Elucidating the role of oxygen vacancies on the electrical conductivity of β-Ga2O3 single-crystals
The contribution of oxygen vacancies ( V O) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a combination of Hall measurements and Raman spectroscopy on as-grown and O2-annealed β-Ga2O3 crystals to investigate the role of V O on electri...
Saved in:
Published in | Applied physics letters Vol. 123; no. 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
23.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The contribution of oxygen vacancies (
V
O) to the electrical conductivity of unintentionally doped
β-Ga2O3 has been a topic of recent debate. Here, we use a combination of Hall measurements and Raman spectroscopy on as-grown and O2-annealed
β-Ga2O3 crystals to investigate the role of
V
O on electrical conductivity. The annealed samples show a significant decrease in carrier concentration. By comparing the relative Raman shift of individual modes with theoretically calculated contributions of oxygen sites to these modes, we verify the marked reduction of
V
O in annealed
β-Ga2O3 crystals. Furthermore, the IR modes in
β-Ga2O3, usually hidden by free carrier absorption, are clearly seen in the annealed sample. The reduction of band tail states as well as free carrier absorption in the annealed samples provides additional evidence for reduced carrier concentration related to
V
O, making them a key determinant of electrical conductivity in
β-Ga2O3. |
---|---|
AbstractList | The contribution of oxygen vacancies (VO) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a combination of Hall measurements and Raman spectroscopy on as-grown and O2-annealed β-Ga2O3 crystals to investigate the role of VO on electrical conductivity. The annealed samples show a significant decrease in carrier concentration. By comparing the relative Raman shift of individual modes with theoretically calculated contributions of oxygen sites to these modes, we verify the marked reduction of VO in annealed β-Ga2O3 crystals. Furthermore, the IR modes in β-Ga2O3, usually hidden by free carrier absorption, are clearly seen in the annealed sample. The reduction of band tail states as well as free carrier absorption in the annealed samples provides additional evidence for reduced carrier concentration related to VO, making them a key determinant of electrical conductivity in β-Ga2O3. The contribution of oxygen vacancies ( V O) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a combination of Hall measurements and Raman spectroscopy on as-grown and O2-annealed β-Ga2O3 crystals to investigate the role of V O on electrical conductivity. The annealed samples show a significant decrease in carrier concentration. By comparing the relative Raman shift of individual modes with theoretically calculated contributions of oxygen sites to these modes, we verify the marked reduction of V O in annealed β-Ga2O3 crystals. Furthermore, the IR modes in β-Ga2O3, usually hidden by free carrier absorption, are clearly seen in the annealed sample. The reduction of band tail states as well as free carrier absorption in the annealed samples provides additional evidence for reduced carrier concentration related to V O, making them a key determinant of electrical conductivity in β-Ga2O3. |
Author | Shah, Amit P. Thamizhavel, Arumugam Ghosh, Sandip Narayanan, Maneesha Bhattacharya, Arnab |
Author_xml | – sequence: 1 givenname: Maneesha surname: Narayanan fullname: Narayanan, Maneesha organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India – sequence: 2 givenname: Amit P. surname: Shah fullname: Shah, Amit P. organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India – sequence: 3 givenname: Sandip surname: Ghosh fullname: Ghosh, Sandip organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India – sequence: 4 givenname: Arumugam surname: Thamizhavel fullname: Thamizhavel, Arumugam organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India – sequence: 5 givenname: Arnab surname: Bhattacharya fullname: Bhattacharya, Arnab organization: Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India |
BookMark | eNp9kM1KAzEUhYNUsK0ufIOAK4Wp-ZlMMksptQqFbnQ9ZDKZmjImNUmL81o-iM9kautGxNXhcr9zLveMwMA6qwG4xGiCUUFv2QRhJggvT8AQI84zirEYgCFCiGZFyfAZGIWwTiMjlA6BmnVbZRoZjV3B-KKhd52GroXuvV9pC3dSSauMDtDZ773utIreKNlB5WyzVdHsTOz3ls-PbC7JksKQwjqdKd-HKLtwDk7bJPriqGPwfD97mj5ki-X8cXq3yBQpScwaVjea5qQocclrLmQS3WrJBccES1awguQN5QXKaZEU1wJpLGueCyLTa3QMrg65G-_etjrEau223qaTFRECMyxKShJ1faCUdyF43VYbb16l7yuMqn2HFauOHSb29herTExdORu9NN2fjpuDI_yQ_8R_AWNHgcU |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1002_smll_202408952 crossref_primary_10_1002_sstr_202400321 crossref_primary_10_1016_j_jcrysgro_2024_127676 crossref_primary_10_3390_electronics13163181 crossref_primary_10_1016_j_vacuum_2024_113791 crossref_primary_10_1016_j_jcrysgro_2024_127719 |
Cites_doi | 10.1107/S0021889811038970 10.7567/APEX.6.086502 10.1039/D0TC04101G 10.1143/JJAP.41.L622 10.1063/1.371289 10.1103/PhysRev.140.A316 10.1016/S0169-4332(01)00080-0 10.1149/2.0261907jss 10.1021/la903836v 10.1088/1674-4926/40/1/011801 10.1143/JJAP.13.1578 10.1016/j.jnoncrysol.2011.11.033 10.1038/s41598-018-36676-7 10.1016/j.jcrysgro.2016.05.049 10.1143/JJAP.48.011605 10.1016/0022-4596(82)90274-2 10.1143/APEX.1.011202 10.1002/1521-396X(200209)193:1<187::AID-PSSA187>3.0.CO;2-1 10.1063/1.5142195 10.7567/JJAP.52.051101 10.1063/1.1330559 10.1002/pssc.200674884 10.1103/PhysRevB.93.125209 10.1063/1.119693 10.1016/j.jcrysgro.2013.02.015 10.1063/1.3674287 10.1063/1.5029921 10.1063/1.1483915 10.1063/1.119233 10.1016/j.jcrysgro.2013.12.061 10.1063/1.2128044 10.1016/j.jcrysgro.2014.07.021 10.7567/JJAP.54.041102 10.1063/1.2910768 10.1063/1.3499306 10.1103/PhysRevB.72.184103 10.1557/s43578-021-00397-x |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0158279 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0158279 apl |
GrantInformation_xml | – fundername: Department of Atomic Energy, Government of India grantid: RTI 4003 funderid: 10.13039/501100001502 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c292t-d5bde34269197b78a197efea787121a565624d3760436d371b80e1ab7482a6953 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 02:33:12 EDT 2025 Tue Jul 01 01:08:35 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Fri Jun 21 00:10:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-d5bde34269197b78a197efea787121a565624d3760436d371b80e1ab7482a6953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1785-3697 0000-0003-4187-5025 0000-0002-8850-5219 0000-0002-3338-6945 0000-0003-1679-4370 |
PQID | 2881518932 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | scitation_primary_10_1063_5_0158279 crossref_citationtrail_10_1063_5_0158279 crossref_primary_10_1063_5_0158279 proquest_journals_2881518932 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231023 2023-10-23 |
PublicationDateYYYYMMDD | 2023-10-23 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231023 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Dohy, Lucazeau, Revcolevschi (c25) 1982 Higashiwaki, Sasaki, Kuramata, Masui, Yamakoshi (c22) 2012 Oshima, Okuno, Arai, Suzuki, Ohira, Fujita (c13) 2008 Yamaga, Tsuzuki, Takano, Villora, Shimamura (c32) 2012 Hajnal, Miró, Kiss, Réti, Deák, Herndon, Kuperberg (c17) 1999 Weiser, Stavola, Fowler, Qin, Pearton (c40) 2018 Ueda, Hosono, Waseda, Kawazoe (c4) 1997 Janzen, Mazzolini, Gillen, Falkenstein, Martin, Tornatzky, Maultzsch, Bierwagen, Wagner (c26) 2021 Schubert, Korlacki, Knight, Hofmann, Schöche, Darakchieva, Janzén, Monemar, Gogova, Thieu, Togashi, Murakami, Kumagai, Goto, Kuramata, Yamakoshi, Higashiwaki (c38) 2016 Varley, Weber, Janotti, Van de Walle (c20) 2010 Tippins (c1) 1965 Víllora, Yamaga, Inoue, Yabasi, Masui, Sugawara, Fukuda (c31) 2002 Oshima, Kaminaga, Mukai, Sasaki, Masui, Kuramata, Yamakoshi, Fujita, Ohtomo (c33) 2013 Zhou, Chen, Fu, Zhao (c37) 2021 Stepanov, Nikolaev, Bougrov, Romanov (c5) 2016 Ueda, Hosono, Waseda, Kawazoe (c6) 1997 Galazka, Irmscher, Uecker, Bertram, Pietsch, Kwasniewski, Naumann, Schulz, Schewski, Klimm, Bickermann (c21) 2014 Víllora, Morioka, Atou, Sugawara, Kikuchi, Fukuda (c39) 2002 Dai, Chen, Zhang, Jin, Zhou, Hu, Zhang (c29) 2002 Pan, Liu, Mei, Ge (c23) 2010 Sasaki, Higashiwaki, Kuramata, Masui, Yamakoshi (c12) 2013 Hossain, Kulkarni, Mondal, Guddolian, Rahman, Thamizhavel, Bhattacharya (c10) 2019 Togashi, Nomura, Eguchi, Fukizawa, Goto, Thieu, Murakami, Kumagai, Kuramata, Yamakoshi (c7) 2015 Shimamura, Víllora, Ujiie, Aoki (c14) 2008 Matsumoto, Aoki, Kinoshita, Aono (c2) 1974 Wang, Dickens, Varley, Ni, Lotubai, Sprawls, Liu, Lordi, Krishnamoorthy, Blair (c35) 2018 Suzuki, Ohira, Tanaka, Sugawara, Nakajima, Shishido (c16) 2007 Nikolaev, Maslov, Stepanov, Pechnikov, Krymov, Nikitina, Guzilova, Bougrov, Romanov (c8) 2017 McCluskey (c11) 2020 Ogita, Higo, Nakanishi, Hatanaka (c19) 2001 Sasaki, Higashiwaki, Kuramata, Masui, Yamakoshi (c15) 2013 Onuma, Fujioka, Yamaguchi, Itoh, Higashiwaki, Sasaki, Masui, Honda (c28) 2014 Oshima, Okuno, Arai, Suzuki, Hino, Fujita (c34) 2009 Momma, Izumi (c24) 2011 Blanco, Sahariah, Jiang, Costales, Pandey (c18) 2005 Rao, Rao, Xu, Dong, Sharma, Sunkara (c30) 2005 Orita, Ohta, Hirano, Hosono (c3) 2000 Mohamed, Xia, Sai, Cui, Pan, Qi (c9) 2019 (2023102511342572200_c11) 2020; 127 (2023102511342572200_c14) 2008; 92 (2023102511342572200_c16) 2007; 4 (2023102511342572200_c5) 2016; 44 (2023102511342572200_c1) 1965; 140 (2023102511342572200_c32) 2012; 358 (2023102511342572200_c31) 2002; 41 (2023102511342572200_c9) 2019; 40 (2023102511342572200_c29) 2002; 92 (2023102511342572200_c34) 2009; 48 (2023102511342572200_c3) 2000; 77 (2023102511342572200_c4) 1997; 70 (2023102511342572200_c21) 2014; 404 (2023102511342572200_c26) 2021; 9 (2023102511342572200_c8) 2017; 457 (2023102511342572200_c10) 2019; 8 (2023102511342572200_c6) 1997; 71 (2023102511342572200_c12) 2013; 378 (2023102511342572200_c35) 2018; 8 (2023102511342572200_c13) 2008; 1 (2023102511342572200_c39) 2002; 193 (2023102511342572200_c25) 1982; 45 (2023102511342572200_c36) 1972 (2023102511342572200_c33) 2013; 52 (2023102511342572200_c22) 2012; 100 (2023102511342572200_c7) 2015; 54 (2023102511342572200_c2) 1974; 13 (2023102511342572200_c37) 2021; 36 (2023102511342572200_c20) 2010; 97 (2023102511342572200_c15) 2013; 6 (2023102511342572200_c17) 1999; 86 (2023102511342572200_c40) 2018; 112 (2023102511342572200_c19) 2001; 175–176 (2023102511342572200_c27) 1971 (2023102511342572200_c23) 2010; 26 (2023102511342572200_c38) 2016; 93 (2023102511342572200_c28) 2014; 401 (2023102511342572200_c24) 2011; 44 (2023102511342572200_c18) 2005; 72 (2023102511342572200_c30) 2005; 98 |
References_xml | – start-page: 63 year: 2016 ident: c5 publication-title: Rev. Adv. Mater. Sci. – start-page: A316 year: 1965 ident: c1 publication-title: Phys. Rev. – start-page: 011605 year: 2009 ident: c34 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 5551 year: 2010 ident: c23 publication-title: Langmuir – start-page: 094312 year: 2005 ident: c30 publication-title: J. Appl. Phys. – start-page: 013504 year: 2012 ident: c22 publication-title: Appl. Phys. Lett. – start-page: 1578 year: 1974 ident: c2 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 086502 year: 2013 ident: c15 publication-title: Appl. Phys. Express – start-page: 3792 year: 1999 ident: c17 publication-title: J. Appl. Phys. – start-page: 041102 year: 2015 ident: c7 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 591 year: 2013 ident: c12 publication-title: J. Cryst. Growth – start-page: 051101 year: 2013 ident: c33 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 3561 year: 1997 ident: c4 publication-title: Appl. Phys. Lett. – start-page: 132 year: 2017 ident: c8 publication-title: J. Cryst. Growth – start-page: L622 year: 2002 ident: c31 publication-title: Jpn. J. Appl. Phys., Part 2 – start-page: 011801 year: 2019 ident: c9 publication-title: J. Semicond. – start-page: 125209 year: 2016 ident: c38 publication-title: Phys. Rev. B – start-page: 180 year: 1982 ident: c25 publication-title: J. Solid State Chem. – start-page: 1062 year: 2002 ident: c29 publication-title: J. Appl. Phys. – start-page: 1272 year: 2011 ident: c24 publication-title: J. Appl. Crystallogr. – start-page: 4166 year: 2000 ident: c3 publication-title: Appl. Phys. Lett. – start-page: 18075 year: 2018 ident: c35 publication-title: Sci. Rep. – start-page: 101101 year: 2020 ident: c11 publication-title: J. Appl. Phys. – start-page: 187 year: 2002 ident: c39 publication-title: Phys. Status Solidi A – start-page: 933 year: 1997 ident: c6 publication-title: Appl. Phys. Lett. – start-page: 184 year: 2014 ident: c21 publication-title: J. Cryst. Growth – start-page: 142106 year: 2010 ident: c20 publication-title: Appl. Phys. Lett. – start-page: 2311 year: 2021 ident: c26 publication-title: J. Mater. Chem. C – start-page: 2310 year: 2007 ident: c16 publication-title: Phys. Status Solidi C – start-page: 721 year: 2001 ident: c19 publication-title: Appl. Surf. Sci. – start-page: 330 year: 2014 ident: c28 publication-title: J. Cryst. Growth – start-page: 011202 year: 2008 ident: c13 publication-title: Appl. Phys. Express – start-page: 184103 year: 2005 ident: c18 publication-title: Phys. Rev. B – start-page: 4832 year: 2021 ident: c37 publication-title: J. Mater. Res. – start-page: 232104 year: 2018 ident: c40 publication-title: Appl. Phys. Lett. – start-page: Q3144 year: 2019 ident: c10 publication-title: ECS J. Solid State Sci. Technol. – start-page: 2458 year: 2012 ident: c32 publication-title: J. Non-Cryst. Solids – start-page: 201914 year: 2008 ident: c14 publication-title: Appl. Phys. Lett. – volume: 44 start-page: 1272 year: 2011 ident: 2023102511342572200_c24 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 – volume: 6 start-page: 086502 year: 2013 ident: 2023102511342572200_c15 publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.086502 – volume: 9 start-page: 2311 year: 2021 ident: 2023102511342572200_c26 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC04101G – volume: 41 start-page: L622 year: 2002 ident: 2023102511342572200_c31 publication-title: Jpn. J. Appl. Phys., Part 2 doi: 10.1143/JJAP.41.L622 – volume: 86 start-page: 3792 year: 1999 ident: 2023102511342572200_c17 publication-title: J. Appl. Phys. doi: 10.1063/1.371289 – volume: 140 start-page: A316 year: 1965 ident: 2023102511342572200_c1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A316 – volume: 175–176 start-page: 721 year: 2001 ident: 2023102511342572200_c19 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(01)00080-0 – volume: 8 start-page: Q3144 year: 2019 ident: 2023102511342572200_c10 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0261907jss – volume: 26 start-page: 5551 year: 2010 ident: 2023102511342572200_c23 publication-title: Langmuir doi: 10.1021/la903836v – volume: 40 start-page: 011801 year: 2019 ident: 2023102511342572200_c9 publication-title: J. Semicond. doi: 10.1088/1674-4926/40/1/011801 – volume: 13 start-page: 1578 year: 1974 ident: 2023102511342572200_c2 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.13.1578 – volume-title: Optical Properties of Solids year: 1972 ident: 2023102511342572200_c36 – volume-title: Chemical Applications of Group Theory year: 1971 ident: 2023102511342572200_c27 – volume: 358 start-page: 2458 year: 2012 ident: 2023102511342572200_c32 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2011.11.033 – volume: 8 start-page: 18075 year: 2018 ident: 2023102511342572200_c35 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36676-7 – volume: 457 start-page: 132 year: 2017 ident: 2023102511342572200_c8 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2016.05.049 – volume: 48 start-page: 011605 year: 2009 ident: 2023102511342572200_c34 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.48.011605 – volume: 45 start-page: 180 year: 1982 ident: 2023102511342572200_c25 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(82)90274-2 – volume: 1 start-page: 011202 year: 2008 ident: 2023102511342572200_c13 publication-title: Appl. Phys. Express doi: 10.1143/APEX.1.011202 – volume: 193 start-page: 187 year: 2002 ident: 2023102511342572200_c39 publication-title: Phys. Status Solidi A doi: 10.1002/1521-396X(200209)193:1<187::AID-PSSA187>3.0.CO;2-1 – volume: 127 start-page: 101101 year: 2020 ident: 2023102511342572200_c11 publication-title: J. Appl. Phys. doi: 10.1063/1.5142195 – volume: 52 start-page: 051101 year: 2013 ident: 2023102511342572200_c33 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.52.051101 – volume: 77 start-page: 4166 year: 2000 ident: 2023102511342572200_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1330559 – volume: 4 start-page: 2310 year: 2007 ident: 2023102511342572200_c16 publication-title: Phys. Status Solidi C doi: 10.1002/pssc.200674884 – volume: 93 start-page: 125209 year: 2016 ident: 2023102511342572200_c38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.125209 – volume: 71 start-page: 933 year: 1997 ident: 2023102511342572200_c6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.119693 – volume: 378 start-page: 591 year: 2013 ident: 2023102511342572200_c12 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2013.02.015 – volume: 100 start-page: 013504 year: 2012 ident: 2023102511342572200_c22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3674287 – volume: 112 start-page: 232104 year: 2018 ident: 2023102511342572200_c40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5029921 – volume: 92 start-page: 1062 year: 2002 ident: 2023102511342572200_c29 publication-title: J. Appl. Phys. doi: 10.1063/1.1483915 – volume: 70 start-page: 3561 year: 1997 ident: 2023102511342572200_c4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.119233 – volume: 401 start-page: 330 year: 2014 ident: 2023102511342572200_c28 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2013.12.061 – volume: 98 start-page: 094312 year: 2005 ident: 2023102511342572200_c30 publication-title: J. Appl. Phys. doi: 10.1063/1.2128044 – volume: 404 start-page: 184 year: 2014 ident: 2023102511342572200_c21 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.07.021 – volume: 54 start-page: 041102 year: 2015 ident: 2023102511342572200_c7 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.54.041102 – volume: 92 start-page: 201914 year: 2008 ident: 2023102511342572200_c14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2910768 – volume: 97 start-page: 142106 year: 2010 ident: 2023102511342572200_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3499306 – volume: 72 start-page: 184103 year: 2005 ident: 2023102511342572200_c18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.184103 – volume: 44 start-page: 63 year: 2016 ident: 2023102511342572200_c5 publication-title: Rev. Adv. Mater. Sci. – volume: 36 start-page: 4832 year: 2021 ident: 2023102511342572200_c37 publication-title: J. Mater. Res. doi: 10.1557/s43578-021-00397-x |
SSID | ssj0005233 |
Score | 2.4939678 |
Snippet | The contribution of oxygen vacancies (
V
O) to the electrical conductivity of unintentionally doped
β-Ga2O3 has been a topic of recent debate. Here, we use a... The contribution of oxygen vacancies (VO) to the electrical conductivity of unintentionally doped β-Ga2O3 has been a topic of recent debate. Here, we use a... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Absorption Annealing Applied physics Carrier density Electrical resistivity Gallium oxides Oxygen Raman spectroscopy Reduction Single crystals |
Title | Elucidating the role of oxygen vacancies on the electrical conductivity of β-Ga2O3 single-crystals |
URI | http://dx.doi.org/10.1063/5.0158279 https://www.proquest.com/docview/2881518932 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FVojygKCACBS0AiohRS7xrq-PoQQqREolWqlv1thek0iOXSV2RfpZfAjfxKx313EvSIUXO3K8duQ5GZ-dPTNDyFt8SYALGVg8TcFy4oBbQRJyC5gYugx8WzRtOieH3sGJ8-XUPe31Vh3VUl3Fe8nFjXkl_2NVPIZ2lVmy_2DZ9qJ4AD-jfXGLFsbtrWw8zutkJvMTdMqTkQqWP1c4ZnAOSdN716wIDFTPG10TpJCVXlXrCByyuz_e_cCsz8C-8YGMH-TCShYr5I75sktgDWtVEZHlIG_SgVpifggLWIHueTyBQsgVpTaKM4UmiDOaz6rB0V4r_ZmWy6mKThepklQrqQrMZxdTONc6gkU9r3_AvBumYI3gTWUSt66XW16oq8sK5W2HvgySagds3PF6VG0SO6_5eSRWaBxZcdUNmOpGc7mW9pV3XKs8bNbcPR65kR56h2wynGGgi9wcfZx8_d7RB3Fu2i3K323KUnn8fXvfy2RmPUO5h_RFKSk6ZOX4IXmgZxl0pCDziPREsU3ud2pPbpO7R8qCj0nSgRFFmFAJI1pmVMGItjCiZdF8v4YR7cJIDvn9S0GIXoHQE3LyaXy8f2Dp3htWwkJWWakbp4LLPGc79GM_ANyJTAD6d5vZIKcBzEmlosrhHu7tOBgKG2LfCRjg4-JPyUZRFuIZocPUhYQjVwy91MkSB2dIceKib4hFxuMU-uSdeYiReWyyP0oeXTNWn7xuTz1T1VhuOmnHWCLSf9ZlxIIAuS2Sc9Ynb1rr_P0iz29zpxdkaw31HbJRLWrxEjlqFb_SaPoDsIqRPA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+the+role+of+oxygen+vacancies+on+the+electrical+conductivity+of+%CE%B2-Ga2O3+single-crystals&rft.jtitle=Applied+physics+letters&rft.au=Narayanan%2C+Maneesha&rft.au=Shah%2C+Amit+P.&rft.au=Ghosh%2C+Sandip&rft.au=Thamizhavel%2C+Arumugam&rft.date=2023-10-23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=17&rft_id=info:doi/10.1063%2F5.0158279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0158279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |