Elucidating the role of oxygen vacancies on the electrical conductivity of β-Ga2O3 single-crystals

The contribution of oxygen vacancies ( V O) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a combination of Hall measurements and Raman spectroscopy on as-grown and O2-annealed β-Ga2O3 crystals to investigate the role of V O on electri...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 123; no. 17
Main Authors Narayanan, Maneesha, Shah, Amit P., Ghosh, Sandip, Thamizhavel, Arumugam, Bhattacharya, Arnab
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 23.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The contribution of oxygen vacancies ( V O) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a combination of Hall measurements and Raman spectroscopy on as-grown and O2-annealed β-Ga2O3 crystals to investigate the role of V O on electrical conductivity. The annealed samples show a significant decrease in carrier concentration. By comparing the relative Raman shift of individual modes with theoretically calculated contributions of oxygen sites to these modes, we verify the marked reduction of V O in annealed β-Ga2O3 crystals. Furthermore, the IR modes in β-Ga2O3, usually hidden by free carrier absorption, are clearly seen in the annealed sample. The reduction of band tail states as well as free carrier absorption in the annealed samples provides additional evidence for reduced carrier concentration related to V O, making them a key determinant of electrical conductivity in β-Ga2O3.
AbstractList The contribution of oxygen vacancies (VO) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a combination of Hall measurements and Raman spectroscopy on as-grown and O2-annealed β-Ga2O3 crystals to investigate the role of VO on electrical conductivity. The annealed samples show a significant decrease in carrier concentration. By comparing the relative Raman shift of individual modes with theoretically calculated contributions of oxygen sites to these modes, we verify the marked reduction of VO in annealed β-Ga2O3 crystals. Furthermore, the IR modes in β-Ga2O3, usually hidden by free carrier absorption, are clearly seen in the annealed sample. The reduction of band tail states as well as free carrier absorption in the annealed samples provides additional evidence for reduced carrier concentration related to VO, making them a key determinant of electrical conductivity in β-Ga2O3.
The contribution of oxygen vacancies ( V O) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a combination of Hall measurements and Raman spectroscopy on as-grown and O2-annealed β-Ga2O3 crystals to investigate the role of V O on electrical conductivity. The annealed samples show a significant decrease in carrier concentration. By comparing the relative Raman shift of individual modes with theoretically calculated contributions of oxygen sites to these modes, we verify the marked reduction of V O in annealed β-Ga2O3 crystals. Furthermore, the IR modes in β-Ga2O3, usually hidden by free carrier absorption, are clearly seen in the annealed sample. The reduction of band tail states as well as free carrier absorption in the annealed samples provides additional evidence for reduced carrier concentration related to V O, making them a key determinant of electrical conductivity in β-Ga2O3.
Author Shah, Amit P.
Thamizhavel, Arumugam
Ghosh, Sandip
Narayanan, Maneesha
Bhattacharya, Arnab
Author_xml – sequence: 1
  givenname: Maneesha
  surname: Narayanan
  fullname: Narayanan, Maneesha
  organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
– sequence: 2
  givenname: Amit P.
  surname: Shah
  fullname: Shah, Amit P.
  organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
– sequence: 3
  givenname: Sandip
  surname: Ghosh
  fullname: Ghosh, Sandip
  organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
– sequence: 4
  givenname: Arumugam
  surname: Thamizhavel
  fullname: Thamizhavel, Arumugam
  organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
– sequence: 5
  givenname: Arnab
  surname: Bhattacharya
  fullname: Bhattacharya, Arnab
  organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
BookMark eNp9kM1KAzEUhYNUsK0ufIOAK4Wp-ZlMMksptQqFbnQ9ZDKZmjImNUmL81o-iM9kautGxNXhcr9zLveMwMA6qwG4xGiCUUFv2QRhJggvT8AQI84zirEYgCFCiGZFyfAZGIWwTiMjlA6BmnVbZRoZjV3B-KKhd52GroXuvV9pC3dSSauMDtDZ773utIreKNlB5WyzVdHsTOz3ls-PbC7JksKQwjqdKd-HKLtwDk7bJPriqGPwfD97mj5ki-X8cXq3yBQpScwaVjea5qQocclrLmQS3WrJBccES1awguQN5QXKaZEU1wJpLGueCyLTa3QMrg65G-_etjrEau223qaTFRECMyxKShJ1faCUdyF43VYbb16l7yuMqn2HFauOHSb29herTExdORu9NN2fjpuDI_yQ_8R_AWNHgcU
CODEN APPLAB
CitedBy_id crossref_primary_10_1002_smll_202408952
crossref_primary_10_1002_sstr_202400321
crossref_primary_10_1016_j_jcrysgro_2024_127676
crossref_primary_10_3390_electronics13163181
crossref_primary_10_1016_j_vacuum_2024_113791
crossref_primary_10_1016_j_jcrysgro_2024_127719
Cites_doi 10.1107/S0021889811038970
10.7567/APEX.6.086502
10.1039/D0TC04101G
10.1143/JJAP.41.L622
10.1063/1.371289
10.1103/PhysRev.140.A316
10.1016/S0169-4332(01)00080-0
10.1149/2.0261907jss
10.1021/la903836v
10.1088/1674-4926/40/1/011801
10.1143/JJAP.13.1578
10.1016/j.jnoncrysol.2011.11.033
10.1038/s41598-018-36676-7
10.1016/j.jcrysgro.2016.05.049
10.1143/JJAP.48.011605
10.1016/0022-4596(82)90274-2
10.1143/APEX.1.011202
10.1002/1521-396X(200209)193:1<187::AID-PSSA187>3.0.CO;2-1
10.1063/1.5142195
10.7567/JJAP.52.051101
10.1063/1.1330559
10.1002/pssc.200674884
10.1103/PhysRevB.93.125209
10.1063/1.119693
10.1016/j.jcrysgro.2013.02.015
10.1063/1.3674287
10.1063/1.5029921
10.1063/1.1483915
10.1063/1.119233
10.1016/j.jcrysgro.2013.12.061
10.1063/1.2128044
10.1016/j.jcrysgro.2014.07.021
10.7567/JJAP.54.041102
10.1063/1.2910768
10.1063/1.3499306
10.1103/PhysRevB.72.184103
10.1557/s43578-021-00397-x
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0158279
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0158279
apl
GrantInformation_xml – fundername: Department of Atomic Energy, Government of India
  grantid: RTI 4003
  funderid: 10.13039/501100001502
GroupedDBID -DZ
-~X
.DC
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c292t-d5bde34269197b78a197efea787121a565624d3760436d371b80e1ab7482a6953
ISSN 0003-6951
IngestDate Mon Jun 30 02:33:12 EDT 2025
Tue Jul 01 01:08:35 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Fri Jun 21 00:10:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-d5bde34269197b78a197efea787121a565624d3760436d371b80e1ab7482a6953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1785-3697
0000-0003-4187-5025
0000-0002-8850-5219
0000-0002-3338-6945
0000-0003-1679-4370
PQID 2881518932
PQPubID 2050678
PageCount 5
ParticipantIDs scitation_primary_10_1063_5_0158279
crossref_citationtrail_10_1063_5_0158279
crossref_primary_10_1063_5_0158279
proquest_journals_2881518932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231023
2023-10-23
PublicationDateYYYYMMDD 2023-10-23
PublicationDate_xml – month: 10
  year: 2023
  text: 20231023
  day: 23
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Dohy, Lucazeau, Revcolevschi (c25) 1982
Higashiwaki, Sasaki, Kuramata, Masui, Yamakoshi (c22) 2012
Oshima, Okuno, Arai, Suzuki, Ohira, Fujita (c13) 2008
Yamaga, Tsuzuki, Takano, Villora, Shimamura (c32) 2012
Hajnal, Miró, Kiss, Réti, Deák, Herndon, Kuperberg (c17) 1999
Weiser, Stavola, Fowler, Qin, Pearton (c40) 2018
Ueda, Hosono, Waseda, Kawazoe (c4) 1997
Janzen, Mazzolini, Gillen, Falkenstein, Martin, Tornatzky, Maultzsch, Bierwagen, Wagner (c26) 2021
Schubert, Korlacki, Knight, Hofmann, Schöche, Darakchieva, Janzén, Monemar, Gogova, Thieu, Togashi, Murakami, Kumagai, Goto, Kuramata, Yamakoshi, Higashiwaki (c38) 2016
Varley, Weber, Janotti, Van de Walle (c20) 2010
Tippins (c1) 1965
Víllora, Yamaga, Inoue, Yabasi, Masui, Sugawara, Fukuda (c31) 2002
Oshima, Kaminaga, Mukai, Sasaki, Masui, Kuramata, Yamakoshi, Fujita, Ohtomo (c33) 2013
Zhou, Chen, Fu, Zhao (c37) 2021
Stepanov, Nikolaev, Bougrov, Romanov (c5) 2016
Ueda, Hosono, Waseda, Kawazoe (c6) 1997
Galazka, Irmscher, Uecker, Bertram, Pietsch, Kwasniewski, Naumann, Schulz, Schewski, Klimm, Bickermann (c21) 2014
Víllora, Morioka, Atou, Sugawara, Kikuchi, Fukuda (c39) 2002
Dai, Chen, Zhang, Jin, Zhou, Hu, Zhang (c29) 2002
Pan, Liu, Mei, Ge (c23) 2010
Sasaki, Higashiwaki, Kuramata, Masui, Yamakoshi (c12) 2013
Hossain, Kulkarni, Mondal, Guddolian, Rahman, Thamizhavel, Bhattacharya (c10) 2019
Togashi, Nomura, Eguchi, Fukizawa, Goto, Thieu, Murakami, Kumagai, Kuramata, Yamakoshi (c7) 2015
Shimamura, Víllora, Ujiie, Aoki (c14) 2008
Matsumoto, Aoki, Kinoshita, Aono (c2) 1974
Wang, Dickens, Varley, Ni, Lotubai, Sprawls, Liu, Lordi, Krishnamoorthy, Blair (c35) 2018
Suzuki, Ohira, Tanaka, Sugawara, Nakajima, Shishido (c16) 2007
Nikolaev, Maslov, Stepanov, Pechnikov, Krymov, Nikitina, Guzilova, Bougrov, Romanov (c8) 2017
McCluskey (c11) 2020
Ogita, Higo, Nakanishi, Hatanaka (c19) 2001
Sasaki, Higashiwaki, Kuramata, Masui, Yamakoshi (c15) 2013
Onuma, Fujioka, Yamaguchi, Itoh, Higashiwaki, Sasaki, Masui, Honda (c28) 2014
Oshima, Okuno, Arai, Suzuki, Hino, Fujita (c34) 2009
Momma, Izumi (c24) 2011
Blanco, Sahariah, Jiang, Costales, Pandey (c18) 2005
Rao, Rao, Xu, Dong, Sharma, Sunkara (c30) 2005
Orita, Ohta, Hirano, Hosono (c3) 2000
Mohamed, Xia, Sai, Cui, Pan, Qi (c9) 2019
(2023102511342572200_c11) 2020; 127
(2023102511342572200_c14) 2008; 92
(2023102511342572200_c16) 2007; 4
(2023102511342572200_c5) 2016; 44
(2023102511342572200_c1) 1965; 140
(2023102511342572200_c32) 2012; 358
(2023102511342572200_c31) 2002; 41
(2023102511342572200_c9) 2019; 40
(2023102511342572200_c29) 2002; 92
(2023102511342572200_c34) 2009; 48
(2023102511342572200_c3) 2000; 77
(2023102511342572200_c4) 1997; 70
(2023102511342572200_c21) 2014; 404
(2023102511342572200_c26) 2021; 9
(2023102511342572200_c8) 2017; 457
(2023102511342572200_c10) 2019; 8
(2023102511342572200_c6) 1997; 71
(2023102511342572200_c12) 2013; 378
(2023102511342572200_c35) 2018; 8
(2023102511342572200_c13) 2008; 1
(2023102511342572200_c39) 2002; 193
(2023102511342572200_c25) 1982; 45
(2023102511342572200_c36) 1972
(2023102511342572200_c33) 2013; 52
(2023102511342572200_c22) 2012; 100
(2023102511342572200_c7) 2015; 54
(2023102511342572200_c2) 1974; 13
(2023102511342572200_c37) 2021; 36
(2023102511342572200_c20) 2010; 97
(2023102511342572200_c15) 2013; 6
(2023102511342572200_c17) 1999; 86
(2023102511342572200_c40) 2018; 112
(2023102511342572200_c19) 2001; 175–176
(2023102511342572200_c27) 1971
(2023102511342572200_c23) 2010; 26
(2023102511342572200_c38) 2016; 93
(2023102511342572200_c28) 2014; 401
(2023102511342572200_c24) 2011; 44
(2023102511342572200_c18) 2005; 72
(2023102511342572200_c30) 2005; 98
References_xml – start-page: 63
  year: 2016
  ident: c5
  publication-title: Rev. Adv. Mater. Sci.
– start-page: A316
  year: 1965
  ident: c1
  publication-title: Phys. Rev.
– start-page: 011605
  year: 2009
  ident: c34
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 5551
  year: 2010
  ident: c23
  publication-title: Langmuir
– start-page: 094312
  year: 2005
  ident: c30
  publication-title: J. Appl. Phys.
– start-page: 013504
  year: 2012
  ident: c22
  publication-title: Appl. Phys. Lett.
– start-page: 1578
  year: 1974
  ident: c2
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 086502
  year: 2013
  ident: c15
  publication-title: Appl. Phys. Express
– start-page: 3792
  year: 1999
  ident: c17
  publication-title: J. Appl. Phys.
– start-page: 041102
  year: 2015
  ident: c7
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 591
  year: 2013
  ident: c12
  publication-title: J. Cryst. Growth
– start-page: 051101
  year: 2013
  ident: c33
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 3561
  year: 1997
  ident: c4
  publication-title: Appl. Phys. Lett.
– start-page: 132
  year: 2017
  ident: c8
  publication-title: J. Cryst. Growth
– start-page: L622
  year: 2002
  ident: c31
  publication-title: Jpn. J. Appl. Phys., Part 2
– start-page: 011801
  year: 2019
  ident: c9
  publication-title: J. Semicond.
– start-page: 125209
  year: 2016
  ident: c38
  publication-title: Phys. Rev. B
– start-page: 180
  year: 1982
  ident: c25
  publication-title: J. Solid State Chem.
– start-page: 1062
  year: 2002
  ident: c29
  publication-title: J. Appl. Phys.
– start-page: 1272
  year: 2011
  ident: c24
  publication-title: J. Appl. Crystallogr.
– start-page: 4166
  year: 2000
  ident: c3
  publication-title: Appl. Phys. Lett.
– start-page: 18075
  year: 2018
  ident: c35
  publication-title: Sci. Rep.
– start-page: 101101
  year: 2020
  ident: c11
  publication-title: J. Appl. Phys.
– start-page: 187
  year: 2002
  ident: c39
  publication-title: Phys. Status Solidi A
– start-page: 933
  year: 1997
  ident: c6
  publication-title: Appl. Phys. Lett.
– start-page: 184
  year: 2014
  ident: c21
  publication-title: J. Cryst. Growth
– start-page: 142106
  year: 2010
  ident: c20
  publication-title: Appl. Phys. Lett.
– start-page: 2311
  year: 2021
  ident: c26
  publication-title: J. Mater. Chem. C
– start-page: 2310
  year: 2007
  ident: c16
  publication-title: Phys. Status Solidi C
– start-page: 721
  year: 2001
  ident: c19
  publication-title: Appl. Surf. Sci.
– start-page: 330
  year: 2014
  ident: c28
  publication-title: J. Cryst. Growth
– start-page: 011202
  year: 2008
  ident: c13
  publication-title: Appl. Phys. Express
– start-page: 184103
  year: 2005
  ident: c18
  publication-title: Phys. Rev. B
– start-page: 4832
  year: 2021
  ident: c37
  publication-title: J. Mater. Res.
– start-page: 232104
  year: 2018
  ident: c40
  publication-title: Appl. Phys. Lett.
– start-page: Q3144
  year: 2019
  ident: c10
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 2458
  year: 2012
  ident: c32
  publication-title: J. Non-Cryst. Solids
– start-page: 201914
  year: 2008
  ident: c14
  publication-title: Appl. Phys. Lett.
– volume: 44
  start-page: 1272
  year: 2011
  ident: 2023102511342572200_c24
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 6
  start-page: 086502
  year: 2013
  ident: 2023102511342572200_c15
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.086502
– volume: 9
  start-page: 2311
  year: 2021
  ident: 2023102511342572200_c26
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC04101G
– volume: 41
  start-page: L622
  year: 2002
  ident: 2023102511342572200_c31
  publication-title: Jpn. J. Appl. Phys., Part 2
  doi: 10.1143/JJAP.41.L622
– volume: 86
  start-page: 3792
  year: 1999
  ident: 2023102511342572200_c17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371289
– volume: 140
  start-page: A316
  year: 1965
  ident: 2023102511342572200_c1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A316
– volume: 175–176
  start-page: 721
  year: 2001
  ident: 2023102511342572200_c19
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(01)00080-0
– volume: 8
  start-page: Q3144
  year: 2019
  ident: 2023102511342572200_c10
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0261907jss
– volume: 26
  start-page: 5551
  year: 2010
  ident: 2023102511342572200_c23
  publication-title: Langmuir
  doi: 10.1021/la903836v
– volume: 40
  start-page: 011801
  year: 2019
  ident: 2023102511342572200_c9
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/40/1/011801
– volume: 13
  start-page: 1578
  year: 1974
  ident: 2023102511342572200_c2
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.13.1578
– volume-title: Optical Properties of Solids
  year: 1972
  ident: 2023102511342572200_c36
– volume-title: Chemical Applications of Group Theory
  year: 1971
  ident: 2023102511342572200_c27
– volume: 358
  start-page: 2458
  year: 2012
  ident: 2023102511342572200_c32
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2011.11.033
– volume: 8
  start-page: 18075
  year: 2018
  ident: 2023102511342572200_c35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36676-7
– volume: 457
  start-page: 132
  year: 2017
  ident: 2023102511342572200_c8
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2016.05.049
– volume: 48
  start-page: 011605
  year: 2009
  ident: 2023102511342572200_c34
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.48.011605
– volume: 45
  start-page: 180
  year: 1982
  ident: 2023102511342572200_c25
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(82)90274-2
– volume: 1
  start-page: 011202
  year: 2008
  ident: 2023102511342572200_c13
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.1.011202
– volume: 193
  start-page: 187
  year: 2002
  ident: 2023102511342572200_c39
  publication-title: Phys. Status Solidi A
  doi: 10.1002/1521-396X(200209)193:1<187::AID-PSSA187>3.0.CO;2-1
– volume: 127
  start-page: 101101
  year: 2020
  ident: 2023102511342572200_c11
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5142195
– volume: 52
  start-page: 051101
  year: 2013
  ident: 2023102511342572200_c33
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.52.051101
– volume: 77
  start-page: 4166
  year: 2000
  ident: 2023102511342572200_c3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1330559
– volume: 4
  start-page: 2310
  year: 2007
  ident: 2023102511342572200_c16
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.200674884
– volume: 93
  start-page: 125209
  year: 2016
  ident: 2023102511342572200_c38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.125209
– volume: 71
  start-page: 933
  year: 1997
  ident: 2023102511342572200_c6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119693
– volume: 378
  start-page: 591
  year: 2013
  ident: 2023102511342572200_c12
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.02.015
– volume: 100
  start-page: 013504
  year: 2012
  ident: 2023102511342572200_c22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3674287
– volume: 112
  start-page: 232104
  year: 2018
  ident: 2023102511342572200_c40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5029921
– volume: 92
  start-page: 1062
  year: 2002
  ident: 2023102511342572200_c29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1483915
– volume: 70
  start-page: 3561
  year: 1997
  ident: 2023102511342572200_c4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119233
– volume: 401
  start-page: 330
  year: 2014
  ident: 2023102511342572200_c28
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.12.061
– volume: 98
  start-page: 094312
  year: 2005
  ident: 2023102511342572200_c30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2128044
– volume: 404
  start-page: 184
  year: 2014
  ident: 2023102511342572200_c21
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.07.021
– volume: 54
  start-page: 041102
  year: 2015
  ident: 2023102511342572200_c7
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.54.041102
– volume: 92
  start-page: 201914
  year: 2008
  ident: 2023102511342572200_c14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2910768
– volume: 97
  start-page: 142106
  year: 2010
  ident: 2023102511342572200_c20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3499306
– volume: 72
  start-page: 184103
  year: 2005
  ident: 2023102511342572200_c18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.184103
– volume: 44
  start-page: 63
  year: 2016
  ident: 2023102511342572200_c5
  publication-title: Rev. Adv. Mater. Sci.
– volume: 36
  start-page: 4832
  year: 2021
  ident: 2023102511342572200_c37
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-021-00397-x
SSID ssj0005233
Score 2.4939678
Snippet The contribution of oxygen vacancies ( V O) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a...
The contribution of oxygen vacancies (VO) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorption
Annealing
Applied physics
Carrier density
Electrical resistivity
Gallium oxides
Oxygen
Raman spectroscopy
Reduction
Single crystals
Title Elucidating the role of oxygen vacancies on the electrical conductivity of β-Ga2O3 single-crystals
URI http://dx.doi.org/10.1063/5.0158279
https://www.proquest.com/docview/2881518932
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FVojygKCACBS0AiohRS7xrq-PoQQqREolWqlv1thek0iOXSV2RfpZfAjfxKx313EvSIUXO3K8duQ5GZ-dPTNDyFt8SYALGVg8TcFy4oBbQRJyC5gYugx8WzRtOieH3sGJ8-XUPe31Vh3VUl3Fe8nFjXkl_2NVPIZ2lVmy_2DZ9qJ4AD-jfXGLFsbtrWw8zutkJvMTdMqTkQqWP1c4ZnAOSdN716wIDFTPG10TpJCVXlXrCByyuz_e_cCsz8C-8YGMH-TCShYr5I75sktgDWtVEZHlIG_SgVpifggLWIHueTyBQsgVpTaKM4UmiDOaz6rB0V4r_ZmWy6mKThepklQrqQrMZxdTONc6gkU9r3_AvBumYI3gTWUSt66XW16oq8sK5W2HvgySagds3PF6VG0SO6_5eSRWaBxZcdUNmOpGc7mW9pV3XKs8bNbcPR65kR56h2wynGGgi9wcfZx8_d7RB3Fu2i3K323KUnn8fXvfy2RmPUO5h_RFKSk6ZOX4IXmgZxl0pCDziPREsU3ud2pPbpO7R8qCj0nSgRFFmFAJI1pmVMGItjCiZdF8v4YR7cJIDvn9S0GIXoHQE3LyaXy8f2Dp3htWwkJWWakbp4LLPGc79GM_ANyJTAD6d5vZIKcBzEmlosrhHu7tOBgKG2LfCRjg4-JPyUZRFuIZocPUhYQjVwy91MkSB2dIceKib4hFxuMU-uSdeYiReWyyP0oeXTNWn7xuTz1T1VhuOmnHWCLSf9ZlxIIAuS2Sc9Ynb1rr_P0iz29zpxdkaw31HbJRLWrxEjlqFb_SaPoDsIqRPA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+role+of+oxygen+vacancies+on+the+electrical+conductivity+of+%CE%B2-Ga2O3+single-crystals&rft.jtitle=Applied+physics+letters&rft.au=Narayanan%2C+Maneesha&rft.au=Shah%2C+Amit+P.&rft.au=Ghosh%2C+Sandip&rft.au=Thamizhavel%2C+Arumugam&rft.date=2023-10-23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=17&rft_id=info:doi/10.1063%2F5.0158279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0158279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon