Decoding Electromyographic Signal with Multiple Labels for Hand Gesture Recognition

Surface electromyography (sEMG) is a significant interaction signal in the fields of human-computer interaction and rehabilitation assessment, as it can be used for hand gesture recognition. This paper proposes a novel MLHG model to improve the robustness of sEMG-based hand gesture recognition. The...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 30; pp. 1 - 5
Main Authors Zou, Yongxiang, Cheng, Long, Han, Lijun, Li, Zhengwei, Song, Luping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2023.3264417

Cover

Loading…
Abstract Surface electromyography (sEMG) is a significant interaction signal in the fields of human-computer interaction and rehabilitation assessment, as it can be used for hand gesture recognition. This paper proposes a novel MLHG model to improve the robustness of sEMG-based hand gesture recognition. The model utilizes multiple labels to decode the sEMG signals from two different perspectives. In the first view, the sEMG signals are transformed into motion signals using the proposed FES-MSCNN (Feature Extraction of sEMG with Multiple Sub-CNN modules). Furthermore, a discriminator FEM-SAGE (Feature Extraction of Motion with graph SAmple and aggreGatE model) is employed to judge the authenticity of the generated motion data. The deep features of the motion signals are extracted using the FEM-SAGE model. In the second view, the deep features of the sEMG signals are extracted using the FES-MSCNN model. The extracted features of the sEMG signals and the generated motion signals are then fused for hand gesture recognition. To evaluate the performance of the proposed model, a dataset containing sEMG signals and multiple labels from 12 subjects has been collected. The experimental results indicate that the MLHG model achieves an accuracy of <inline-formula><tex-math notation="LaTeX">99.26\%</tex-math></inline-formula> for within-session hand gesture recognition, <inline-formula><tex-math notation="LaTeX">78.47\%</tex-math></inline-formula> for cross-time, and <inline-formula><tex-math notation="LaTeX">53.52\%</tex-math></inline-formula> for cross-subject. These results represent a significant improvement compared to using only the gesture labels, with accuracy improvements of <inline-formula><tex-math notation="LaTeX">1.91\%</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">5.35\%</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">5.25\%</tex-math></inline-formula> in the within-session, cross-time and cross-subject cases, respectively.
AbstractList Surface electromyography (sEMG) is a significant interaction signal in the fields of human-computer interaction and rehabilitation assessment, as it can be used for hand gesture recognition. This paper proposes a novel MLHG model to improve the robustness of sEMG-based hand gesture recognition. The model utilizes multiple labels to decode the sEMG signals from two different perspectives. In the first view, the sEMG signals are transformed into motion signals using the proposed FES-MSCNN (Feature Extraction of sEMG with Multiple Sub-CNN modules). Furthermore, a discriminator FEM-SAGE (Feature Extraction of Motion with graph SAmple and aggreGatE model) is employed to judge the authenticity of the generated motion data. The deep features of the motion signals are extracted using the FEM-SAGE model. In the second view, the deep features of the sEMG signals are extracted using the FES-MSCNN model. The extracted features of the sEMG signals and the generated motion signals are then fused for hand gesture recognition. To evaluate the performance of the proposed model, a dataset containing sEMG signals and multiple labels from 12 subjects has been collected. The experimental results indicate that the MLHG model achieves an accuracy of <inline-formula><tex-math notation="LaTeX">99.26\%</tex-math></inline-formula> for within-session hand gesture recognition, <inline-formula><tex-math notation="LaTeX">78.47\%</tex-math></inline-formula> for cross-time, and <inline-formula><tex-math notation="LaTeX">53.52\%</tex-math></inline-formula> for cross-subject. These results represent a significant improvement compared to using only the gesture labels, with accuracy improvements of <inline-formula><tex-math notation="LaTeX">1.91\%</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">5.35\%</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">5.25\%</tex-math></inline-formula> in the within-session, cross-time and cross-subject cases, respectively.
Surface electromyography (sEMG) is a significant interaction signal in the fields of human-computer interaction and rehabilitation assessment, as it can be used for hand gesture recognition. This letter proposes a novel MLHG model to improve the robustness of sEMG-based hand gesture recognition. The model utilizes multiple labels to decode the sEMG signals from two different perspectives. In the first view, the sEMG signals are transformed into motion signals using the proposed FES-MSCNN (Feature Extraction of sEMG with Multiple Sub-CNN modules). Furthermore, a discriminator FEM-SAGE (Feature Extraction of Motion with graph SAmple and aggreGatE model) is employed to judge the authenticity of the generated motion data. The deep features of the motion signals are extracted using the FEM-SAGE model. In the second view, the deep features of the sEMG signals are extracted using the FES-MSCNN model. The extracted features of the sEMG signals and the generated motion signals are then fused for hand gesture recognition. To evaluate the performance of the proposed model, a dataset containing sEMG signals and multiple labels from 12 subjects has been collected. The experimental results indicate that the MLHG model achieves an accuracy of [Formula Omitted] for within-session hand gesture recognition, [Formula Omitted] for cross-time, and [Formula Omitted] for cross-subject. These results represent a significant improvement compared to using only the gesture labels, with accuracy improvements of [Formula Omitted], [Formula Omitted], and [Formula Omitted] in the within-session, cross-time and cross-subject cases, respectively.
Author Cheng, Long
Han, Lijun
Li, Zhengwei
Zou, Yongxiang
Song, Luping
Author_xml – sequence: 1
  givenname: Yongxiang
  surname: Zou
  fullname: Zou, Yongxiang
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Long
  orcidid: 0000-0001-7565-8788
  surname: Cheng
  fullname: Cheng, Long
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Lijun
  surname: Han
  fullname: Han, Lijun
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Zhengwei
  orcidid: 0000-0002-5148-9200
  surname: Li
  fullname: Li, Zhengwei
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Luping
  surname: Song
  fullname: Song, Luping
  organization: Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, no. 89, Taoyuan Road, Nanshan District, Shenzhen, China
BookMark eNp9kD1PwzAQhi0EEm1hZ2CwxNxydr7sEZXSIgWBKMyRYzupqzQOjiPUf4-rdkAMLHc3vM_p1TNG561tNUI3BGaEAL_P128zCjSaRTSNY5KdoRFJEjalUUrOww0ZTDkHdonGfb8FAEZYMkLrRy2tMm2NF42W3tnd3tZOdBsj8drUrWjwt_Eb_DI03nSNxrkoddPjyjq8Eq3CS937wWn8Hv7UrfHGtlfoohJNr69Pe4I-nxYf89U0f10-zx_yqaSc-jClUimISoDUCUSlVCXhTKWxKhWPWBLrkqhExZlmaSyIjhNVKVVVMS1pqWg0QXfHv52zX0PoUWzt4ELlvqAMOOOQAA-p9JiSzva901UhjReHnt4J0xQEioPAIggsDgKLk8AAwh-wc2Yn3P4_5PaIGK31r3ioQWgW_QC9yH8i
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_LSP_2023_3337727
crossref_primary_10_1016_j_asoc_2024_112235
crossref_primary_10_1142_S0219519424500386
crossref_primary_10_1109_TNSRE_2023_3342050
crossref_primary_10_1109_TBME_2024_3456235
crossref_primary_10_1109_TIM_2024_3381288
crossref_primary_10_1007_s11760_024_03668_2
crossref_primary_10_1109_LSP_2023_3348298
crossref_primary_10_1007_s42979_024_03396_x
crossref_primary_10_1016_j_measurement_2024_115693
Cites_doi 10.1109/LSP.2019.2903334
10.1109/LSP.2016.2636320
10.1109/TNSRE.2020.2986884
10.1109/TII.2019.2931140
10.1109/TITS.2019.2963722
10.1109/ICORR.2017.8009405
10.1016/j.bspc.2022.103981
10.1109/TNSRE.2022.3199809
10.1007/s12652-021-03582-2
10.1007/s11633-022-1350-3
10.1109/JBHI.2020.3009383
10.1109/TCBB.2021.3054738
10.1109/LSP.2016.2590470
10.1109/TITS.2022.3142248
10.1007/s11633-022-1352-1
10.3390/s20072106
10.1109/TNSRE.2022.3156387
10.1109/TAI.2021.3098253
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2023.3264417
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 5
ExternalDocumentID 10_1109_LSP_2023_3264417
10093127
Genre orig-research
GrantInformation_xml – fundername: National Key Research & Development Program
  grantid: 2022YFB4703204
– fundername: CAS Project for Young Scientists in Basic Research
  grantid: YSBR-034
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
5VS
AAYJJ
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-c2cdd60afa0ce503bcdb198d64dbd93854eb1d5d47e864a1e45dfddff42b2bd23
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Mon Jun 30 05:53:46 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Tue Jul 01 02:21:38 EDT 2025
Wed Aug 27 02:25:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-c2cdd60afa0ce503bcdb198d64dbd93854eb1d5d47e864a1e45dfddff42b2bd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7565-8788
0000-0002-5148-9200
0009-0001-4704-5164
0000-0003-1521-4864
PQID 2809890509
PQPubID 75747
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LSP_2023_3264417
ieee_primary_10093127
crossref_primary_10_1109_LSP_2023_3264417
proquest_journals_2809890509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
gao (ref6) 2022; 69
ref14
ref11
ref10
schapke (ref18) 2022; 19
ref2
ref1
ref17
ref16
ref19
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref1
  doi: 10.1109/LSP.2019.2903334
– ident: ref5
  doi: 10.1109/LSP.2016.2636320
– ident: ref9
  doi: 10.1109/TNSRE.2020.2986884
– ident: ref16
  doi: 10.1109/TII.2019.2931140
– ident: ref17
  doi: 10.1109/TITS.2019.2963722
– ident: ref7
  doi: 10.1109/ICORR.2017.8009405
– ident: ref3
  doi: 10.1016/j.bspc.2022.103981
– ident: ref4
  doi: 10.1109/TNSRE.2022.3199809
– ident: ref11
  doi: 10.1007/s12652-021-03582-2
– ident: ref12
  doi: 10.1007/s11633-022-1350-3
– volume: 69
  start-page: 4588
  year: 2022
  ident: ref6
  article-title: A multi-featured time-frequency neural network system for classifying sEMG
  publication-title: IEEE Trans Circuits Syst II Exp Briefs
– ident: ref14
  doi: 10.1109/JBHI.2020.3009383
– volume: 19
  start-page: 1615
  year: 2022
  ident: ref18
  article-title: EPGAT: Gene essentiality prediction with graph attention networks
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2021.3054738
– ident: ref10
  doi: 10.1109/LSP.2016.2590470
– ident: ref19
  doi: 10.1109/TITS.2022.3142248
– ident: ref13
  doi: 10.1007/s11633-022-1352-1
– ident: ref15
  doi: 10.3390/s20072106
– ident: ref2
  doi: 10.1109/TNSRE.2022.3156387
– ident: ref8
  doi: 10.1109/TAI.2021.3098253
SSID ssj0008185
Score 2.4264917
Snippet Surface electromyography (sEMG) is a significant interaction signal in the fields of human-computer interaction and rehabilitation assessment, as it can be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Aggregates
Decoding
Electromyogram decoding
Electromyography
Feature extraction
Gesture recognition
graph neural network
Graph neural networks
hand gesture recognition
Hospitals
Labels
Mathematical models
Model accuracy
multiple labels
Muscles
Rehabilitation
Title Decoding Electromyographic Signal with Multiple Labels for Hand Gesture Recognition
URI https://ieeexplore.ieee.org/document/10093127
https://www.proquest.com/docview/2809890509
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR27TsMw0KKdYOCNKBTkgYUhqes4iT0iaKkQIERBYotsn4MqIEWlGeDrseME8RCIJfLgs5w7-16-B0IH3EiTakkCFUXWQAFCAnuLILCqNs0TLlORunzni8tkdMvO7uK7Olm9yoUxxlTBZyZ0w-otH6a6dK4ye8Ot_d2naQu1rOXmk7U-2K6TPD7AkASWxfLmTZKI3vn4KnRtwsOoEv_pFxlUNVX5wYkr8TJcQZfNxnxUyUNYzlWo377VbPz3zlfRcq1o4iN_MtbQginW0dKn8oMbaHxibU8nu_DAN8N5evUFrCcajyf3Dty5afFFHXSIz6WyohRbPRePZAH41P5IOTP4uolCmhab6HY4uDkeBXWThUBTQef2qwESInNJtIlJpDSovuCQMFAgIh4zy80hBpYanjDZNyyGHCDPGVVUAY22ULuYFmYbYaqliEUCuVGCUao5pLFd2-RSyjhlrIN6DdozXVcgd40wHrPKEiEis4TKHKGymlAddPgB8eyrb_wxd9Ph_dM8j_IO6jakzer7-ZJRTgQXrvbNzi9gu2jRre69LV3Uns9Ks2f1j7nar87dO-392F4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NT9sw9ImVA9thgw20jg584LJDguvYiX2cGFCgrdAKErfI9nMQYksn1h62Xz87ThBsYuIS5eCX2O_Z78vvA2BPOu0Kq2lisswbKEhp4k8RJl7VZlUudaGKkO88meajS356Ja7aZPUmF8Y51wSfuTS8Nnf5OLfL4CrzJ9zb30NWvIBVL_jFMKZr3TPeIHtiiCFNPJOV3a0kVfvj2XkaGoWnWaMAFI-kUNNW5R9e3AiYozcw7aYW40pu0-XCpPb3X1Ubnz33dXjdqprkc9wbG7Di6rfw6kEBwncw--KtzyC9yGFsh_P9VyxhfWPJ7OY6gAdHLZm0YYdkrI0XpsRrumSkayTHfiHLO0e-dnFI83oTLo8OLw5GSdtmIbFMsYV_WsSc6kpT6wTNjEUzVBJzjgZVJgX3_BwF8sLJnOuh4wIrxKrizDCDLNuCXj2v3XsgzGolVI6VM4ozZiUWwn_bVVprUXDeh_0O7aVta5CHVhjfysYWoar0hCoDocqWUH34dA_xI9bf-M_YzYD3B-Miyvsw6Ehbtif0Z8kkVVKF6jcfngDbhbXRxWRcjk-mZ9vwMvwp-l4G0FvcLd1Hr40szE6zB_8AYDvbpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Electromyographic+Signal+With+Multiple+Labels+for+Hand+Gesture+Recognition&rft.jtitle=IEEE+signal+processing+letters&rft.au=Zou%2C+Yongxiang&rft.au=Cheng%2C+Long&rft.au=Han%2C+Lijun&rft.au=Li%2C+Zhengwei&rft.date=2023-01-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=30&rft.spage=483&rft.epage=487&rft_id=info:doi/10.1109%2FLSP.2023.3264417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2023_3264417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon