MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff
This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We cons...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 23; no. 4; pp. 2839 - 2854 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We consider two sensing target models, namely the point and extended targets, respectively. For the point target case, the BS estimates the target angle and the reflection coefficient as unknown parameters, and we adopt the Cramér-Rao bound (CRB) for angle estimation as the sensing performance metric. For the extended target case, the BS estimates the complete target response matrix, and we consider three different sensing performance metrics including the trace, the maximum eigenvalue, and the determinant of the CRB matrix for target response matrix estimation. For each of the four scenarios with different CRB measures, we investigate the fundamental tradeoff between the estimation CRB for sensing and the data rate for communication, by characterizing the Pareto boundary of the achievable CRB-rate (C-R) region. In particular, we formulate a new MIMO rate maximization problem for each scenario, by optimizing the transmit covariance matrix at the BS, subject to a different form of maximum CRB constraint and its maximum transmit power constraint. For these problems, we obtain the optimal transmit covariance solutions in semi-closed forms by using advanced convex optimization techniques. For the point target case, the optimal solution is obtained by diagonalizing a composite channel matrix via singular value decomposition (SVD) together with water-filling-like power allocation over these decomposed subchannels. For the three scenarios in the extended target case, the optimal solutions are obtained by diagonalizing the communication channel via SVD, together with proper power allocation over two orthogonal sets of subchannels, one for both communication and sensing, and the other for dedicated sensing only. Finally, numerical results show the C-R region achieved by the optimal design in each scenario, which significantly outperforms that by other benchmark schemes such as time switching. |
---|---|
AbstractList | This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate one sensing target and communicate with a multi-antenna communication user (CU) simultaneously. We consider two sensing target models, namely the point and extended targets, respectively. For the point target case, the BS estimates the target angle and the reflection coefficient as unknown parameters, and we adopt the Cramér-Rao bound (CRB) for angle estimation as the sensing performance metric. For the extended target case, the BS estimates the complete target response matrix, and we consider three different sensing performance metrics including the trace, the maximum eigenvalue, and the determinant of the CRB matrix for target response matrix estimation. For each of the four scenarios with different CRB measures, we investigate the fundamental tradeoff between the estimation CRB for sensing and the data rate for communication, by characterizing the Pareto boundary of the achievable CRB-rate (C-R) region. In particular, we formulate a new MIMO rate maximization problem for each scenario, by optimizing the transmit covariance matrix at the BS, subject to a different form of maximum CRB constraint and its maximum transmit power constraint. For these problems, we obtain the optimal transmit covariance solutions in semi-closed forms by using advanced convex optimization techniques. For the point target case, the optimal solution is obtained by diagonalizing a composite channel matrix via singular value decomposition (SVD) together with water-filling-like power allocation over these decomposed subchannels. For the three scenarios in the extended target case, the optimal solutions are obtained by diagonalizing the communication channel via SVD, together with proper power allocation over two orthogonal sets of subchannels, one for both communication and sensing, and the other for dedicated sensing only. Finally, numerical results show the C-R region achieved by the optimal design in each scenario, which significantly outperforms that by other benchmark schemes such as time switching. |
Author | Hua, Haocheng Xu, Jie Han, Tony Xiao |
Author_xml | – sequence: 1 givenname: Haocheng orcidid: 0000-0001-9136-7067 surname: Hua fullname: Hua, Haocheng email: haochenghua@link.cuhk.edu.cn organization: School of Science and Engineering (SSE) and the Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong (Shenzhen), Shenzhen, China – sequence: 2 givenname: Tony Xiao surname: Han fullname: Han, Tony Xiao email: tony.hanxiao@huawei.com organization: 2012 Laboratory, Huawei, Shenzhen, China – sequence: 3 givenname: Jie orcidid: 0000-0002-4854-8839 surname: Xu fullname: Xu, Jie email: xujie@cuhk.edu.cn organization: School of Science and Engineering (SSE) and the Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong (Shenzhen), Shenzhen, China |
BookMark | eNp9kD1PwzAQhi1UJNrCzsAQiTnFPseOjVgg4qNSq0qliNFynEuVqnWKkw78-6a0A2Jguhve517dMyA9X3sk5JrREWNU3y0-sxFQ4CPOKecgz0ifCaFigET1DjuXMYNUXpBB06woZakUok8epuPpLBr7FpfBtlhE7-ibyi8j64soqzebna-cbava30fZ_Cmed6FoEWyBdVlekvPSrhu8Os0h-Xh5XmRv8WT2Os4eJ7EDDW3sFAAWypUFE2muwClpc504nXMh0GqqqNIOFGoqIQFIQeRFbpVNUlGkCfIhuT3e3Yb6a4dNa1b1Lviu0nTPClDAhO5S9JhyoW6agKXZhmpjw7dh1Bwcmc6ROTgyJ0cdIv8grmp_vm2Drdb_gTdHsELEXz3AUiY13wNs43Nl |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1109_TWC_2024_3505918 crossref_primary_10_1109_TMC_2024_3445507 crossref_primary_10_1109_TSP_2024_3457817 crossref_primary_10_1049_cmu2_70015 crossref_primary_10_1109_TSP_2025_3529950 crossref_primary_10_1109_MNET_2024_3495664 crossref_primary_10_1109_JPROC_2024_3437365 crossref_primary_10_3390_app14167196 crossref_primary_10_1109_TCOMM_2024_3406382 crossref_primary_10_1109_LCOMM_2024_3489675 crossref_primary_10_1109_TWC_2024_3400849 crossref_primary_10_1109_TVT_2024_3389951 crossref_primary_10_1109_TCOMM_2024_3462681 crossref_primary_10_1109_JSAC_2024_3431582 crossref_primary_10_1007_s11432_024_4205_8 crossref_primary_10_1109_TVT_2024_3399935 crossref_primary_10_1109_TWC_2024_3447834 crossref_primary_10_1109_TWC_2024_3435070 crossref_primary_10_1109_TSP_2025_3529468 crossref_primary_10_1109_JSAC_2024_3413972 crossref_primary_10_1109_JSAC_2025_3531545 crossref_primary_10_1109_TWC_2023_3348109 crossref_primary_10_1109_TWC_2024_3428705 crossref_primary_10_1109_LWC_2024_3412974 crossref_primary_10_1109_TWC_2024_3384501 crossref_primary_10_1109_COMST_2024_3408899 crossref_primary_10_1109_TSP_2024_3441815 crossref_primary_10_1109_TVT_2024_3446821 |
Cites_doi | 10.1109/TIT.1960.1057561 10.1109/TSP.2021.3135692 10.1109/TAP.1986.1143830 10.1017/CBO9780511804441 10.1109/GLOBECOM48099.2022.10000676 10.1017/cbo9780511807213 10.1109/TSP.2023.3280715 10.1109/COMST.2021.3122519 10.1109/tvt.2023.3262513 10.1109/TSP.2020.3004739 10.1109/TSP.2007.894398 10.1109/TSP.2007.901653 10.1017/9781139049276 10.1017/CBO9781139020411 10.1109/TIT.2004.833365 10.1109/TWC.2018.2803045 10.1109/JSAC.2022.3156632 10.1109/JSTSP.2021.3110312 10.2307/2372705 10.1007/978-0-387-76544-0 10.1109/LCOMM.2022.3192032 10.1002/ett.4460100604 10.1109/LCOMM.2022.3140271 10.1109/GLOBECOM48099.2022.10001144 10.1109/TSP.2018.2847648 10.1109/78.506612 10.1109/MSP.2007.904812 10.1109/WCNC51071.2022.9771801 10.1109/MSP.2008.4408448 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2023.3303326 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 2854 |
ExternalDocumentID | 10_1109_TWC_2023_3303326 10217169 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 92267202 funderid: 10.13039/501100001809 – fundername: Guangdong Provincial Key Laboratory of Future Networks of Intelligence grantid: 2022B1212010001 – fundername: Shenzhen Fundamental Research Program grantid: JCYJ20210324133405015 funderid: 10.13039/501100017607 – fundername: Basic Research Project HZQB-KCZYZ-2021067 of Hetao Shenzhen-HK S&T Cooperation Zone – fundername: National Natural Science Foundation of China grantid: U2001208 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-c822ed8cfd157b82c86ab94c9b355ea908089c28e9062422725bdba8a475d74e3 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 09:03:26 EDT 2025 Thu Apr 24 22:50:55 EDT 2025 Tue Jul 01 04:13:37 EDT 2025 Wed Aug 27 02:17:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-c822ed8cfd157b82c86ab94c9b355ea908089c28e9062422725bdba8a475d74e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4854-8839 0000-0001-9136-7067 |
PQID | 3035282159 |
PQPubID | 105736 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3035282159 crossref_primary_10_1109_TWC_2023_3303326 crossref_citationtrail_10_1109_TWC_2023_3303326 ieee_primary_10217169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-April 2024-4-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 Grant (ref27) 2014 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref23 doi: 10.1109/TIT.1960.1057561 – ident: ref18 doi: 10.1109/TSP.2021.3135692 – ident: ref24 doi: 10.1109/TAP.1986.1143830 – ident: ref28 doi: 10.1017/CBO9780511804441 – ident: ref1 doi: 10.1109/GLOBECOM48099.2022.10000676 – ident: ref5 doi: 10.1017/cbo9780511807213 – ident: ref19 doi: 10.1109/TSP.2023.3280715 – ident: ref3 doi: 10.1109/COMST.2021.3122519 – ident: ref14 doi: 10.1109/tvt.2023.3262513 – ident: ref12 doi: 10.1109/TSP.2020.3004739 – ident: ref8 doi: 10.1109/TSP.2007.894398 – ident: ref20 doi: 10.1109/TSP.2007.901653 – ident: ref6 doi: 10.1017/9781139049276 – ident: ref29 doi: 10.1017/CBO9781139020411 – ident: ref30 doi: 10.1109/TIT.2004.833365 – ident: ref11 doi: 10.1109/TWC.2018.2803045 – ident: ref2 doi: 10.1109/JSAC.2022.3156632 – ident: ref13 doi: 10.1109/JSTSP.2021.3110312 – ident: ref26 doi: 10.2307/2372705 – volume-title: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1 year: 2014 ident: ref27 – ident: ref21 doi: 10.1007/978-0-387-76544-0 – ident: ref16 doi: 10.1109/LCOMM.2022.3192032 – ident: ref4 doi: 10.1002/ett.4460100604 – ident: ref17 doi: 10.1109/LCOMM.2022.3140271 – ident: ref22 doi: 10.1109/GLOBECOM48099.2022.10001144 – ident: ref10 doi: 10.1109/TSP.2018.2847648 – ident: ref25 doi: 10.1109/78.506612 – ident: ref7 doi: 10.1109/MSP.2007.904812 – ident: ref15 doi: 10.1109/WCNC51071.2022.9771801 – ident: ref9 doi: 10.1109/MSP.2008.4408448 |
SSID | ssj0017655 |
Score | 2.666045 |
Snippet | This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2839 |
SubjectTerms | Angle of reflection Antennas Business metrics capacity Communication Convexity Covariance matrices Covariance matrix Cramer-Rao bounds Cramér-Rao bound (CRB) Decomposition Determinants Eigenvalues Eigenvalues and eigenfunctions Estimates Estimation Integrated sensing and communication (ISAC) Measurement MIMO communication multiple-input multiple-output (MIMO) Optimization Optimization techniques Performance measurement Reflectance Sensors Singular value decomposition Tradeoffs Wireless communication |
Title | MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff |
URI | https://ieeexplore.ieee.org/document/10217169 https://www.proquest.com/docview/3035282159 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLQ9LGcRIbsUBF1SK1SKUV3SK_wgBKEaQLvx6fk1YFBGLLcI6sO1_uLr77PoTOKVERVR3uZTbceFQHoSdjHlrHE4HKIhOKzHVbjOL-lN7Nolk1rO5mYYwxrvnM-PDo7vL1XC3gV1kbaKgB3aWGarZyK4e1VlcGSewoTq0HA7FMsrqT7PD25LHrA024b4v3MAQchbUY5EhVfnyJXXjp7aDRcmNlV8mzvyikrz6-YTb-e-e7aLtKNPF1eTL20IbJ99HWGvzgAboaDob3eLAEjND4AbrZ8ycsco2_TI5c4u74xhtbIWyDmzbzLGugae920u17FZuCpwgnhadsKmA0U5kOokQyolgsJKeKS5tyGMFt6si4IswAcjElJCGR1FIwQZNIJ9SEh6iez3NzhHAglNGK0YAbQXXMAeYRJmwTQCM0nDVRe6nfVFVQ48B48ZK6kqPDU2uRFCySVhZpoovVitcSZuMP2QYoeE2u1G0TtZY2TCtHfE9DwHtlNq_hx78sO0Gb9u1VN04L1Yu3hTm1iUYhz9wB-wRSbstl |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6JQIAMLQ9ImcRIbsUBF1UJbpNKKbpZfYQClCNKFX4_tpFUBgdgynBXrzpc75-6-D-AMBSJCokHcVIcbF0k_dHlMQu14zBdppEKW2m6LftweodtxNC6H1e0sjFLKNp8pzzzaWr6ciKn5VVY3NNQG3WUZVnTgj_xiXGteNEhiS3KqfdhQyyTzqmSD1IePTc8QhXv6-h6GBklhIQpZWpUf32IbYFqb0J9tregrefamOffExzfUxn_vfQs2ylTTuSrOxjYsqWwH1hcACHfhstfp3TudGWSEdB5MP3v25LBMOl9mRy6c5uDaHWghR4c3qSZpugej1s2w2XZLPgVXBCTIXaGTASWxSKUfJRwHAseMEyQI10mHYkQnj5iIACuDXYyCIAkiLjnDDCWRTJAK96GSTTJ1AI7PhJICI58ohmRMDNCjmbFNDB6hIrgK9Zl-qSjBxg3nxQu1l44Godoi1FiElhapwvl8xWsBtPGH7J5R8IJcodsq1GY2pKUrvtPQIL5indmQw1-WncJqe9jr0m6nf3cEa_pNZW9ODSr521Qd67Qj5yf2sH0CHzLOrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIMO+Integrated+Sensing+and+Communication%3A+CRB-Rate+Tradeoff&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Hua%2C+Haocheng&rft.au=Han%2C+Tony+Xiao&rft.au=Xu%2C+Jie&rft.date=2024-04-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=4&rft.spage=2839&rft.epage=2854&rft_id=info:doi/10.1109%2FTWC.2023.3303326&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2023_3303326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |