MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff

This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We cons...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 23; no. 4; pp. 2839 - 2854
Main Authors Hua, Haocheng, Han, Tony Xiao, Xu, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We consider two sensing target models, namely the point and extended targets, respectively. For the point target case, the BS estimates the target angle and the reflection coefficient as unknown parameters, and we adopt the Cramér-Rao bound (CRB) for angle estimation as the sensing performance metric. For the extended target case, the BS estimates the complete target response matrix, and we consider three different sensing performance metrics including the trace, the maximum eigenvalue, and the determinant of the CRB matrix for target response matrix estimation. For each of the four scenarios with different CRB measures, we investigate the fundamental tradeoff between the estimation CRB for sensing and the data rate for communication, by characterizing the Pareto boundary of the achievable CRB-rate (C-R) region. In particular, we formulate a new MIMO rate maximization problem for each scenario, by optimizing the transmit covariance matrix at the BS, subject to a different form of maximum CRB constraint and its maximum transmit power constraint. For these problems, we obtain the optimal transmit covariance solutions in semi-closed forms by using advanced convex optimization techniques. For the point target case, the optimal solution is obtained by diagonalizing a composite channel matrix via singular value decomposition (SVD) together with water-filling-like power allocation over these decomposed subchannels. For the three scenarios in the extended target case, the optimal solutions are obtained by diagonalizing the communication channel via SVD, together with proper power allocation over two orthogonal sets of subchannels, one for both communication and sensing, and the other for dedicated sensing only. Finally, numerical results show the C-R region achieved by the optimal design in each scenario, which significantly outperforms that by other benchmark schemes such as time switching.
AbstractList This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We consider two sensing target models, namely the point and extended targets, respectively. For the point target case, the BS estimates the target angle and the reflection coefficient as unknown parameters, and we adopt the Cramér-Rao bound (CRB) for angle estimation as the sensing performance metric. For the extended target case, the BS estimates the complete target response matrix, and we consider three different sensing performance metrics including the trace, the maximum eigenvalue, and the determinant of the CRB matrix for target response matrix estimation. For each of the four scenarios with different CRB measures, we investigate the fundamental tradeoff between the estimation CRB for sensing and the data rate for communication, by characterizing the Pareto boundary of the achievable CRB-rate (C-R) region. In particular, we formulate a new MIMO rate maximization problem for each scenario, by optimizing the transmit covariance matrix at the BS, subject to a different form of maximum CRB constraint and its maximum transmit power constraint. For these problems, we obtain the optimal transmit covariance solutions in semi-closed forms by using advanced convex optimization techniques. For the point target case, the optimal solution is obtained by diagonalizing a composite channel matrix via singular value decomposition (SVD) together with water-filling-like power allocation over these decomposed subchannels. For the three scenarios in the extended target case, the optimal solutions are obtained by diagonalizing the communication channel via SVD, together with proper power allocation over two orthogonal sets of subchannels, one for both communication and sensing, and the other for dedicated sensing only. Finally, numerical results show the C-R region achieved by the optimal design in each scenario, which significantly outperforms that by other benchmark schemes such as time switching.
Author Hua, Haocheng
Xu, Jie
Han, Tony Xiao
Author_xml – sequence: 1
  givenname: Haocheng
  orcidid: 0000-0001-9136-7067
  surname: Hua
  fullname: Hua, Haocheng
  email: haochenghua@link.cuhk.edu.cn
  organization: School of Science and Engineering (SSE) and the Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
– sequence: 2
  givenname: Tony Xiao
  surname: Han
  fullname: Han, Tony Xiao
  email: tony.hanxiao@huawei.com
  organization: 2012 Laboratory, Huawei, Shenzhen, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-4854-8839
  surname: Xu
  fullname: Xu, Jie
  email: xujie@cuhk.edu.cn
  organization: School of Science and Engineering (SSE) and the Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
BookMark eNp9kD1PwzAQhi1UJNrCzsAQiTnFPseOjVgg4qNSq0qliNFynEuVqnWKkw78-6a0A2Jguhve517dMyA9X3sk5JrREWNU3y0-sxFQ4CPOKecgz0ifCaFigET1DjuXMYNUXpBB06woZakUok8epuPpLBr7FpfBtlhE7-ibyi8j64soqzebna-cbava30fZ_Cmed6FoEWyBdVlekvPSrhu8Os0h-Xh5XmRv8WT2Os4eJ7EDDW3sFAAWypUFE2muwClpc504nXMh0GqqqNIOFGoqIQFIQeRFbpVNUlGkCfIhuT3e3Yb6a4dNa1b1Lviu0nTPClDAhO5S9JhyoW6agKXZhmpjw7dh1Bwcmc6ROTgyJ0cdIv8grmp_vm2Drdb_gTdHsELEXz3AUiY13wNs43Nl
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_TWC_2024_3505918
crossref_primary_10_1109_TMC_2024_3445507
crossref_primary_10_1109_TSP_2024_3457817
crossref_primary_10_1049_cmu2_70015
crossref_primary_10_1109_TSP_2025_3529950
crossref_primary_10_1109_MNET_2024_3495664
crossref_primary_10_1109_JPROC_2024_3437365
crossref_primary_10_3390_app14167196
crossref_primary_10_1109_TCOMM_2024_3406382
crossref_primary_10_1109_LCOMM_2024_3489675
crossref_primary_10_1109_TWC_2024_3400849
crossref_primary_10_1109_TVT_2024_3389951
crossref_primary_10_1109_TCOMM_2024_3462681
crossref_primary_10_1109_JSAC_2024_3431582
crossref_primary_10_1007_s11432_024_4205_8
crossref_primary_10_1109_TVT_2024_3399935
crossref_primary_10_1109_TWC_2024_3447834
crossref_primary_10_1109_TWC_2024_3435070
crossref_primary_10_1109_TSP_2025_3529468
crossref_primary_10_1109_JSAC_2024_3413972
crossref_primary_10_1109_JSAC_2025_3531545
crossref_primary_10_1109_TWC_2023_3348109
crossref_primary_10_1109_TWC_2024_3428705
crossref_primary_10_1109_LWC_2024_3412974
crossref_primary_10_1109_TWC_2024_3384501
crossref_primary_10_1109_COMST_2024_3408899
crossref_primary_10_1109_TSP_2024_3441815
crossref_primary_10_1109_TVT_2024_3446821
Cites_doi 10.1109/TIT.1960.1057561
10.1109/TSP.2021.3135692
10.1109/TAP.1986.1143830
10.1017/CBO9780511804441
10.1109/GLOBECOM48099.2022.10000676
10.1017/cbo9780511807213
10.1109/TSP.2023.3280715
10.1109/COMST.2021.3122519
10.1109/tvt.2023.3262513
10.1109/TSP.2020.3004739
10.1109/TSP.2007.894398
10.1109/TSP.2007.901653
10.1017/9781139049276
10.1017/CBO9781139020411
10.1109/TIT.2004.833365
10.1109/TWC.2018.2803045
10.1109/JSAC.2022.3156632
10.1109/JSTSP.2021.3110312
10.2307/2372705
10.1007/978-0-387-76544-0
10.1109/LCOMM.2022.3192032
10.1002/ett.4460100604
10.1109/LCOMM.2022.3140271
10.1109/GLOBECOM48099.2022.10001144
10.1109/TSP.2018.2847648
10.1109/78.506612
10.1109/MSP.2007.904812
10.1109/WCNC51071.2022.9771801
10.1109/MSP.2008.4408448
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2023.3303326
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 2854
ExternalDocumentID 10_1109_TWC_2023_3303326
10217169
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 92267202
  funderid: 10.13039/501100001809
– fundername: Guangdong Provincial Key Laboratory of Future Networks of Intelligence
  grantid: 2022B1212010001
– fundername: Shenzhen Fundamental Research Program
  grantid: JCYJ20210324133405015
  funderid: 10.13039/501100017607
– fundername: Basic Research Project HZQB-KCZYZ-2021067 of Hetao Shenzhen-HK S&T Cooperation Zone
– fundername: National Natural Science Foundation of China
  grantid: U2001208
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-c822ed8cfd157b82c86ab94c9b355ea908089c28e9062422725bdba8a475d74e3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 09:03:26 EDT 2025
Thu Apr 24 22:50:55 EDT 2025
Tue Jul 01 04:13:37 EDT 2025
Wed Aug 27 02:17:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-c822ed8cfd157b82c86ab94c9b355ea908089c28e9062422725bdba8a475d74e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4854-8839
0000-0001-9136-7067
PQID 3035282159
PQPubID 105736
PageCount 16
ParticipantIDs proquest_journals_3035282159
crossref_primary_10_1109_TWC_2023_3303326
crossref_citationtrail_10_1109_TWC_2023_3303326
ieee_primary_10217169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-April
2024-4-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
Grant (ref27) 2014
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1109/TIT.1960.1057561
– ident: ref18
  doi: 10.1109/TSP.2021.3135692
– ident: ref24
  doi: 10.1109/TAP.1986.1143830
– ident: ref28
  doi: 10.1017/CBO9780511804441
– ident: ref1
  doi: 10.1109/GLOBECOM48099.2022.10000676
– ident: ref5
  doi: 10.1017/cbo9780511807213
– ident: ref19
  doi: 10.1109/TSP.2023.3280715
– ident: ref3
  doi: 10.1109/COMST.2021.3122519
– ident: ref14
  doi: 10.1109/tvt.2023.3262513
– ident: ref12
  doi: 10.1109/TSP.2020.3004739
– ident: ref8
  doi: 10.1109/TSP.2007.894398
– ident: ref20
  doi: 10.1109/TSP.2007.901653
– ident: ref6
  doi: 10.1017/9781139049276
– ident: ref29
  doi: 10.1017/CBO9781139020411
– ident: ref30
  doi: 10.1109/TIT.2004.833365
– ident: ref11
  doi: 10.1109/TWC.2018.2803045
– ident: ref2
  doi: 10.1109/JSAC.2022.3156632
– ident: ref13
  doi: 10.1109/JSTSP.2021.3110312
– ident: ref26
  doi: 10.2307/2372705
– volume-title: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1
  year: 2014
  ident: ref27
– ident: ref21
  doi: 10.1007/978-0-387-76544-0
– ident: ref16
  doi: 10.1109/LCOMM.2022.3192032
– ident: ref4
  doi: 10.1002/ett.4460100604
– ident: ref17
  doi: 10.1109/LCOMM.2022.3140271
– ident: ref22
  doi: 10.1109/GLOBECOM48099.2022.10001144
– ident: ref10
  doi: 10.1109/TSP.2018.2847648
– ident: ref25
  doi: 10.1109/78.506612
– ident: ref7
  doi: 10.1109/MSP.2007.904812
– ident: ref15
  doi: 10.1109/WCNC51071.2022.9771801
– ident: ref9
  doi: 10.1109/MSP.2008.4408448
SSID ssj0017655
Score 2.666045
Snippet This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2839
SubjectTerms Angle of reflection
Antennas
Business metrics
capacity
Communication
Convexity
Covariance matrices
Covariance matrix
Cramer-Rao bounds
Cramér-Rao bound (CRB)
Decomposition
Determinants
Eigenvalues
Eigenvalues and eigenfunctions
Estimates
Estimation
Integrated sensing and communication (ISAC)
Measurement
MIMO communication
multiple-input multiple-output (MIMO)
Optimization
Optimization techniques
Performance measurement
Reflectance
Sensors
Singular value decomposition
Tradeoffs
Wireless communication
Title MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff
URI https://ieeexplore.ieee.org/document/10217169
https://www.proquest.com/docview/3035282159
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLQ9LGcRIbsUBF1SK1SKUV3SK_wgBKEaQLvx6fk1YFBGLLcI6sO1_uLr77PoTOKVERVR3uZTbceFQHoSdjHlrHE4HKIhOKzHVbjOL-lN7Nolk1rO5mYYwxrvnM-PDo7vL1XC3gV1kbaKgB3aWGarZyK4e1VlcGSewoTq0HA7FMsrqT7PD25LHrA024b4v3MAQchbUY5EhVfnyJXXjp7aDRcmNlV8mzvyikrz6-YTb-e-e7aLtKNPF1eTL20IbJ99HWGvzgAboaDob3eLAEjND4AbrZ8ycsco2_TI5c4u74xhtbIWyDmzbzLGugae920u17FZuCpwgnhadsKmA0U5kOokQyolgsJKeKS5tyGMFt6si4IswAcjElJCGR1FIwQZNIJ9SEh6iez3NzhHAglNGK0YAbQXXMAeYRJmwTQCM0nDVRe6nfVFVQ48B48ZK6kqPDU2uRFCySVhZpoovVitcSZuMP2QYoeE2u1G0TtZY2TCtHfE9DwHtlNq_hx78sO0Gb9u1VN04L1Yu3hTm1iUYhz9wB-wRSbstl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQIAMLQ9ImcRIbsUBF1UJbpNKKbpZfYQClCNKFX4_tpFUBgdgynBXrzpc75-6-D-AMBSJCokHcVIcbF0k_dHlMQu14zBdppEKW2m6LftweodtxNC6H1e0sjFLKNp8pzzzaWr6ciKn5VVY3NNQG3WUZVnTgj_xiXGteNEhiS3KqfdhQyyTzqmSD1IePTc8QhXv6-h6GBklhIQpZWpUf32IbYFqb0J9tregrefamOffExzfUxn_vfQs2ylTTuSrOxjYsqWwH1hcACHfhstfp3TudGWSEdB5MP3v25LBMOl9mRy6c5uDaHWghR4c3qSZpugej1s2w2XZLPgVXBCTIXaGTASWxSKUfJRwHAseMEyQI10mHYkQnj5iIACuDXYyCIAkiLjnDDCWRTJAK96GSTTJ1AI7PhJICI58ohmRMDNCjmbFNDB6hIrgK9Zl-qSjBxg3nxQu1l44Godoi1FiElhapwvl8xWsBtPGH7J5R8IJcodsq1GY2pKUrvtPQIL5indmQw1-WncJqe9jr0m6nf3cEa_pNZW9ODSr521Qd67Qj5yf2sH0CHzLOrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIMO+Integrated+Sensing+and+Communication%3A+CRB-Rate+Tradeoff&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Hua%2C+Haocheng&rft.au=Han%2C+Tony+Xiao&rft.au=Xu%2C+Jie&rft.date=2024-04-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=4&rft.spage=2839&rft.epage=2854&rft_id=info:doi/10.1109%2FTWC.2023.3303326&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2023_3303326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon