The modulation instability of shallow wake flows based on the higher-order generalized cubic-quintic complex Ginzburg–Landau equation

In the context of the parallel flow hypothesis, we derive a higher-order generalized cubic-quintic complex Ginzburg–Landau (GCQ-CGL) equation to describe the amplitude evolution of shallow wake flow from the dimensionless shallow water equations by using multi-scale analysis, perturbation expansion,...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 35; no. 2
Main Authors Fu, Lei, Han, Xiaofeng, Dong, Huanhe, Yang, Hongwei
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.02.2023
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0138566

Cover

Loading…
Abstract In the context of the parallel flow hypothesis, we derive a higher-order generalized cubic-quintic complex Ginzburg–Landau (GCQ-CGL) equation to describe the amplitude evolution of shallow wake flow from the dimensionless shallow water equations by using multi-scale analysis, perturbation expansion, and weak nonlinear theory. The evolution model includes not only the slowly changing envelope approximation but also the influence of higher-order dissipation, dispersion, and cubic and quintic nonlinear effects. We give the analytical solution of the higher-order GCQ-CGL equation based on the ansatz and coordinate transformation methods, and we discuss the influence of the higher-order dissipation coefficient on the amplitude and frequency of the wake flow by means of three-dimensional diagrams, contour maps, and plane graphs. The subsequent linear stability analysis gives a theoretical basis for the modulation instability (MI) of plane waves, and the linear theory predicts the instability of any amplitude of the main waves. Finally, we focus on the MI of shallow wake flows. Results show that the MI gain function is internally related to the background wave number, disturbance wave number, background amplitude, disturbance expansion parameter, and dissipation coefficient. The area of the MI decreases as the higher-order dissipation coefficient decreases.
AbstractList In the context of the parallel flow hypothesis, we derive a higher-order generalized cubic-quintic complex Ginzburg–Landau (GCQ-CGL) equation to describe the amplitude evolution of shallow wake flow from the dimensionless shallow water equations by using multi-scale analysis, perturbation expansion, and weak nonlinear theory. The evolution model includes not only the slowly changing envelope approximation but also the influence of higher-order dissipation, dispersion, and cubic and quintic nonlinear effects. We give the analytical solution of the higher-order GCQ-CGL equation based on the ansatz and coordinate transformation methods, and we discuss the influence of the higher-order dissipation coefficient on the amplitude and frequency of the wake flow by means of three-dimensional diagrams, contour maps, and plane graphs. The subsequent linear stability analysis gives a theoretical basis for the modulation instability (MI) of plane waves, and the linear theory predicts the instability of any amplitude of the main waves. Finally, we focus on the MI of shallow wake flows. Results show that the MI gain function is internally related to the background wave number, disturbance wave number, background amplitude, disturbance expansion parameter, and dissipation coefficient. The area of the MI decreases as the higher-order dissipation coefficient decreases.
Author Dong, Huanhe
Han, Xiaofeng
Fu, Lei
Yang, Hongwei
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-4463-801X
  surname: Fu
  fullname: Fu, Lei
– sequence: 2
  givenname: Xiaofeng
  orcidid: 0000-0003-1476-8910
  surname: Han
  fullname: Han, Xiaofeng
– sequence: 3
  givenname: Huanhe
  orcidid: 0000-0003-3747-8369
  surname: Dong
  fullname: Dong, Huanhe
– sequence: 4
  givenname: Hongwei
  orcidid: 0000-0002-0953-2498
  surname: Yang
  fullname: Yang, Hongwei
BookMark eNp9kM1KAzEUhYMo2KoL3yDgSmFsMj-ZzFKKVqHgpq6HJHOnjU6TNslQ25U7H8A39EmctroRcXUP3O-cw719dGisAYTOKbmmhCWD7JrQhGeMHaAeJbyIcsbY4VbnJGIsoceo7_0zISQpYtZD75MZ4Lmt2kYEbQ3WxgchdaPDGtsa-5loGrvCK_ECuO6Ux1J4qHCHhs4509MZuMi6ChyeggEnGr3p9qqVWkXLVpugFVZ2vmjgFY-02cjWTT_fPsbCVKLFsGx3xafoqBaNh7PveYKe7m4nw_to_Dh6GN6MIxUXcYiUSFhdSMFzlfKUccaVlLTKKRQsUyolnCUSiFTAsiJl6RYneSxTAjzjVCUn6GKfu3B22YIP5bNtnekqyzjPk4LHNC066nJPKWe9d1CXC6fnwq1LSsrtn8us_P5zxw5-sUqH3U3BCd386bjaO_wP-U_8F7vXkaU
CODEN PHFLE6
CitedBy_id crossref_primary_10_1063_5_0215264
Cites_doi 10.1017/S0022112003005020
10.1103/PhysRevLett.113.034101
10.1029/JC092iC13p14521
10.1103/PhysRevFluids.5.034802
10.1063/5.0025167
10.1061/(ASCE)0733-9429(1999)125:8(871)
10.1016/j.ijmultiphaseflow.2016.03.001
10.1017/S0022112087002222
10.1016/j.cnsns.2018.02.008
10.1061/(ASCE)0733-9429(2002)128:12(1076)
10.1103/PhysRevE.95.042212
10.1063/1.4768530
10.1016/S0092-8240(05)80008-4
10.1061/(ASCE)0733-9429(1998)124:7(718)
10.1016/j.jher.2009.10.003
10.1016/j.wavemoti.2019.102396
10.1103/PhysRevE.97.052215
10.1016/S0165-2125(00)00073-1
10.1063/5.0013225
10.1017/S002211206700045X
10.1063/1.5053941
10.1016/S0960-0779(02)00488-5
10.1016/j.physd.2005.11.011
10.1016/j.piutam.2013.09.014
10.1016/j.cnsns.2020.105284
10.1103/PhysRevE.102.042207
10.1103/PhysRevE.93.012214
10.1017/S0022112095001145
10.1103/PhysRevA.91.033804
10.1016/j.physleta.2010.01.066
10.1017/S0022112003006116
10.1016/j.amc.2020.125342
10.1016/0169-5983(95)00053-g
10.1007/s10652-013-9324-1
10.1016/j.dynatmoce.2008.10.006
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0138566
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0138566
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11975143
  funderid: 10.13039/501100001809
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c292t-ca36f9ba87c4846868cbb1d71e965cc40863be0bce659464a36f072b40e8581c3
ISSN 1070-6631
IngestDate Sun Jun 29 16:41:10 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Tue Jul 01 02:44:43 EDT 2025
Fri Jun 21 00:12:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-ca36f9ba87c4846868cbb1d71e965cc40863be0bce659464a36f072b40e8581c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1476-8910
0000-0003-3747-8369
0000-0002-4463-801X
0000-0002-0953-2498
PQID 2773982149
PQPubID 2050667
PageCount 13
ParticipantIDs crossref_primary_10_1063_5_0138566
scitation_primary_10_1063_5_0138566
proquest_journals_2773982149
crossref_citationtrail_10_1063_5_0138566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
2023-02-01
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Ghidaoui, Kolyshkin (c8) 1999
Provansal, Mathis, Boyer (c13) 1987
Bonnefoy, Tikan, Copie, Suret, Ducrozet, Prabhudesai, Michel, Cazaubiel, Falcon, El, Randoux (c25) 2020
Babarutsi, Chu (c1) 1998
Turing (c21) 1990
Zhang, Yan (c26) 2018
Chen, Jirka (c7) 1995
Duan, Zhao, Xu, Liu, Yang, Yang (c36) 2017
Bespalov, Talanov (c20) 1966
Yue, Huang, Chen (c27) 2020
Chu (c29) 2010
Leweke, Provansal (c14) 1995
Nasif, Balachandar, Barron (c5) 2016
Baronio, Chen, Grelu, Wabnitz, Conforti (c24) 2015
Wang, Zhang, Wang, Liu, Li, Qi, Guo (c33) 2016
Uijttewaal, Jirka (c2) 2003
Sukhodolov, Sukhodolova (c4) 2014
Baronio, Conforti, Degasperis, Lombardo, Onorato, Wabnitz (c34) 2014
Kolyshkin, Ghidaoui (c15) 2003
Ingram, Chu (c6) 1987
Wang, Wen, Wang (c17) 2019
Li, Cao, Song, Yu, Chen (c16) 2020
Chowdury, Ankiewicz, Akhmediev, Chang (c22) 2018
Wang, Zhang, Yang (c28) 2020
Teinturiera, Stegnera, Didelleb, Viboudb (c3) 2010
Yomba, Kofane (c31) 2003
Zakharov, Gelash (c23) 2013
Ghidaoui, Kolyshkin (c9) 2002
Uzunov, Georgiev, Arabadzhiev (c11) 2018
Luo (c30) 2001
Zhu, Xia, Bai (c32) 2020
Alcaraz-Pelegrina, Rodriguez-Garcia (c10) 2010
Megne, Tabi, Kofane (c12) 2020
Benjamin, Feir (c19) 1967
Thomas, Kharif, Manna (c18) 2012
Griffiths, Grimshaw, Khusnutdinova (c35) 2006
(2023081020144962100_c28) 2020; 32
(2023081020144962100_c25) 2020; 5
(2023081020144962100_c32) 2020; 382
(2023081020144962100_c23) 2013; 9
(2023081020144962100_c11) 2018; 97
(2023081020144962100_c1) 1998; 124
(2023081020144962100_c3) 2010; 49
(2023081020144962100_c6) 1987; 92
(2023081020144962100_c18) 2012; 24
(2023081020144962100_c31) 2003; 17
(2023081020144962100_c2) 2003; 489
(2023081020144962100_c19) 1967; 27
(2023081020144962100_c35) 2006; 214
(2023081020144962100_c21) 1990; 52
(2023081020144962100_c34) 2014; 113
(2023081020144962100_c12) 2020; 102
(2023081020144962100_c24) 2015; 91
(2023081020144962100_c36) 2017; 95
(2023081020144962100_c20) 1966; 3
(2023081020144962100_c13) 1987; 182
(2023081020144962100_c15) 2003; 494
(2023081020144962100_c33) 2016; 93
(2023081020144962100_c8) 1999; 125
(2023081020144962100_c16) 2020; 32
(2023081020144962100_c29) 2010; 3
(2023081020144962100_c14) 1995; 288
(2023081020144962100_c5) 2016; 82
(2023081020144962100_c7) 1995; 16
(2023081020144962100_c22) 2018; 28
(2023081020144962100_c30) 2001; 33
(2023081020144962100_c4) 2014; 14
(2023081020144962100_c17) 2019; 91
(2023081020144962100_c26) 2018; 62
(2023081020144962100_c10) 2010; 374
(2023081020144962100_c9) 2002; 128
(2023081020144962100_c27) 2020; 89
References_xml – start-page: 096604
  year: 2020
  ident: c28
  article-title: Solitary waves of nonlinear barotropic-baroclinic coherent structures
  publication-title: Phys. Fluids
– start-page: 871
  year: 1999
  ident: c8
  article-title: Linear stability analysis of lateral motions in compound open channels
  publication-title: J. Hydraul. Eng.
– start-page: 1
  year: 2010
  ident: c3
  article-title: Small-scale instabilities of an island wake flow in a rotating shallow-water layer
  publication-title: Dyn. Atmos. Oceans
– start-page: 471
  year: 1966
  ident: c20
  article-title: Filamentary structure of light beams in nonlinear liquids
  publication-title: Zh. Eksp. Teor. Fiz Pis'ma Red.
– start-page: 102396
  year: 2019
  ident: c17
  article-title: Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation
  publication-title: Wave Motion
– start-page: 355
  year: 2003
  ident: c15
  article-title: Stability analysis of shallow wake flows
  publication-title: J. Fluid Mech.
– start-page: 072104
  year: 2020
  ident: c16
  article-title: Evolution and modulational instability of interfacial waves in a two-layer fluid with arbitrary layer depths
  publication-title: Phys. Fluids
– start-page: 339
  year: 2001
  ident: c30
  article-title: Derivation of a higher order nonlinear Schrödinger equation for weakly nonlinear Rossby waves
  publication-title: Wave Motion
– start-page: 127102
  year: 2012
  ident: c18
  article-title: A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity
  publication-title: Phys. Fluids
– start-page: 042212
  year: 2017
  ident: c36
  article-title: Soliton excitations on a continuous-wave background in the modulational instability regime with fourth-order effects
  publication-title: Phys. Rev. E
– start-page: 718
  year: 1998
  ident: c1
  article-title: Modelling transverse mixing layer in shallow open channel flows
  publication-title: J. Hydraul. Eng.
– start-page: 034101
  year: 2014
  ident: c34
  article-title: Vector rogue waves and baseband modulation instability in the defocusing regime
  publication-title: Phys. Rev. Lett.
– start-page: 325
  year: 2003
  ident: c2
  article-title: Grid turbulence in shallow flows
  publication-title: J. Fluid Mech.
– start-page: 042207
  year: 2020
  ident: c12
  article-title: Modulation Instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg–Landau equation beyond the slowly varying envelope approximation
  publication-title: Phys. Rev. E
– start-page: 153
  year: 1990
  ident: c21
  article-title: The chemical basis of morphogenesis
  publication-title: Bull. Math. Biol.
– start-page: 033804
  year: 2015
  ident: c24
  article-title: Baseband modulation instability as the origin of rogue waves
  publication-title: Phys. Rev. A
– start-page: 14521
  year: 1987
  ident: c6
  article-title: Flow around islands in Rupert Bay: An investigation of the bottom friction effect
  publication-title: J. Geophys. Res.
– start-page: 1
  year: 2006
  ident: c35
  article-title: Modulational Instability of two pairs of counter-propagating waves and energy exchange in a two-component system
  publication-title: Physica D
– start-page: 1591
  year: 2010
  ident: c10
  article-title: Modulational instability in two cubic-quintic Ginzburg–Landau equations coupled with a cross phase modulation term
  publication-title: Phys. Lett. A
– start-page: 11
  year: 1995
  ident: c7
  article-title: Experimental study of plane turbulent wakes in a shallow water layer
  publication-title: Fluid Dyn. Res.
– start-page: 105284
  year: 2020
  ident: c27
  article-title: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– start-page: 265
  year: 1995
  ident: c14
  article-title: The flow behind rings: Bluff body wakes without end effects
  publication-title: J. Fluid Mech.
– start-page: 1076
  year: 2002
  ident: c9
  article-title: Gravitational and shear instabilities in compound and composite channels
  publication-title: J. Hydraul. Eng.
– start-page: 417
  year: 1967
  ident: c19
  article-title: The disintegration of wave trains on deep water—Part 1: Theory
  publication-title: J. Fluid Mech.
– start-page: 1071
  year: 2014
  ident: c4
  article-title: Shallow wake behind exposed wood-induced bar in a gravel-bed river
  publication-title: Environ. Fluid Mech.
– start-page: 052215
  year: 2018
  ident: c11
  article-title: Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg–Landau equation under the influence of nonlinear gain and higher-order effects
  publication-title: Phys. Rev. E
– start-page: 74
  year: 2016
  ident: c5
  article-title: Mean characteristics of fluid structures in shallow-wake flows
  publication-title: Int. J. Multiphase Flow
– start-page: 165
  year: 2013
  ident: c23
  article-title: Freak waves as a result of modulation instability
  publication-title: Proc. IUTAM
– start-page: 117
  year: 2018
  ident: c26
  article-title: Three-component nonlinear Schrödinger equations: Modulational instability, th-order vector rational and semi-rational rogue waves, and dynamics
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– start-page: 123116
  year: 2018
  ident: c22
  article-title: Modulation instability in higher-order nonlinear Schrödinger equations
  publication-title: Chaos
– start-page: 012214
  year: 2016
  ident: c33
  article-title: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation
  publication-title: Phys. Rev. E
– start-page: 1
  year: 1987
  ident: c13
  article-title: Bénard-von Kármán instability: Transient and forced regimes
  publication-title: J. Fluid Mech.
– start-page: 173
  year: 2010
  ident: c29
  article-title: Shear instability, wave and turbulence simulations using the shallow-water equations
  publication-title: J. Hydro-Environ. Res.
– start-page: 847
  year: 2003
  ident: c31
  article-title: Exact solutions of the one-dimensional generalized modified complex Ginzburg–Landau equation
  publication-title: Chaos, Solitons Fractals
– start-page: 125342
  year: 2020
  ident: c32
  article-title: Traveling wave solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity
  publication-title: Appl. Math. Comput.
– start-page: 34802
  year: 2020
  ident: c25
  article-title: From modulational instability to focusing dam breaks in water waves
  publication-title: Phys. Rev. Fluids
– volume: 489
  start-page: 325
  year: 2003
  ident: 2023081020144962100_c2
  article-title: Grid turbulence in shallow flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003005020
– volume: 113
  start-page: 034101
  year: 2014
  ident: 2023081020144962100_c34
  article-title: Vector rogue waves and baseband modulation instability in the defocusing regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.034101
– volume: 92
  start-page: 14521
  year: 1987
  ident: 2023081020144962100_c6
  article-title: Flow around islands in Rupert Bay: An investigation of the bottom friction effect
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC092iC13p14521
– volume: 5
  start-page: 34802
  year: 2020
  ident: 2023081020144962100_c25
  article-title: From modulational instability to focusing dam breaks in water waves
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.034802
– volume: 32
  start-page: 096604
  issue: 9
  year: 2020
  ident: 2023081020144962100_c28
  article-title: Solitary waves of nonlinear barotropic-baroclinic coherent structures
  publication-title: Phys. Fluids
  doi: 10.1063/5.0025167
– volume: 125
  start-page: 871
  year: 1999
  ident: 2023081020144962100_c8
  article-title: Linear stability analysis of lateral motions in compound open channels
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1999)125:8(871)
– volume: 82
  start-page: 74
  year: 2016
  ident: 2023081020144962100_c5
  article-title: Mean characteristics of fluid structures in shallow-wake flows
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.03.001
– volume: 182
  start-page: 1
  year: 1987
  ident: 2023081020144962100_c13
  article-title: Bénard-von Kármán instability: Transient and forced regimes
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087002222
– volume: 62
  start-page: 117
  year: 2018
  ident: 2023081020144962100_c26
  article-title: Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.02.008
– volume: 128
  start-page: 1076
  year: 2002
  ident: 2023081020144962100_c9
  article-title: Gravitational and shear instabilities in compound and composite channels
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2002)128:12(1076)
– volume: 95
  start-page: 042212
  year: 2017
  ident: 2023081020144962100_c36
  article-title: Soliton excitations on a continuous-wave background in the modulational instability regime with fourth-order effects
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.042212
– volume: 24
  start-page: 127102
  year: 2012
  ident: 2023081020144962100_c18
  article-title: A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity
  publication-title: Phys. Fluids
  doi: 10.1063/1.4768530
– volume: 3
  start-page: 471
  year: 1966
  ident: 2023081020144962100_c20
  article-title: Filamentary structure of light beams in nonlinear liquids
  publication-title: Zh. Eksp. Teor. Fiz Pis'ma Red.
– volume: 52
  start-page: 153
  year: 1990
  ident: 2023081020144962100_c21
  article-title: The chemical basis of morphogenesis
  publication-title: Bull. Math. Biol.
  doi: 10.1016/S0092-8240(05)80008-4
– volume: 124
  start-page: 718
  year: 1998
  ident: 2023081020144962100_c1
  article-title: Modelling transverse mixing layer in shallow open channel flows
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1998)124:7(718)
– volume: 3
  start-page: 173
  year: 2010
  ident: 2023081020144962100_c29
  article-title: Shear instability, wave and turbulence simulations using the shallow-water equations
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2009.10.003
– volume: 91
  start-page: 102396
  year: 2019
  ident: 2023081020144962100_c17
  article-title: Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2019.102396
– volume: 97
  start-page: 052215
  year: 2018
  ident: 2023081020144962100_c11
  article-title: Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg–Landau equation under the influence of nonlinear gain and higher-order effects
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.052215
– volume: 33
  start-page: 339
  year: 2001
  ident: 2023081020144962100_c30
  article-title: Derivation of a higher order nonlinear Schrödinger equation for weakly nonlinear Rossby waves
  publication-title: Wave Motion
  doi: 10.1016/S0165-2125(00)00073-1
– volume: 32
  start-page: 072104
  year: 2020
  ident: 2023081020144962100_c16
  article-title: Evolution and modulational instability of interfacial waves in a two-layer fluid with arbitrary layer depths
  publication-title: Phys. Fluids
  doi: 10.1063/5.0013225
– volume: 27
  start-page: 417
  year: 1967
  ident: 2023081020144962100_c19
  article-title: The disintegration of wave trains on deep water—Part 1: Theory
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211206700045X
– volume: 28
  start-page: 123116
  year: 2018
  ident: 2023081020144962100_c22
  article-title: Modulation instability in higher-order nonlinear Schrödinger equations
  publication-title: Chaos
  doi: 10.1063/1.5053941
– volume: 17
  start-page: 847
  year: 2003
  ident: 2023081020144962100_c31
  article-title: Exact solutions of the one-dimensional generalized modified complex Ginzburg–Landau equation
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/S0960-0779(02)00488-5
– volume: 214
  start-page: 1
  year: 2006
  ident: 2023081020144962100_c35
  article-title: Modulational Instability of two pairs of counter-propagating waves and energy exchange in a two-component system
  publication-title: Physica D
  doi: 10.1016/j.physd.2005.11.011
– volume: 9
  start-page: 165
  year: 2013
  ident: 2023081020144962100_c23
  article-title: Freak waves as a result of modulation instability
  publication-title: Proc. IUTAM
  doi: 10.1016/j.piutam.2013.09.014
– volume: 89
  start-page: 105284
  year: 2020
  ident: 2023081020144962100_c27
  article-title: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105284
– volume: 102
  start-page: 042207
  year: 2020
  ident: 2023081020144962100_c12
  article-title: Modulation Instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg–Landau equation beyond the slowly varying envelope approximation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.042207
– volume: 93
  start-page: 012214
  year: 2016
  ident: 2023081020144962100_c33
  article-title: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.012214
– volume: 288
  start-page: 265
  year: 1995
  ident: 2023081020144962100_c14
  article-title: The flow behind rings: Bluff body wakes without end effects
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095001145
– volume: 91
  start-page: 033804
  year: 2015
  ident: 2023081020144962100_c24
  article-title: Baseband modulation instability as the origin of rogue waves
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.033804
– volume: 374
  start-page: 1591
  year: 2010
  ident: 2023081020144962100_c10
  article-title: Modulational instability in two cubic-quintic Ginzburg–Landau equations coupled with a cross phase modulation term
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2010.01.066
– volume: 494
  start-page: 355
  year: 2003
  ident: 2023081020144962100_c15
  article-title: Stability analysis of shallow wake flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003006116
– volume: 382
  start-page: 125342
  year: 2020
  ident: 2023081020144962100_c32
  article-title: Traveling wave solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2020.125342
– volume: 16
  start-page: 11
  issue: 1
  year: 1995
  ident: 2023081020144962100_c7
  article-title: Experimental study of plane turbulent wakes in a shallow water layer
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/0169-5983(95)00053-g
– volume: 14
  start-page: 1071
  year: 2014
  ident: 2023081020144962100_c4
  article-title: Shallow wake behind exposed wood-induced bar in a gravel-bed river
  publication-title: Environ. Fluid Mech.
  doi: 10.1007/s10652-013-9324-1
– volume: 49
  start-page: 1
  year: 2010
  ident: 2023081020144962100_c3
  article-title: Small-scale instabilities of an island wake flow in a rotating shallow-water layer
  publication-title: Dyn. Atmos. Oceans
  doi: 10.1016/j.dynatmoce.2008.10.006
SSID ssj0003926
Score 2.4010875
Snippet In the context of the parallel flow hypothesis, we derive a higher-order generalized cubic-quintic complex Ginzburg–Landau (GCQ-CGL) equation to describe the...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplitudes
Coordinate transformations
Dissipation
Evolution
Exact solutions
Landau-Ginzburg equations
Modulation
Multiscale analysis
Parallel flow
Perturbation
Plane waves
Shallow water equations
Stability
Stability analysis
Thermal expansion
Three dimensional flow
Wavelengths
Title The modulation instability of shallow wake flows based on the higher-order generalized cubic-quintic complex Ginzburg–Landau equation
URI http://dx.doi.org/10.1063/5.0138566
https://www.proquest.com/docview/2773982149
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMctaIXohUIBdaEgCzggRYGN7TjxseKrQi0XWqm3KHYcNaJkKZuoaE_c-gB9Q56k469kKy1S4RJFXieR_PPa_7HHMwi9YmVCtMp5LDIJBgpNZFzWYPPUKSnrOqOirsx554MvfO-IfT5Oj8ecnvZ0SSffqMXKcyX_QxXKgKs5JfsPZIeXQgHcA1-4AmG43pjx91nlM3AZv_LOhd222-Zzkydldh6dl990VMPdPDJzVuX3B6IT6-IR2-CbJpOyWZ1qFvC76mWj4rO-aU00V-t0rn9Fn5p2YfZkgnsE3TeLEH2kz_qRrpe51q9UWS-R-rRvKhcPSggWFh78OgOhwTV5GBphcIhBn7gi7ctyEWfc5U0J46kLP-L7DVk5TIMugrY1AVNpDnryNlonWWZ22dd33x_sfx2mUhBv3DmNuk-H0FCcvh0evi4oRivhLkgI582wJBgO76N7XunjXYftAbql2y206VU_9mPqfAvd8Y31EF0ATzzyxEs88azGnic2PLHliS1PDFWBJ17miZd44ms8seeJA88_vy8dSRxIPkJHHz8cvtuLfaKMWBFBuliVlNdClnmmGOjJnOdKyqTKEi14qhQDs5VKPZVK81Qwzkz1aUYkm-o8zRNFH6O1dtbqbYTlNIXH00RTVjGw_UtFmUkMC29OYTqoJuh1aO0itK9JZnJaWG8GTou08GAm6MVQ9YcLnbKq0k5AVvh_1ryAzkBFTsB4n6CXA8a_v-TJjWo9RRtjv95Ba93PXj8DRdnJ577fXQFjN3k9
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+modulation+instability+of+shallow+wake+flows+based+on+the+higher-order+generalized+cubic-quintic+complex+Ginzburg%E2%80%93Landau+equation&rft.jtitle=Physics+of+fluids+%281994%29&rft.date=2023-02-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=35&rft.issue=2&rft_id=info:doi/10.1063%2F5.0138566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon