The modulation instability of shallow wake flows based on the higher-order generalized cubic-quintic complex Ginzburg–Landau equation
In the context of the parallel flow hypothesis, we derive a higher-order generalized cubic-quintic complex Ginzburg–Landau (GCQ-CGL) equation to describe the amplitude evolution of shallow wake flow from the dimensionless shallow water equations by using multi-scale analysis, perturbation expansion,...
Saved in:
Published in | Physics of fluids (1994) Vol. 35; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/5.0138566 |
Cover
Loading…
Abstract | In the context of the parallel flow hypothesis, we derive a higher-order generalized cubic-quintic complex Ginzburg–Landau (GCQ-CGL) equation to describe the amplitude evolution of shallow wake flow from the dimensionless shallow water equations by using multi-scale analysis, perturbation expansion, and weak nonlinear theory. The evolution model includes not only the slowly changing envelope approximation but also the influence of higher-order dissipation, dispersion, and cubic and quintic nonlinear effects. We give the analytical solution of the higher-order GCQ-CGL equation based on the ansatz and coordinate transformation methods, and we discuss the influence of the higher-order dissipation coefficient on the amplitude and frequency of the wake flow by means of three-dimensional diagrams, contour maps, and plane graphs. The subsequent linear stability analysis gives a theoretical basis for the modulation instability (MI) of plane waves, and the linear theory predicts the instability of any amplitude of the main waves. Finally, we focus on the MI of shallow wake flows. Results show that the MI gain function is internally related to the background wave number, disturbance wave number, background amplitude, disturbance expansion parameter, and dissipation coefficient. The area of the MI decreases as the higher-order dissipation coefficient decreases. |
---|---|
AbstractList | In the context of the parallel flow hypothesis, we derive a higher-order generalized cubic-quintic complex Ginzburg–Landau (GCQ-CGL) equation to describe the amplitude evolution of shallow wake flow from the dimensionless shallow water equations by using multi-scale analysis, perturbation expansion, and weak nonlinear theory. The evolution model includes not only the slowly changing envelope approximation but also the influence of higher-order dissipation, dispersion, and cubic and quintic nonlinear effects. We give the analytical solution of the higher-order GCQ-CGL equation based on the ansatz and coordinate transformation methods, and we discuss the influence of the higher-order dissipation coefficient on the amplitude and frequency of the wake flow by means of three-dimensional diagrams, contour maps, and plane graphs. The subsequent linear stability analysis gives a theoretical basis for the modulation instability (MI) of plane waves, and the linear theory predicts the instability of any amplitude of the main waves. Finally, we focus on the MI of shallow wake flows. Results show that the MI gain function is internally related to the background wave number, disturbance wave number, background amplitude, disturbance expansion parameter, and dissipation coefficient. The area of the MI decreases as the higher-order dissipation coefficient decreases. |
Author | Dong, Huanhe Han, Xiaofeng Fu, Lei Yang, Hongwei |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-4463-801X surname: Fu fullname: Fu, Lei – sequence: 2 givenname: Xiaofeng orcidid: 0000-0003-1476-8910 surname: Han fullname: Han, Xiaofeng – sequence: 3 givenname: Huanhe orcidid: 0000-0003-3747-8369 surname: Dong fullname: Dong, Huanhe – sequence: 4 givenname: Hongwei orcidid: 0000-0002-0953-2498 surname: Yang fullname: Yang, Hongwei |
BookMark | eNp9kM1KAzEUhYMo2KoL3yDgSmFsMj-ZzFKKVqHgpq6HJHOnjU6TNslQ25U7H8A39EmctroRcXUP3O-cw719dGisAYTOKbmmhCWD7JrQhGeMHaAeJbyIcsbY4VbnJGIsoceo7_0zISQpYtZD75MZ4Lmt2kYEbQ3WxgchdaPDGtsa-5loGrvCK_ECuO6Ux1J4qHCHhs4509MZuMi6ChyeggEnGr3p9qqVWkXLVpugFVZ2vmjgFY-02cjWTT_fPsbCVKLFsGx3xafoqBaNh7PveYKe7m4nw_to_Dh6GN6MIxUXcYiUSFhdSMFzlfKUccaVlLTKKRQsUyolnCUSiFTAsiJl6RYneSxTAjzjVCUn6GKfu3B22YIP5bNtnekqyzjPk4LHNC066nJPKWe9d1CXC6fnwq1LSsrtn8us_P5zxw5-sUqH3U3BCd386bjaO_wP-U_8F7vXkaU |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1063_5_0215264 |
Cites_doi | 10.1017/S0022112003005020 10.1103/PhysRevLett.113.034101 10.1029/JC092iC13p14521 10.1103/PhysRevFluids.5.034802 10.1063/5.0025167 10.1061/(ASCE)0733-9429(1999)125:8(871) 10.1016/j.ijmultiphaseflow.2016.03.001 10.1017/S0022112087002222 10.1016/j.cnsns.2018.02.008 10.1061/(ASCE)0733-9429(2002)128:12(1076) 10.1103/PhysRevE.95.042212 10.1063/1.4768530 10.1016/S0092-8240(05)80008-4 10.1061/(ASCE)0733-9429(1998)124:7(718) 10.1016/j.jher.2009.10.003 10.1016/j.wavemoti.2019.102396 10.1103/PhysRevE.97.052215 10.1016/S0165-2125(00)00073-1 10.1063/5.0013225 10.1017/S002211206700045X 10.1063/1.5053941 10.1016/S0960-0779(02)00488-5 10.1016/j.physd.2005.11.011 10.1016/j.piutam.2013.09.014 10.1016/j.cnsns.2020.105284 10.1103/PhysRevE.102.042207 10.1103/PhysRevE.93.012214 10.1017/S0022112095001145 10.1103/PhysRevA.91.033804 10.1016/j.physleta.2010.01.066 10.1017/S0022112003006116 10.1016/j.amc.2020.125342 10.1016/0169-5983(95)00053-g 10.1007/s10652-013-9324-1 10.1016/j.dynatmoce.2008.10.006 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0138566 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0138566 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11975143 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c292t-ca36f9ba87c4846868cbb1d71e965cc40863be0bce659464a36f072b40e8581c3 |
ISSN | 1070-6631 |
IngestDate | Sun Jun 29 16:41:10 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Tue Jul 01 02:44:43 EDT 2025 Fri Jun 21 00:12:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-ca36f9ba87c4846868cbb1d71e965cc40863be0bce659464a36f072b40e8581c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1476-8910 0000-0003-3747-8369 0000-0002-4463-801X 0000-0002-0953-2498 |
PQID | 2773982149 |
PQPubID | 2050667 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1063_5_0138566 scitation_primary_10_1063_5_0138566 proquest_journals_2773982149 crossref_citationtrail_10_1063_5_0138566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230200 2023-02-01 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 20230200 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Ghidaoui, Kolyshkin (c8) 1999 Provansal, Mathis, Boyer (c13) 1987 Bonnefoy, Tikan, Copie, Suret, Ducrozet, Prabhudesai, Michel, Cazaubiel, Falcon, El, Randoux (c25) 2020 Babarutsi, Chu (c1) 1998 Turing (c21) 1990 Zhang, Yan (c26) 2018 Chen, Jirka (c7) 1995 Duan, Zhao, Xu, Liu, Yang, Yang (c36) 2017 Bespalov, Talanov (c20) 1966 Yue, Huang, Chen (c27) 2020 Chu (c29) 2010 Leweke, Provansal (c14) 1995 Nasif, Balachandar, Barron (c5) 2016 Baronio, Chen, Grelu, Wabnitz, Conforti (c24) 2015 Wang, Zhang, Wang, Liu, Li, Qi, Guo (c33) 2016 Uijttewaal, Jirka (c2) 2003 Sukhodolov, Sukhodolova (c4) 2014 Baronio, Conforti, Degasperis, Lombardo, Onorato, Wabnitz (c34) 2014 Kolyshkin, Ghidaoui (c15) 2003 Ingram, Chu (c6) 1987 Wang, Wen, Wang (c17) 2019 Li, Cao, Song, Yu, Chen (c16) 2020 Chowdury, Ankiewicz, Akhmediev, Chang (c22) 2018 Wang, Zhang, Yang (c28) 2020 Teinturiera, Stegnera, Didelleb, Viboudb (c3) 2010 Yomba, Kofane (c31) 2003 Zakharov, Gelash (c23) 2013 Ghidaoui, Kolyshkin (c9) 2002 Uzunov, Georgiev, Arabadzhiev (c11) 2018 Luo (c30) 2001 Zhu, Xia, Bai (c32) 2020 Alcaraz-Pelegrina, Rodriguez-Garcia (c10) 2010 Megne, Tabi, Kofane (c12) 2020 Benjamin, Feir (c19) 1967 Thomas, Kharif, Manna (c18) 2012 Griffiths, Grimshaw, Khusnutdinova (c35) 2006 (2023081020144962100_c28) 2020; 32 (2023081020144962100_c25) 2020; 5 (2023081020144962100_c32) 2020; 382 (2023081020144962100_c23) 2013; 9 (2023081020144962100_c11) 2018; 97 (2023081020144962100_c1) 1998; 124 (2023081020144962100_c3) 2010; 49 (2023081020144962100_c6) 1987; 92 (2023081020144962100_c18) 2012; 24 (2023081020144962100_c31) 2003; 17 (2023081020144962100_c2) 2003; 489 (2023081020144962100_c19) 1967; 27 (2023081020144962100_c35) 2006; 214 (2023081020144962100_c21) 1990; 52 (2023081020144962100_c34) 2014; 113 (2023081020144962100_c12) 2020; 102 (2023081020144962100_c24) 2015; 91 (2023081020144962100_c36) 2017; 95 (2023081020144962100_c20) 1966; 3 (2023081020144962100_c13) 1987; 182 (2023081020144962100_c15) 2003; 494 (2023081020144962100_c33) 2016; 93 (2023081020144962100_c8) 1999; 125 (2023081020144962100_c16) 2020; 32 (2023081020144962100_c29) 2010; 3 (2023081020144962100_c14) 1995; 288 (2023081020144962100_c5) 2016; 82 (2023081020144962100_c7) 1995; 16 (2023081020144962100_c22) 2018; 28 (2023081020144962100_c30) 2001; 33 (2023081020144962100_c4) 2014; 14 (2023081020144962100_c17) 2019; 91 (2023081020144962100_c26) 2018; 62 (2023081020144962100_c10) 2010; 374 (2023081020144962100_c9) 2002; 128 (2023081020144962100_c27) 2020; 89 |
References_xml | – start-page: 096604 year: 2020 ident: c28 article-title: Solitary waves of nonlinear barotropic-baroclinic coherent structures publication-title: Phys. Fluids – start-page: 871 year: 1999 ident: c8 article-title: Linear stability analysis of lateral motions in compound open channels publication-title: J. Hydraul. Eng. – start-page: 1 year: 2010 ident: c3 article-title: Small-scale instabilities of an island wake flow in a rotating shallow-water layer publication-title: Dyn. Atmos. Oceans – start-page: 471 year: 1966 ident: c20 article-title: Filamentary structure of light beams in nonlinear liquids publication-title: Zh. Eksp. Teor. Fiz Pis'ma Red. – start-page: 102396 year: 2019 ident: c17 article-title: Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation publication-title: Wave Motion – start-page: 355 year: 2003 ident: c15 article-title: Stability analysis of shallow wake flows publication-title: J. Fluid Mech. – start-page: 072104 year: 2020 ident: c16 article-title: Evolution and modulational instability of interfacial waves in a two-layer fluid with arbitrary layer depths publication-title: Phys. Fluids – start-page: 339 year: 2001 ident: c30 article-title: Derivation of a higher order nonlinear Schrödinger equation for weakly nonlinear Rossby waves publication-title: Wave Motion – start-page: 127102 year: 2012 ident: c18 article-title: A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity publication-title: Phys. Fluids – start-page: 042212 year: 2017 ident: c36 article-title: Soliton excitations on a continuous-wave background in the modulational instability regime with fourth-order effects publication-title: Phys. Rev. E – start-page: 718 year: 1998 ident: c1 article-title: Modelling transverse mixing layer in shallow open channel flows publication-title: J. Hydraul. Eng. – start-page: 034101 year: 2014 ident: c34 article-title: Vector rogue waves and baseband modulation instability in the defocusing regime publication-title: Phys. Rev. Lett. – start-page: 325 year: 2003 ident: c2 article-title: Grid turbulence in shallow flows publication-title: J. Fluid Mech. – start-page: 042207 year: 2020 ident: c12 article-title: Modulation Instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg–Landau equation beyond the slowly varying envelope approximation publication-title: Phys. Rev. E – start-page: 153 year: 1990 ident: c21 article-title: The chemical basis of morphogenesis publication-title: Bull. Math. Biol. – start-page: 033804 year: 2015 ident: c24 article-title: Baseband modulation instability as the origin of rogue waves publication-title: Phys. Rev. A – start-page: 14521 year: 1987 ident: c6 article-title: Flow around islands in Rupert Bay: An investigation of the bottom friction effect publication-title: J. Geophys. Res. – start-page: 1 year: 2006 ident: c35 article-title: Modulational Instability of two pairs of counter-propagating waves and energy exchange in a two-component system publication-title: Physica D – start-page: 1591 year: 2010 ident: c10 article-title: Modulational instability in two cubic-quintic Ginzburg–Landau equations coupled with a cross phase modulation term publication-title: Phys. Lett. A – start-page: 11 year: 1995 ident: c7 article-title: Experimental study of plane turbulent wakes in a shallow water layer publication-title: Fluid Dyn. Res. – start-page: 105284 year: 2020 ident: c27 article-title: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation publication-title: Commun. Nonlinear Sci. Numer. Simul. – start-page: 265 year: 1995 ident: c14 article-title: The flow behind rings: Bluff body wakes without end effects publication-title: J. Fluid Mech. – start-page: 1076 year: 2002 ident: c9 article-title: Gravitational and shear instabilities in compound and composite channels publication-title: J. Hydraul. Eng. – start-page: 417 year: 1967 ident: c19 article-title: The disintegration of wave trains on deep water—Part 1: Theory publication-title: J. Fluid Mech. – start-page: 1071 year: 2014 ident: c4 article-title: Shallow wake behind exposed wood-induced bar in a gravel-bed river publication-title: Environ. Fluid Mech. – start-page: 052215 year: 2018 ident: c11 article-title: Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg–Landau equation under the influence of nonlinear gain and higher-order effects publication-title: Phys. Rev. E – start-page: 74 year: 2016 ident: c5 article-title: Mean characteristics of fluid structures in shallow-wake flows publication-title: Int. J. Multiphase Flow – start-page: 165 year: 2013 ident: c23 article-title: Freak waves as a result of modulation instability publication-title: Proc. IUTAM – start-page: 117 year: 2018 ident: c26 article-title: Three-component nonlinear Schrödinger equations: Modulational instability, th-order vector rational and semi-rational rogue waves, and dynamics publication-title: Commun. Nonlinear Sci. Numer. Simul. – start-page: 123116 year: 2018 ident: c22 article-title: Modulation instability in higher-order nonlinear Schrödinger equations publication-title: Chaos – start-page: 012214 year: 2016 ident: c33 article-title: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation publication-title: Phys. Rev. E – start-page: 1 year: 1987 ident: c13 article-title: Bénard-von Kármán instability: Transient and forced regimes publication-title: J. Fluid Mech. – start-page: 173 year: 2010 ident: c29 article-title: Shear instability, wave and turbulence simulations using the shallow-water equations publication-title: J. Hydro-Environ. Res. – start-page: 847 year: 2003 ident: c31 article-title: Exact solutions of the one-dimensional generalized modified complex Ginzburg–Landau equation publication-title: Chaos, Solitons Fractals – start-page: 125342 year: 2020 ident: c32 article-title: Traveling wave solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity publication-title: Appl. Math. Comput. – start-page: 34802 year: 2020 ident: c25 article-title: From modulational instability to focusing dam breaks in water waves publication-title: Phys. Rev. Fluids – volume: 489 start-page: 325 year: 2003 ident: 2023081020144962100_c2 article-title: Grid turbulence in shallow flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112003005020 – volume: 113 start-page: 034101 year: 2014 ident: 2023081020144962100_c34 article-title: Vector rogue waves and baseband modulation instability in the defocusing regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.034101 – volume: 92 start-page: 14521 year: 1987 ident: 2023081020144962100_c6 article-title: Flow around islands in Rupert Bay: An investigation of the bottom friction effect publication-title: J. Geophys. Res. doi: 10.1029/JC092iC13p14521 – volume: 5 start-page: 34802 year: 2020 ident: 2023081020144962100_c25 article-title: From modulational instability to focusing dam breaks in water waves publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.5.034802 – volume: 32 start-page: 096604 issue: 9 year: 2020 ident: 2023081020144962100_c28 article-title: Solitary waves of nonlinear barotropic-baroclinic coherent structures publication-title: Phys. Fluids doi: 10.1063/5.0025167 – volume: 125 start-page: 871 year: 1999 ident: 2023081020144962100_c8 article-title: Linear stability analysis of lateral motions in compound open channels publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1999)125:8(871) – volume: 82 start-page: 74 year: 2016 ident: 2023081020144962100_c5 article-title: Mean characteristics of fluid structures in shallow-wake flows publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2016.03.001 – volume: 182 start-page: 1 year: 1987 ident: 2023081020144962100_c13 article-title: Bénard-von Kármán instability: Transient and forced regimes publication-title: J. Fluid Mech. doi: 10.1017/S0022112087002222 – volume: 62 start-page: 117 year: 2018 ident: 2023081020144962100_c26 article-title: Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.02.008 – volume: 128 start-page: 1076 year: 2002 ident: 2023081020144962100_c9 article-title: Gravitational and shear instabilities in compound and composite channels publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2002)128:12(1076) – volume: 95 start-page: 042212 year: 2017 ident: 2023081020144962100_c36 article-title: Soliton excitations on a continuous-wave background in the modulational instability regime with fourth-order effects publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.042212 – volume: 24 start-page: 127102 year: 2012 ident: 2023081020144962100_c18 article-title: A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity publication-title: Phys. Fluids doi: 10.1063/1.4768530 – volume: 3 start-page: 471 year: 1966 ident: 2023081020144962100_c20 article-title: Filamentary structure of light beams in nonlinear liquids publication-title: Zh. Eksp. Teor. Fiz Pis'ma Red. – volume: 52 start-page: 153 year: 1990 ident: 2023081020144962100_c21 article-title: The chemical basis of morphogenesis publication-title: Bull. Math. Biol. doi: 10.1016/S0092-8240(05)80008-4 – volume: 124 start-page: 718 year: 1998 ident: 2023081020144962100_c1 article-title: Modelling transverse mixing layer in shallow open channel flows publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1998)124:7(718) – volume: 3 start-page: 173 year: 2010 ident: 2023081020144962100_c29 article-title: Shear instability, wave and turbulence simulations using the shallow-water equations publication-title: J. Hydro-Environ. Res. doi: 10.1016/j.jher.2009.10.003 – volume: 91 start-page: 102396 year: 2019 ident: 2023081020144962100_c17 article-title: Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation publication-title: Wave Motion doi: 10.1016/j.wavemoti.2019.102396 – volume: 97 start-page: 052215 year: 2018 ident: 2023081020144962100_c11 article-title: Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg–Landau equation under the influence of nonlinear gain and higher-order effects publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.052215 – volume: 33 start-page: 339 year: 2001 ident: 2023081020144962100_c30 article-title: Derivation of a higher order nonlinear Schrödinger equation for weakly nonlinear Rossby waves publication-title: Wave Motion doi: 10.1016/S0165-2125(00)00073-1 – volume: 32 start-page: 072104 year: 2020 ident: 2023081020144962100_c16 article-title: Evolution and modulational instability of interfacial waves in a two-layer fluid with arbitrary layer depths publication-title: Phys. Fluids doi: 10.1063/5.0013225 – volume: 27 start-page: 417 year: 1967 ident: 2023081020144962100_c19 article-title: The disintegration of wave trains on deep water—Part 1: Theory publication-title: J. Fluid Mech. doi: 10.1017/S002211206700045X – volume: 28 start-page: 123116 year: 2018 ident: 2023081020144962100_c22 article-title: Modulation instability in higher-order nonlinear Schrödinger equations publication-title: Chaos doi: 10.1063/1.5053941 – volume: 17 start-page: 847 year: 2003 ident: 2023081020144962100_c31 article-title: Exact solutions of the one-dimensional generalized modified complex Ginzburg–Landau equation publication-title: Chaos, Solitons Fractals doi: 10.1016/S0960-0779(02)00488-5 – volume: 214 start-page: 1 year: 2006 ident: 2023081020144962100_c35 article-title: Modulational Instability of two pairs of counter-propagating waves and energy exchange in a two-component system publication-title: Physica D doi: 10.1016/j.physd.2005.11.011 – volume: 9 start-page: 165 year: 2013 ident: 2023081020144962100_c23 article-title: Freak waves as a result of modulation instability publication-title: Proc. IUTAM doi: 10.1016/j.piutam.2013.09.014 – volume: 89 start-page: 105284 year: 2020 ident: 2023081020144962100_c27 article-title: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2020.105284 – volume: 102 start-page: 042207 year: 2020 ident: 2023081020144962100_c12 article-title: Modulation Instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg–Landau equation beyond the slowly varying envelope approximation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.102.042207 – volume: 93 start-page: 012214 year: 2016 ident: 2023081020144962100_c33 article-title: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.012214 – volume: 288 start-page: 265 year: 1995 ident: 2023081020144962100_c14 article-title: The flow behind rings: Bluff body wakes without end effects publication-title: J. Fluid Mech. doi: 10.1017/S0022112095001145 – volume: 91 start-page: 033804 year: 2015 ident: 2023081020144962100_c24 article-title: Baseband modulation instability as the origin of rogue waves publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.033804 – volume: 374 start-page: 1591 year: 2010 ident: 2023081020144962100_c10 article-title: Modulational instability in two cubic-quintic Ginzburg–Landau equations coupled with a cross phase modulation term publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.01.066 – volume: 494 start-page: 355 year: 2003 ident: 2023081020144962100_c15 article-title: Stability analysis of shallow wake flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112003006116 – volume: 382 start-page: 125342 year: 2020 ident: 2023081020144962100_c32 article-title: Traveling wave solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2020.125342 – volume: 16 start-page: 11 issue: 1 year: 1995 ident: 2023081020144962100_c7 article-title: Experimental study of plane turbulent wakes in a shallow water layer publication-title: Fluid Dyn. Res. doi: 10.1016/0169-5983(95)00053-g – volume: 14 start-page: 1071 year: 2014 ident: 2023081020144962100_c4 article-title: Shallow wake behind exposed wood-induced bar in a gravel-bed river publication-title: Environ. Fluid Mech. doi: 10.1007/s10652-013-9324-1 – volume: 49 start-page: 1 year: 2010 ident: 2023081020144962100_c3 article-title: Small-scale instabilities of an island wake flow in a rotating shallow-water layer publication-title: Dyn. Atmos. Oceans doi: 10.1016/j.dynatmoce.2008.10.006 |
SSID | ssj0003926 |
Score | 2.4010875 |
Snippet | In the context of the parallel flow hypothesis, we derive a higher-order generalized cubic-quintic complex Ginzburg–Landau (GCQ-CGL) equation to describe the... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amplitudes Coordinate transformations Dissipation Evolution Exact solutions Landau-Ginzburg equations Modulation Multiscale analysis Parallel flow Perturbation Plane waves Shallow water equations Stability Stability analysis Thermal expansion Three dimensional flow Wavelengths |
Title | The modulation instability of shallow wake flows based on the higher-order generalized cubic-quintic complex Ginzburg–Landau equation |
URI | http://dx.doi.org/10.1063/5.0138566 https://www.proquest.com/docview/2773982149 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMctaIXohUIBdaEgCzggRYGN7TjxseKrQi0XWqm3KHYcNaJkKZuoaE_c-gB9Q56k469kKy1S4RJFXieR_PPa_7HHMwi9YmVCtMp5LDIJBgpNZFzWYPPUKSnrOqOirsx554MvfO-IfT5Oj8ecnvZ0SSffqMXKcyX_QxXKgKs5JfsPZIeXQgHcA1-4AmG43pjx91nlM3AZv_LOhd222-Zzkydldh6dl990VMPdPDJzVuX3B6IT6-IR2-CbJpOyWZ1qFvC76mWj4rO-aU00V-t0rn9Fn5p2YfZkgnsE3TeLEH2kz_qRrpe51q9UWS-R-rRvKhcPSggWFh78OgOhwTV5GBphcIhBn7gi7ctyEWfc5U0J46kLP-L7DVk5TIMugrY1AVNpDnryNlonWWZ22dd33x_sfx2mUhBv3DmNuk-H0FCcvh0evi4oRivhLkgI582wJBgO76N7XunjXYftAbql2y206VU_9mPqfAvd8Y31EF0ATzzyxEs88azGnic2PLHliS1PDFWBJ17miZd44ms8seeJA88_vy8dSRxIPkJHHz8cvtuLfaKMWBFBuliVlNdClnmmGOjJnOdKyqTKEi14qhQDs5VKPZVK81Qwzkz1aUYkm-o8zRNFH6O1dtbqbYTlNIXH00RTVjGw_UtFmUkMC29OYTqoJuh1aO0itK9JZnJaWG8GTou08GAm6MVQ9YcLnbKq0k5AVvh_1ryAzkBFTsB4n6CXA8a_v-TJjWo9RRtjv95Ba93PXj8DRdnJ577fXQFjN3k9 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+modulation+instability+of+shallow+wake+flows+based+on+the+higher-order+generalized+cubic-quintic+complex+Ginzburg%E2%80%93Landau+equation&rft.jtitle=Physics+of+fluids+%281994%29&rft.date=2023-02-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=35&rft.issue=2&rft_id=info:doi/10.1063%2F5.0138566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |