed into water at pressure from 1 to 210bar: Experimental results and analysis publication-title: Int. J. Therm. Sci. – reference: Meignen R et al. (2005), Comparative Review of FCI Computer Models Used in the OECD-SERENA Program, Proceedings of ICAPP ’05 Seoul, KOREA, May 15-19, 2005 Paper 5087 . – reference: Picchi S., Meignen R., 2020c. MC3D version 3.10, Description of the physical models of the EXPLOSION application, IRSN/2020-00133 (internal report, on demand). – reference: Meignen, R., Raverdy, B., Buck, M., Bürger, M., Pohlner, G., 2012. On the role of void on steam explosion loads. – volume: 99 start-page: 527 year: 1977 end-page: 532 ident: b0080 article-title: Stability of submerged frozen crust publication-title: J. Heat Transfer – reference: De Malmazet E., 2019. New film boiling correlations for drops and fragments in Fuel-Coolant Interaction codes, 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18)At: Portland, Oregon, US. – reference: Steam explosion Review Group (SERG), NUREG-1524. – volume: 254 start-page: 319 year: 1975 end-page: 321 ident: b0025 article-title: Detonation of fuel–coolant explosions publication-title: Nature – volume: 74 start-page: 125 year: 2014 end-page: 133 ident: b0170 article-title: Status of steam explosion understanding and modelling publication-title: Ann. Nucl. Energy – reference: Cho D. H., Armstrong D. R., Gunther W.H., 1998. Experiments on interactions between Zirconium-containing melt and water, Argonne National Lab., Ill., Technical Report NUREG/CR-5372, 1998. – volume: 241 start-page: 1206 year: 2011 end-page: 1216 ident: b0265 article-title: Improved solidification influence modelling for Eulerian fuel–coolant interaction codes publication-title: Nucl. Eng. Des. – reference: Zambaux J. A., Manickam L., Meignen R., Ma W. M., Bechta S., and Picchi S., 2018. Study on thermal fragmentation characteristics of a superheated alumina droplet, Ann. Nucl. Energy, 119, 352–361. – volume: 5 start-page: 20150024 year: 2015 ident: b0220 article-title: The speed of sound in a gas–vapour bubbly liquid publication-title: Interface Focus – reference: Fisher M., 2017. Corium spreading under water and its possible consequences, ERMSAR 2017, Warsaw, Poland, May 16-18, 2017. – reference: Loisel V., Zambaux J.-A., Hadj-Achour M., Picchi S., Coindreau O., and Meignen R., 2019. Oxidation during fuel-coolant interaction: advances and modeling, Nuclear Engineering and Design, vol. 346, pp. 200–208, May 2019. – reference: Castrillon Escobar S., 2016. Instabilité et dispersion de jets de corium liquides : analyse des processus physiques et modélisation dans le logiciel MC3D, phd-thesis, Université de Lorraine, 2016, https://tel.archives-ouvertes.fr/tel-01438841. – reference: Theofanous T. G., Yuen W. W., Freeman K., and Chen X., 1999. The verification basis of the ESPROSE.m code, Nucl. Eng. Des., 189 (1–3), 103–138. – reference: Scott E., Berthoud G., 1978. Mutiphase thermal detonation, ASME, San Francisco, USA, Dec. 1978. – reference: Huhtiniemi I., Magallon D., and Hohmann H., 1999. Results of recent KROTOS FCI tests: alumina versus corium melts, Nuclear engineering and design, vol. 189, no. 1–3, pp. 379–389. – reference: . – reference: Brayer, C., Berthoud, G., 1997. First vapor explosion calculations performed with MC3D thermal-hydraulic code, Proceedings of the OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions, Tokai-Mura, 1997. – reference: Berman, M., 1981. Light water reactor safety research program Quarterly report, January-march 1981 (Technical Report No. NUREG/CR-2163/lof4). Sandia National Labs. – year: 1998 ident: b0145 article-title: Fragmentation behaviour of melt drops in coolant: effects of melt drop solidification publication-title: Third International Conference on Multiphase Flow – reference: Epstein, M., Hauser, G.M., 1980. Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder, Int. J. Heat Mass Transfer 23(2), 179–189. – volume: 264 start-page: 168 year: 2013 end-page: 175 ident: b0105 article-title: A study of the effect of binary oxide materials in a single droplet vapor explosion publication-title: Nucl. Eng. Des. – reference: Lamome J., Meignen R., 2008. On the explosivity of a molten drop submitted to a small pressure perturbation, Nucl. Eng. Des., 238 (12), 3445–3456. – reference: Wei L., 2023. Development of a new steam explosion model for the MC3D software, PhD University of Lorraine, March 2023. – volume: 189 start-page: 163 year: 1999 end-page: 178 ident: b0045 article-title: Experimental simulation of micro-interactions in largescale explosions publication-title: Nucl. Eng. Des. – reference: Picchi S., Meignen R., 2020b. MC3D version 3.10, Description of the physical models of the PREMIXING application, IRSN/2020-00132 (internal report, on demand). – volume: 101 start-page: 48 year: 1989 end-page: 71 ident: b0060 article-title: One-dimensional transient fluid model for fuel/coolant interaction analysis publication-title: Nucl. Sci. Eng. – reference: Piluso P. et al., 2015. Fuel coolant interaction studies in the frame of CEA programs: impact of material effect and hydrogen production on steam explosion, ICAPP 2015: Nuclear Innovations for a low-carbon future; Nice (France); 3-6 May 2015. – reference: Wohletz K., 2002. Water/magma interaction: some theory and experiments on peperite formation, J. Volcanol. Geothermal Res., 114 (1–2), 19–35. – ident: 10.1016/j.anucene.2023.110064_b0205 – volume: 263 start-page: 419 issue: 2013 year: 2013 ident: 10.1016/j.anucene.2023.110064_b0195 article-title: Thermal-hydraulic aspects of FCIs in TROI corium/water interaction tests publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.06.014 – volume: 107 start-page: 622 year: 2017 ident: 10.1016/j.anucene.2023.110064_b0270 article-title: Analysis of film boiling heat transfer during fuel-coolant interaction publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.11.055 – ident: 10.1016/j.anucene.2023.110064_b0085 doi: 10.1016/0017-9310(80)90195-7 – ident: 10.1016/j.anucene.2023.110064_b0215 – volume: 904 start-page: A15 year: 2020 ident: 10.1016/j.anucene.2023.110064_b0230 article-title: Spheroidal droplet deformation, oscillation and breakup in uniform outer flow publication-title: J. Fluid Mechanics doi: 10.1017/jfm.2020.675 – ident: 10.1016/j.anucene.2023.110064_b0140 – ident: 10.1016/j.anucene.2023.110064_b0035 – ident: 10.1016/j.anucene.2023.110064_b0125 – ident: 10.1016/j.anucene.2023.110064_b0180 doi: 10.1016/j.ces.2005.07.014 – volume: 9 start-page: 1976 year: 1976 ident: 10.1016/j.anucene.2023.110064_b0075 article-title: Self-triggering of small-scale fuel-coolant interactions: I. Experiments publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/9/9/006 – ident: 10.1016/j.anucene.2023.110064_b0015 – volume: 33 issue: 10 year: 2021 ident: 10.1016/j.anucene.2023.110064_b0100 article-title: Fragmentation of a liquid metal droplet falling in a water pool publication-title: Phys. Fluids doi: 10.1063/5.0062430 – ident: 10.1016/j.anucene.2023.110064_b0090 – ident: 10.1016/j.anucene.2023.110064_b0255 doi: 10.1016/S0029-5493(99)00030-8 – volume: 74 start-page: 125 year: 2014 ident: 10.1016/j.anucene.2023.110064_b0170 article-title: Status of steam explosion understanding and modelling publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2014.07.008 – year: 2013 ident: 10.1016/j.anucene.2023.110064_b0070 – ident: 10.1016/j.anucene.2023.110064_b0005 – ident: 10.1016/j.anucene.2023.110064_b0155 – volume: 48 start-page: 1728 issue: 9 year: 2009 ident: 10.1016/j.anucene.2023.110064_b0020 article-title: Film boiling heat transfer around a very high temperature thin wire immersed into water at pressure from 1 to 210bar: Experimental results and analysis publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.01.012 – volume: 121 start-page: 155 issue: 3–4 year: 2003 ident: 10.1016/j.anucene.2023.110064_b0110 article-title: Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits publication-title: J. Volcanol. Geoth. Res. doi: 10.1016/S0377-0273(02)00425-0 – volume: 5 start-page: 20150024 year: 2015 ident: 10.1016/j.anucene.2023.110064_b0220 article-title: The speed of sound in a gas–vapour bubbly liquid publication-title: Interface Focus doi: 10.1098/rsfs.2015.0024 – volume: 189 start-page: 163 issue: 1-3 year: 1999 ident: 10.1016/j.anucene.2023.110064_b0045 article-title: Experimental simulation of micro-interactions in largescale explosions publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(99)00032-1 – volume: 280 start-page: 528 year: 2014 ident: 10.1016/j.anucene.2023.110064_b0165 article-title: The challenge of modeling fuel–coolant interaction: Part II – Steam explosion publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.08.028 – ident: 10.1016/j.anucene.2023.110064_b0300 – ident: 10.1016/j.anucene.2023.110064_b0240 – volume: 241 start-page: 1206 issue: 4 year: 2011 ident: 10.1016/j.anucene.2023.110064_b0265 article-title: Improved solidification influence modelling for Eulerian fuel–coolant interaction codes publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2010.05.001 – volume: 25 start-page: 1505 issue: 6–7 year: 1999 ident: 10.1016/j.anucene.2023.110064_b0290 article-title: On the existence of multiphase thermal detonations publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(99)00064-6 – ident: 10.1016/j.anucene.2023.110064_b0275 – volume: 101 start-page: 48 issue: 1989 year: 1989 ident: 10.1016/j.anucene.2023.110064_b0060 article-title: One-dimensional transient fluid model for fuel/coolant interaction analysis publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE89-A23594 – volume: 92 start-page: 20 year: 2017 ident: 10.1016/j.anucene.2023.110064_b0095 article-title: Experimental and computational studies of shock wave-to-bubbly water momentum transfer publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2017.01.016 – ident: 10.1016/j.anucene.2023.110064_b0280 – ident: 10.1016/j.anucene.2023.110064_b0190 – ident: 10.1016/j.anucene.2023.110064_b0175 – volume: 15 start-page: 1203 issue: 6 year: 1972 ident: 10.1016/j.anucene.2023.110064_b0225 article-title: Atomization of liquid droplets in a convective gas stream publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(72)90185-8 – volume: 155 start-page: 459 issue: 1 year: 1995 ident: 10.1016/j.anucene.2023.110064_b0260 article-title: The probability of alpha-mode containment failure publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(94)00889-7 – volume: 99 start-page: 527 year: 1977 ident: 10.1016/j.anucene.2023.110064_b0080 article-title: Stability of submerged frozen crust publication-title: J. Heat Transfer doi: 10.1115/1.3450737 – ident: 10.1016/j.anucene.2023.110064_b0130 doi: 10.1016/j.nucengdes.2017.01.029 – ident: 10.1016/j.anucene.2023.110064_b0010 – volume: 254 start-page: 319 issue: 5498 year: 1975 ident: 10.1016/j.anucene.2023.110064_b0025 article-title: Detonation of fuel–coolant explosions publication-title: Nature doi: 10.1038/254319a0 – ident: 10.1016/j.anucene.2023.110064_b0040 – ident: 10.1016/j.anucene.2023.110064_b0050 doi: 10.2172/4623717 – year: 1998 ident: 10.1016/j.anucene.2023.110064_b0145 article-title: Fragmentation behaviour of melt drops in coolant: effects of melt drop solidification – ident: 10.1016/j.anucene.2023.110064_b0065 – ident: 10.1016/j.anucene.2023.110064_b0210 – ident: 10.1016/j.anucene.2023.110064_b0285 doi: 10.1016/S0377-0273(01)00280-3 – ident: 10.1016/j.anucene.2023.110064_b0135 doi: 10.1016/j.nucengdes.2008.08.006 – volume: 280 start-page: 528 year: 2014 ident: 10.1016/j.anucene.2023.110064_b0160 article-title: The challenge of modeling fuel–coolant interaction: Part I – Premixing publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2014.08.028 – volume: 196 start-page: 123289 year: 2022 ident: 10.1016/j.anucene.2023.110064_b0245 article-title: The effect of vapour formation and metal droplet temperature and mass on vapour explosion behaviour publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123289 – ident: 10.1016/j.anucene.2023.110064_b0295 doi: 10.1016/j.anucene.2018.05.029 – volume: 264 start-page: 168 issue: 2013 year: 2013 ident: 10.1016/j.anucene.2023.110064_b0105 article-title: A study of the effect of binary oxide materials in a single droplet vapor explosion publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2013.02.017 – ident: 10.1016/j.anucene.2023.110064_b0150 doi: 10.1016/j.nucengdes.2019.02.008 – ident: 10.1016/j.anucene.2023.110064_b0185 – ident: 10.1016/j.anucene.2023.110064_b0120 doi: 10.1016/S0029-5493(98)00269-6 – ident: 10.1016/j.anucene.2023.110064_b0055 – ident: 10.1016/j.anucene.2023.110064_b0200 – volume: 654 start-page: 1965 year: 1965 ident: 10.1016/j.anucene.2023.110064_b0115 article-title: Theoretical studies on the fast reactor maximum accident publication-title: ANL-7120 – ident: 10.1016/j.anucene.2023.110064_b0235 – volume: 213 start-page: 97 issue: 2 year: 2002 ident: 10.1016/j.anucene.2023.110064_b0250 article-title: Experiments on the interactions of molten ZrO2 with water using TROI facility publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(01)00504-0 – ident: 10.1016/j.anucene.2023.110064_b0030 |
SSID | ssj0012844 |
Score | 2.3436806 |
Snippet | •A detailed analysis of the steam explosion characteristics is performed with the MC3D software.•A comprehensive review of the up-to-date knowledge and... Steam Explosion is a destructive event that may arise from the mixing of the molten fuel (corium) with the liquid coolant (water, sodium) during the course of... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 110064 |
SubjectTerms | Fragmentation Fuel Coolant Interaction MC3D Physics Steam explosion |
Title | Analysis and sensitivity study of steam explosion loads |
URI | https://dx.doi.org/10.1016/j.anucene.2023.110064 https://asnr.hal.science/irsn-04399956 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH7YiqAHccW1BPQ6bSeTmUyOpSh1vajgLWTFik6LrR797ebN4nIQweMMhAxfhpf3ku_7HsAx9XEofaiNEmNNxHwcR8rpNGLM5t45T1UppL26zkZ37Pw-vV-AYaOFQVplHfurmF5G6_pNr0azNx2PezeY7bLSYAyvt5KkBYs0EVnahsXB2cXo-vMyIUTgykUqFM844EvI03tEga8JUaWLbcSRE9_P2G9bVOuhOWwtN5_TNVits0YyqD5sHRZcsQEr37wEN2Cp5HKa2SbwxmiEqMKSGTLUqxYRpPSSJRNPcGmfiUP-HZ6WkaeJsrMtuDs9uR2Ooro_QmSooPPIcqa19sZTndJUszQkE84IzYzPncizTHllhBUmlEFKceG9R1EO5yoTTOk82YZ2MSncDhCd6T5VuVU0D2D1E2Gp5jzJFdrTZJzvQreBRE4rGwzZ8MMeZY2hRAxlheEu5A1w8sd6yhCq_xp6FID-nAb9r0eDSzl-mRUShbyoxX2L9_4_wT4s4xOSUuL0ANrzl1d3GFKLue5Aq_sed-of6AP8MMzf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VEAIOiFXsWIJr2sZx4uRYIVCBwoVW4mZ5Fa0grdrCkW_Hk4XlgJC4ZpGjZ2s847z3BuCcutCXPtQEkTY6YC4MA2lVHDBmUmeto7IQ0t7dJ90Bu3mMHxtwUWthkFZZxf4yphfRurrSqtBsTYbD1gNmu6wwGMPfW1G0AEssjjjy-prvnzwPjL-lh5QvnfHxLxlPa4TyXu1jShObiCMjvp2w3zaohaf6qLXYeq42YL3KGUmn_KxNaNh8C9a-OQluwXLB5NSzbeC1zQiRuSEz5KeXDSJI4SRLxo7gxL4Qi-w7PCsjz2NpZjswuLrsX3SDqjtCoGlG54HhTCnltKMqprFisU8lrM4U0y61WZok0kmdmUz7IkhKnjnnUJLDuUwyJlUa7cJiPs7tHhCVqDaVqZE09WC1o8xQxXmUSjSnSTjfh2YNiZiUJhiiZoeNRIWhQAxFieE-pDVw4sdsCh-o_3r1zAP9OQy6X3c7PTGcznKBMl5U4r6FB_8f4BRWuv27nuhd398ewireQXpKGB_B4nz6ao99kjFXJ8Ui-gCwHM2q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+sensitivity+study+of+steam+explosion+loads&rft.jtitle=Annals+of+nuclear+energy&rft.au=Wei%2C+Linkai&rft.au=Meignen%2C+Renaud&rft.au=Picchi%2C+St%C3%A9phane&rft.au=Rimbert%2C+Nicolas&rft.date=2023-12-15&rft.pub=Elsevier+Masson&rft.issn=0306-4549&rft.volume=194&rft_id=info:doi/10.1016%2Fj.anucene.2023.110064&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_irsn_04399956v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon |