WLSCMS: Wearable Lumbar Spine Curve Monitoring System based on Integrated Sensors
Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing physical therapy and rehabilitation, and in the field of sports medicine. Especially, to recognize and prevent habitual incorrect spinal cur...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2024.3396844 |
Cover
Abstract | Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing physical therapy and rehabilitation, and in the field of sports medicine. Especially, to recognize and prevent habitual incorrect spinal curves, a well-suited measurement system is required. In this study, a wearable smart sensing system integrating four flexible sensors and three inertial measurement unit sensors with machine learning was developed. The proposed system was tested on 20 subjects to evaluate its performance. In the experiment, 11 postures were tested using five classes as targets. A feature extraction algorithm was proposed for generating 52 features based on a combination of seven different sensor signals and building classification algorithms for detecting spine events based on the extracted features. The accuracies for classifying five levels of spine curves were 99.38 % overall and 99.79 % in a 10-fold cross validation test, respectively. The proposed method can estimate spine curve class levels without personalized calibrations. |
---|---|
AbstractList | Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing physical therapy and rehabilitation, and in the field of sports medicine. Especially, to recognize and prevent habitual incorrect spinal curves, a well-suited measurement system is required. In this study, a wearable smart sensing system integrating four flexible sensors and three inertial measurement unit sensors with machine learning was developed. The proposed system was tested on 20 subjects to evaluate its performance. In the experiment, 11 postures were tested using five classes as targets. A feature extraction algorithm was proposed for generating 52 features based on a combination of seven different sensor signals and building classification algorithms for detecting spine events based on the extracted features. The accuracies for classifying five levels of spine curves were 99.38 % overall and 99.79 % in a 10-fold cross validation test, respectively. The proposed method can estimate spine curve class levels without personalized calibrations. Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing physical therapy and rehabilitation and in the field of sports medicine. Especially, to recognize and prevent habitual incorrect spinal curves, a well-suited measurement system is required. In this study, a wearable smart sensing system integrating four flexible sensors and three inertial measurement unit sensors with machine learning was developed. The proposed system was tested on 20 subjects to evaluate its performance. In the experiment, 11 postures were tested using five classes as targets. A feature extraction algorithm was proposed for generating 52 features based on a combination of seven different sensor signals and building classification algorithms for detecting spine events based on the extracted features. The accuracies for classifying five levels of spine curves were 99.38% overall and 99.79% in a tenfold cross-validation test, respectively. The proposed method can estimate spine curve class levels without personalized calibrations. |
Author | Park, So Hyun Kim, Jungyoon Hwang, Ja-Young Cheon, Songhee Kang, Misun |
Author_xml | – sequence: 1 givenname: Jungyoon orcidid: 0000-0001-5013-446X surname: Kim fullname: Kim, Jungyoon organization: Department of Computer Science, Kent State University, Kent, USA – sequence: 2 givenname: Ja-Young orcidid: 0000-0002-8867-9876 surname: Hwang fullname: Hwang, Ja-Young organization: School of Fashion, Kent State University, Kent, USA – sequence: 3 givenname: Misun orcidid: 0000-0002-4836-5805 surname: Kang fullname: Kang, Misun organization: Department of Computer Software Engineering, Soonchunhyang University, Asan-si, Chungcheongnam-do, Republic of KOREA – sequence: 4 givenname: Songhee orcidid: 0000-0003-1414-5430 surname: Cheon fullname: Cheon, Songhee organization: Department of Physical Therapy, Youngsan University, 288, Junam-ro, Yangsan-si, Gyeongnam, Republic of KOREA – sequence: 5 givenname: So Hyun orcidid: 0000-0003-1963-5463 surname: Park fullname: Park, So Hyun organization: Department of Physical Therapy, Youngsan University, 288, Junam-ro, Yangsan-si, Gyeongnam, Republic of KOREA |
BookMark | eNp9kD1rwzAQhkVJoUnavUMHQeek-rBkq1sx_Qg4lOKUjEa2L0EhkVJJLuTf1yEZSocu73HwPnfwjNDAOgsI3VIypZSoh8VsPmWEJVPOlcyS5AINqRDpREnJBmhICM0mKhHyCo1C2BBCUpmkQ_SxLMp8Xj7iJWiv6y3gotvV2uNybyzgvPPfgOfOmui8sWtcHkKEHa51gBY7i2c2wtrr2G8l2OB8uEaXK70NcHOeY_T58rzI3ybF--ssfyomDVMs9glZy4AKTrKWJGmtU5IqYFQSnQrFdNNnxlaSt7UC1TQ1TWXDOBNAVCMSPkb3p7t77746CLHauM7b_mXFiVCCUaVk35KnVuNdCB5WVWOijsbZ6LXZVpRUR31Vr6866qvO-nqQ_AH33uy0P_yH3J0QAwC_6oILRRn_AXLAe1I |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3451588 |
Cites_doi | 10.1016/j.jmpt.2019.05.004 10.1007/s00586-011-1943-y 10.5772/intechopen.91803 10.1016/b978-0-444-53486-6.00032-6 10.1109/2.485891 10.3109/09593988809159056 10.3109/03091902.2016.1154616 10.1016/j.math.2011.09.006 10.1109/TNSRE.2019.2927083 10.1109/TBME.2020.2971907 10.1016/j.measurement.2014.09.041 10.1016/j.jbiomech.2019.109356 10.1371/journal.pone.0100855 10.1016/B978-1-55860-377-6.50022-0 10.1016/j.jbmt.2007.04.005 10.1023/A:1010933404324 10.5312/wjo.v7.i2.136 10.1097/BRS.0b013e318216b0fd 10.7860/jcdr/2014/6836.4266 10.1097/00007632-200106010-00003 10.1007/s00586-011-1924-1 10.1016/j.jbiomech.2016.01.032 10.1097/01.brs.0000152379.54463.65 10.1007/s00586-012-2312-1 10.1016/j.ijhcs.2019.08.003 10.1016/j.medengphy.2010.07.011 10.1016/j.iot.2021.100472 10.6063/motricidade.10890 10.1016/j.apergo.2012.07.004 10.1016/j.spinee.2013.10.030 10.1186/1471-2474-9-152 10.4236/jdaip.2019.74012 10.1016/j.gaitpost.2015.12.036 10.1016/j.jestch.2016.05.009 10.2307/353415 10.1016/j.spinee.2017.04.034 10.1016/j.eswa.2013.11.005 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3396844 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TIM_2024_3396844 10535912 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: Korea government grantid: RS-2022-00165681 – fundername: Basic Science Research Program through the National Research Foundation of Korea grantid: 2019R1I1A3A01061705 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH RIG VH1 VJK 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-c2e8d2e15308d047ba7079e2160a7592ac75982f63db9e9ccb176c2325e09c543 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:14:41 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 03:07:42 EDT 2025 Wed Aug 27 02:05:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-c2e8d2e15308d047ba7079e2160a7592ac75982f63db9e9ccb176c2325e09c543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1963-5463 0000-0002-8867-9876 0000-0001-5013-446X 0000-0003-1414-5430 0000-0002-4836-5805 |
PQID | 3059521996 |
PQPubID | 85462 |
PageCount | 1 |
ParticipantIDs | proquest_journals_3059521996 crossref_citationtrail_10_1109_TIM_2024_3396844 crossref_primary_10_1109_TIM_2024_3396844 ieee_primary_10535912 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Quinlan (ref37); 1 ref38 Lin (ref16) 1992; 91 ref19 ref18 Beckers (ref6) 1991; 57 ref24 ref23 ref26 ref25 Witten (ref39) 2016 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 ref40 |
References_xml | – ident: ref13 doi: 10.1016/j.jmpt.2019.05.004 – ident: ref3 doi: 10.1007/s00586-011-1943-y – ident: ref8 doi: 10.5772/intechopen.91803 – ident: ref14 doi: 10.1016/b978-0-444-53486-6.00032-6 – ident: ref33 doi: 10.1109/2.485891 – volume: 91 start-page: 329 issue: 3 year: 1992 ident: ref16 article-title: Lumbar lordosis: Normal adults publication-title: J. Formosan Med. Association= Taiwan Yi Zhi – ident: ref4 doi: 10.3109/09593988809159056 – ident: ref12 doi: 10.3109/03091902.2016.1154616 – ident: ref25 doi: 10.1016/j.math.2011.09.006 – ident: ref27 doi: 10.1109/TNSRE.2019.2927083 – ident: ref28 doi: 10.1109/TBME.2020.2971907 – ident: ref31 doi: 10.1016/j.measurement.2014.09.041 – ident: ref10 doi: 10.1016/j.jbiomech.2019.109356 – ident: ref34 doi: 10.1371/journal.pone.0100855 – ident: ref38 doi: 10.1016/B978-1-55860-377-6.50022-0 – ident: ref15 doi: 10.1016/j.jbmt.2007.04.005 – ident: ref32 doi: 10.1023/A:1010933404324 – ident: ref11 doi: 10.5312/wjo.v7.i2.136 – volume-title: Data Mining: Practical Machine Learning Tools and Techniques year: 2016 ident: ref39 – ident: ref2 doi: 10.1097/BRS.0b013e318216b0fd – ident: ref9 doi: 10.7860/jcdr/2014/6836.4266 – ident: ref18 doi: 10.1097/00007632-200106010-00003 – ident: ref1 doi: 10.1007/s00586-011-1924-1 – ident: ref7 doi: 10.1016/j.jbiomech.2016.01.032 – ident: ref19 doi: 10.1097/01.brs.0000152379.54463.65 – ident: ref23 doi: 10.1007/s00586-012-2312-1 – ident: ref30 doi: 10.1016/j.ijhcs.2019.08.003 – ident: ref24 doi: 10.1016/j.medengphy.2010.07.011 – ident: ref29 doi: 10.1016/j.iot.2021.100472 – volume: 1 start-page: 725 volume-title: Proc. AAAI/LAAI ident: ref37 article-title: Bagging, boosting, and C4.5 – ident: ref17 doi: 10.6063/motricidade.10890 – ident: ref21 doi: 10.1016/j.apergo.2012.07.004 – ident: ref26 doi: 10.1016/j.spinee.2013.10.030 – ident: ref20 doi: 10.1186/1471-2474-9-152 – ident: ref35 doi: 10.4236/jdaip.2019.74012 – ident: ref22 doi: 10.1016/j.gaitpost.2015.12.036 – ident: ref40 doi: 10.1016/j.jestch.2016.05.009 – ident: ref36 doi: 10.2307/353415 – ident: ref5 doi: 10.1016/j.spinee.2017.04.034 – volume: 57 start-page: 198 year: 1991 ident: ref6 article-title: The role of lordosis publication-title: Acta Orthopaedica Belgica – ident: ref41 doi: 10.1016/j.eswa.2013.11.005 |
SSID | ssj0007647 |
Score | 2.404609 |
Snippet | Monitoring the curvature of the lumbar spine is important for determining the incidence of lower back pain and other spinal disorders in individuals undergoing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Back Biomedical monitoring Deep Neural Network Feature extraction Flexible components Inertial platforms Inertial sensing devices Internet of Thing Machine Learning Monitoring Principal Component Analysis Sensor systems Sensors Signal classification Spine Spine Monitoring Sports medicine Wearable Wearable sensors Wearable technology |
Title | WLSCMS: Wearable Lumbar Spine Curve Monitoring System based on Integrated Sensors |
URI | https://ieeexplore.ieee.org/document/10535912 https://www.proquest.com/docview/3059521996 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-UxEQPfiBGFE0PXjwMStd91JshEjFAYgaB29J25aICGcyDf72v60ZQo_Gy7NA2Td93-97vIXTDiaZtxZXDaQABSsB8RwpfOFISoZRmYCFMoDgY-o9j9jT1pkWxel4Lo7XOk8900_zmb_nJQmXmqgwk3HM9bnoK7wKf2WKtjdoNfGYBMtsgweAWlG-ShLdGvQFEgpQ1XZf7IWNfbFDeVOWHJs7NS_cIDcuN2aySl2a2lk318Q2z8d87P0aHhaOJ7y1nnKAdPa-igy34wSray9M_1eoUPU_6UWcQ3eEJML4ppsL97E2KFEdLGI47WfqusRV_MxVbnHNsTGCCF3PcK0EnEhxBXLxIVzU07j6MOo9O0WzBUZTTNXx1mFANCpCECWGBFAY7DwjpExF4nAoVGKy_me8mkmuulGwHvgJ_zNOEK4-5Z6gyX8z1OcKzGVUzEQbSgPO5HFxELThVrquJEGFb1FGrPP5YFUjkpiHGa5xHJITHQLDYECwuCFZHt5sZS4vC8cfYmjn_rXH26OuoUZI4LuR0FYO24-DAQNB38cu0S7RvVre3Lg1UWaeZvgI_ZC2vc_77BP9i1rU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4hEAIGnkWUpwcWhrSu4zzMhipQC20l1FZli2zHXYAWtQ0Dv55znCAeArFEGe5k686-h-37DuBcUMMaWmhPsAgTlIiHnpKh9JSiUmvD0UPYRLHbC1tDfvsQPBTF6nktjDEmf3xmavY3v8tPpzqzR2W4wwM_ELan8Ao6fh64cq0PwxuF3EFkNnAPY2BQ3kpSUR-0u5gLMl7zfRHGnH_xQnlblR-2OHcwN1vQK6fm3pU81rKFqum3b6iN_577NmwWoSa5cmtjB5bMZBc2PgEQ7sJq_gBUz_fgftTpN7v9SzLCpW_LqUgne1ZyRvovSE6a2ezVEGcALCtxSOfEOsGUTCekXcJOpKSPmfF0Nq_A8OZ60Gx5RbsFTzPBFvg1ccoMmkAap5RHSlr0PFRlSGUUCCZ1ZNH-xqGfKmGE1qoRhRojssBQoQPu78PyZDoxB0DGY6bHMo6UhefzBQaJRgqmfd9QKeOGrEK9FH-iCyxy2xLjKclzEioSVFhiFZYUCqvCxQfHi8Ph-IO2YuX_ic6JvgrHpYqTYqfOE7R3AkMYTPsOf2E7g7XWoNtJOu3e3RGs25HcGcwxLC9mmTnBqGShTvO1-A5qKdoC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WLSCMS%3A+Wearable+Lumbar+Spine+Curve+Monitoring+System+Based+on+Integrated+Sensors&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kim%2C+Jungyoon&rft.au=Hwang%2C+Ja-Young&rft.au=Kang%2C+Misun&rft.au=Cheon%2C+Songhee&rft.date=2024-01-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3396844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3396844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |