WLSCMS: Wearable Lumbar Spine Curve Monitoring System based on Integrated Sensors

Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing physical therapy and rehabilitation, and in the field of sports medicine. Especially, to recognize and prevent habitual incorrect spinal cur...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; p. 1
Main Authors Kim, Jungyoon, Hwang, Ja-Young, Kang, Misun, Cheon, Songhee, Park, So Hyun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2024.3396844

Cover

Abstract Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing physical therapy and rehabilitation, and in the field of sports medicine. Especially, to recognize and prevent habitual incorrect spinal curves, a well-suited measurement system is required. In this study, a wearable smart sensing system integrating four flexible sensors and three inertial measurement unit sensors with machine learning was developed. The proposed system was tested on 20 subjects to evaluate its performance. In the experiment, 11 postures were tested using five classes as targets. A feature extraction algorithm was proposed for generating 52 features based on a combination of seven different sensor signals and building classification algorithms for detecting spine events based on the extracted features. The accuracies for classifying five levels of spine curves were 99.38 % overall and 99.79 % in a 10-fold cross validation test, respectively. The proposed method can estimate spine curve class levels without personalized calibrations.
AbstractList Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing physical therapy and rehabilitation, and in the field of sports medicine. Especially, to recognize and prevent habitual incorrect spinal curves, a well-suited measurement system is required. In this study, a wearable smart sensing system integrating four flexible sensors and three inertial measurement unit sensors with machine learning was developed. The proposed system was tested on 20 subjects to evaluate its performance. In the experiment, 11 postures were tested using five classes as targets. A feature extraction algorithm was proposed for generating 52 features based on a combination of seven different sensor signals and building classification algorithms for detecting spine events based on the extracted features. The accuracies for classifying five levels of spine curves were 99.38 % overall and 99.79 % in a 10-fold cross validation test, respectively. The proposed method can estimate spine curve class levels without personalized calibrations.
Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing physical therapy and rehabilitation and in the field of sports medicine. Especially, to recognize and prevent habitual incorrect spinal curves, a well-suited measurement system is required. In this study, a wearable smart sensing system integrating four flexible sensors and three inertial measurement unit sensors with machine learning was developed. The proposed system was tested on 20 subjects to evaluate its performance. In the experiment, 11 postures were tested using five classes as targets. A feature extraction algorithm was proposed for generating 52 features based on a combination of seven different sensor signals and building classification algorithms for detecting spine events based on the extracted features. The accuracies for classifying five levels of spine curves were 99.38% overall and 99.79% in a tenfold cross-validation test, respectively. The proposed method can estimate spine curve class levels without personalized calibrations.
Author Park, So Hyun
Kim, Jungyoon
Hwang, Ja-Young
Cheon, Songhee
Kang, Misun
Author_xml – sequence: 1
  givenname: Jungyoon
  orcidid: 0000-0001-5013-446X
  surname: Kim
  fullname: Kim, Jungyoon
  organization: Department of Computer Science, Kent State University, Kent, USA
– sequence: 2
  givenname: Ja-Young
  orcidid: 0000-0002-8867-9876
  surname: Hwang
  fullname: Hwang, Ja-Young
  organization: School of Fashion, Kent State University, Kent, USA
– sequence: 3
  givenname: Misun
  orcidid: 0000-0002-4836-5805
  surname: Kang
  fullname: Kang, Misun
  organization: Department of Computer Software Engineering, Soonchunhyang University, Asan-si, Chungcheongnam-do, Republic of KOREA
– sequence: 4
  givenname: Songhee
  orcidid: 0000-0003-1414-5430
  surname: Cheon
  fullname: Cheon, Songhee
  organization: Department of Physical Therapy, Youngsan University, 288, Junam-ro, Yangsan-si, Gyeongnam, Republic of KOREA
– sequence: 5
  givenname: So Hyun
  orcidid: 0000-0003-1963-5463
  surname: Park
  fullname: Park, So Hyun
  organization: Department of Physical Therapy, Youngsan University, 288, Junam-ro, Yangsan-si, Gyeongnam, Republic of KOREA
BookMark eNp9kD1rwzAQhkVJoUnavUMHQeek-rBkq1sx_Qg4lOKUjEa2L0EhkVJJLuTf1yEZSocu73HwPnfwjNDAOgsI3VIypZSoh8VsPmWEJVPOlcyS5AINqRDpREnJBmhICM0mKhHyCo1C2BBCUpmkQ_SxLMp8Xj7iJWiv6y3gotvV2uNybyzgvPPfgOfOmui8sWtcHkKEHa51gBY7i2c2wtrr2G8l2OB8uEaXK70NcHOeY_T58rzI3ybF--ssfyomDVMs9glZy4AKTrKWJGmtU5IqYFQSnQrFdNNnxlaSt7UC1TQ1TWXDOBNAVCMSPkb3p7t77746CLHauM7b_mXFiVCCUaVk35KnVuNdCB5WVWOijsbZ6LXZVpRUR31Vr6866qvO-nqQ_AH33uy0P_yH3J0QAwC_6oILRRn_AXLAe1I
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2024_3451588
Cites_doi 10.1016/j.jmpt.2019.05.004
10.1007/s00586-011-1943-y
10.5772/intechopen.91803
10.1016/b978-0-444-53486-6.00032-6
10.1109/2.485891
10.3109/09593988809159056
10.3109/03091902.2016.1154616
10.1016/j.math.2011.09.006
10.1109/TNSRE.2019.2927083
10.1109/TBME.2020.2971907
10.1016/j.measurement.2014.09.041
10.1016/j.jbiomech.2019.109356
10.1371/journal.pone.0100855
10.1016/B978-1-55860-377-6.50022-0
10.1016/j.jbmt.2007.04.005
10.1023/A:1010933404324
10.5312/wjo.v7.i2.136
10.1097/BRS.0b013e318216b0fd
10.7860/jcdr/2014/6836.4266
10.1097/00007632-200106010-00003
10.1007/s00586-011-1924-1
10.1016/j.jbiomech.2016.01.032
10.1097/01.brs.0000152379.54463.65
10.1007/s00586-012-2312-1
10.1016/j.ijhcs.2019.08.003
10.1016/j.medengphy.2010.07.011
10.1016/j.iot.2021.100472
10.6063/motricidade.10890
10.1016/j.apergo.2012.07.004
10.1016/j.spinee.2013.10.030
10.1186/1471-2474-9-152
10.4236/jdaip.2019.74012
10.1016/j.gaitpost.2015.12.036
10.1016/j.jestch.2016.05.009
10.2307/353415
10.1016/j.spinee.2017.04.034
10.1016/j.eswa.2013.11.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3396844
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2024_3396844
10535912
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: Korea government
  grantid: RS-2022-00165681
– fundername: Basic Science Research Program through the National Research Foundation of Korea
  grantid: 2019R1I1A3A01061705
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-c2e8d2e15308d047ba7079e2160a7592ac75982f63db9e9ccb176c2325e09c543
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:14:41 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 03:07:42 EDT 2025
Wed Aug 27 02:05:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-c2e8d2e15308d047ba7079e2160a7592ac75982f63db9e9ccb176c2325e09c543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1963-5463
0000-0002-8867-9876
0000-0001-5013-446X
0000-0003-1414-5430
0000-0002-4836-5805
PQID 3059521996
PQPubID 85462
PageCount 1
ParticipantIDs proquest_journals_3059521996
crossref_citationtrail_10_1109_TIM_2024_3396844
crossref_primary_10_1109_TIM_2024_3396844
ieee_primary_10535912
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Quinlan (ref37); 1
ref38
Lin (ref16) 1992; 91
ref19
ref18
Beckers (ref6) 1991; 57
ref24
ref23
ref26
ref25
Witten (ref39) 2016
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
ref40
References_xml – ident: ref13
  doi: 10.1016/j.jmpt.2019.05.004
– ident: ref3
  doi: 10.1007/s00586-011-1943-y
– ident: ref8
  doi: 10.5772/intechopen.91803
– ident: ref14
  doi: 10.1016/b978-0-444-53486-6.00032-6
– ident: ref33
  doi: 10.1109/2.485891
– volume: 91
  start-page: 329
  issue: 3
  year: 1992
  ident: ref16
  article-title: Lumbar lordosis: Normal adults
  publication-title: J. Formosan Med. Association= Taiwan Yi Zhi
– ident: ref4
  doi: 10.3109/09593988809159056
– ident: ref12
  doi: 10.3109/03091902.2016.1154616
– ident: ref25
  doi: 10.1016/j.math.2011.09.006
– ident: ref27
  doi: 10.1109/TNSRE.2019.2927083
– ident: ref28
  doi: 10.1109/TBME.2020.2971907
– ident: ref31
  doi: 10.1016/j.measurement.2014.09.041
– ident: ref10
  doi: 10.1016/j.jbiomech.2019.109356
– ident: ref34
  doi: 10.1371/journal.pone.0100855
– ident: ref38
  doi: 10.1016/B978-1-55860-377-6.50022-0
– ident: ref15
  doi: 10.1016/j.jbmt.2007.04.005
– ident: ref32
  doi: 10.1023/A:1010933404324
– ident: ref11
  doi: 10.5312/wjo.v7.i2.136
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2016
  ident: ref39
– ident: ref2
  doi: 10.1097/BRS.0b013e318216b0fd
– ident: ref9
  doi: 10.7860/jcdr/2014/6836.4266
– ident: ref18
  doi: 10.1097/00007632-200106010-00003
– ident: ref1
  doi: 10.1007/s00586-011-1924-1
– ident: ref7
  doi: 10.1016/j.jbiomech.2016.01.032
– ident: ref19
  doi: 10.1097/01.brs.0000152379.54463.65
– ident: ref23
  doi: 10.1007/s00586-012-2312-1
– ident: ref30
  doi: 10.1016/j.ijhcs.2019.08.003
– ident: ref24
  doi: 10.1016/j.medengphy.2010.07.011
– ident: ref29
  doi: 10.1016/j.iot.2021.100472
– volume: 1
  start-page: 725
  volume-title: Proc. AAAI/LAAI
  ident: ref37
  article-title: Bagging, boosting, and C4.5
– ident: ref17
  doi: 10.6063/motricidade.10890
– ident: ref21
  doi: 10.1016/j.apergo.2012.07.004
– ident: ref26
  doi: 10.1016/j.spinee.2013.10.030
– ident: ref20
  doi: 10.1186/1471-2474-9-152
– ident: ref35
  doi: 10.4236/jdaip.2019.74012
– ident: ref22
  doi: 10.1016/j.gaitpost.2015.12.036
– ident: ref40
  doi: 10.1016/j.jestch.2016.05.009
– ident: ref36
  doi: 10.2307/353415
– ident: ref5
  doi: 10.1016/j.spinee.2017.04.034
– volume: 57
  start-page: 198
  year: 1991
  ident: ref6
  article-title: The role of lordosis
  publication-title: Acta Orthopaedica Belgica
– ident: ref41
  doi: 10.1016/j.eswa.2013.11.005
SSID ssj0007647
Score 2.404609
Snippet Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Back
Biomedical monitoring
Deep Neural Network
Feature extraction
Flexible components
Inertial platforms
Inertial sensing devices
Internet of Thing
Machine Learning
Monitoring
Principal Component Analysis
Sensor systems
Sensors
Signal classification
Spine
Spine Monitoring
Sports medicine
Wearable
Wearable sensors
Wearable technology
Title WLSCMS: Wearable Lumbar Spine Curve Monitoring System based on Integrated Sensors
URI https://ieeexplore.ieee.org/document/10535912
https://www.proquest.com/docview/3059521996
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-UxEQPfiBGFE0PXjwMStd91JshEjFAYgaB29J25aICGcyDf72v60ZQo_Gy7NA2Td93-97vIXTDiaZtxZXDaQABSsB8RwpfOFISoZRmYCFMoDgY-o9j9jT1pkWxel4Lo7XOk8900_zmb_nJQmXmqgwk3HM9bnoK7wKf2WKtjdoNfGYBMtsgweAWlG-ShLdGvQFEgpQ1XZf7IWNfbFDeVOWHJs7NS_cIDcuN2aySl2a2lk318Q2z8d87P0aHhaOJ7y1nnKAdPa-igy34wSray9M_1eoUPU_6UWcQ3eEJML4ppsL97E2KFEdLGI47WfqusRV_MxVbnHNsTGCCF3PcK0EnEhxBXLxIVzU07j6MOo9O0WzBUZTTNXx1mFANCpCECWGBFAY7DwjpExF4nAoVGKy_me8mkmuulGwHvgJ_zNOEK4-5Z6gyX8z1OcKzGVUzEQbSgPO5HFxELThVrquJEGFb1FGrPP5YFUjkpiHGa5xHJITHQLDYECwuCFZHt5sZS4vC8cfYmjn_rXH26OuoUZI4LuR0FYO24-DAQNB38cu0S7RvVre3Lg1UWaeZvgI_ZC2vc_77BP9i1rU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hEAIGnkWUpwcWhrSu4zzMhipQC20l1FZli2zHXYAWtQ0Dv55znCAeArFEGe5k686-h-37DuBcUMMaWmhPsAgTlIiHnpKh9JSiUmvD0UPYRLHbC1tDfvsQPBTF6nktjDEmf3xmavY3v8tPpzqzR2W4wwM_ELan8Ao6fh64cq0PwxuF3EFkNnAPY2BQ3kpSUR-0u5gLMl7zfRHGnH_xQnlblR-2OHcwN1vQK6fm3pU81rKFqum3b6iN_577NmwWoSa5cmtjB5bMZBc2PgEQ7sJq_gBUz_fgftTpN7v9SzLCpW_LqUgne1ZyRvovSE6a2ezVEGcALCtxSOfEOsGUTCekXcJOpKSPmfF0Nq_A8OZ60Gx5RbsFTzPBFvg1ccoMmkAap5RHSlr0PFRlSGUUCCZ1ZNH-xqGfKmGE1qoRhRojssBQoQPu78PyZDoxB0DGY6bHMo6UhefzBQaJRgqmfd9QKeOGrEK9FH-iCyxy2xLjKclzEioSVFhiFZYUCqvCxQfHi8Ph-IO2YuX_ic6JvgrHpYqTYqfOE7R3AkMYTPsOf2E7g7XWoNtJOu3e3RGs25HcGcwxLC9mmTnBqGShTvO1-A5qKdoC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WLSCMS%3A+Wearable+Lumbar+Spine+Curve+Monitoring+System+Based+on+Integrated+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kim%2C+Jungyoon&rft.au=Hwang%2C+Ja-Young&rft.au=Kang%2C+Misun&rft.au=Cheon%2C+Songhee&rft.date=2024-01-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3396844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3396844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon