An Optimal Analysis for 3D Flow of Prandtl Nanofluid with Convectively Heated Surface

In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandt...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 71; no. 12; pp. 1485 - 1492
Main Authors Ullah, Malik Zaka, Alghamdi, Metib
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.12.2019
Subjects
Online AccessGet full text
ISSN0253-6102
1572-9494
DOI10.1088/0253-6102/71/12/1485

Cover

Loading…
Abstract In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandtl liquid is taken electrically conducted through applied magnetic field. Suitable non-dimensional variables lead to strong nonlinear ordinary differential system. The obtained nonlinear differential systems are solved through optimal homotopic technique. Physical quantities like skin friction coefficients and Nusselt number are explored via plots. It is observed that effects of Hartman parameter and Biot number on temperature and concentration are quite similar. Both temperature and concentration are enhanced for larger values of Hartman parameter and Biot number.
AbstractList In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandtl liquid is taken electrically conducted through applied magnetic field. Suitable non-dimensional variables lead to strong nonlinear ordinary differential system. The obtained nonlinear differential systems are solved through optimal homotopic technique. Physical quantities like skin friction coefficients and Nusselt number are explored via plots. It is observed that effects of Hartman parameter and Biot number on temperature and concentration are quite similar. Both temperature and concentration are enhanced for larger values of Hartman parameter and Biot number.
In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandtl liquid is taken electrically conducted through applied magnetic field. Suitable non-dimensional variables lead to strong nonlinear ordinary differential system. The obtained nonlinear differential systems are solved through optimal homotopic technique. Physical quantities like skin friction coefficients and Nusselt number are explored via plots. It is observed that effects of Hartman parameter and Biot number on temperature and concentration are quite similar. Both temperature and concentration are enhanced for larger values of Hartman parameter and Biot number .
Author Ullah, Malik Zaka
Alghamdi, Metib
Author_xml – sequence: 1
  givenname: Malik Zaka
  surname: Ullah
  fullname: Ullah, Malik Zaka
  email: malikzakas@gmail.com
  organization: Department of Mathematics, Faculty of Science, King Abdulaziz University , Saudi Arabia
– sequence: 2
  givenname: Metib
  surname: Alghamdi
  fullname: Alghamdi, Metib
  organization: Department of Mathematics, Faculty of Science, King Khalid University , Saudi Arabia
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wDhJ5t9dqdYKxQradbiTSTAlJiVJW_r2zlBx4UJXBy7nu3C-CRpZZyVCt5TcUVLXKWFFlpSUsLSiKWUpzeviAo1pUbGkyZt8hMY_lSs0CWFLCGFVScdoM7N4vYv6EwyeWTCnoANWzuPsAS-MO2Kn8KsH20WDX8A6Zfa6w0cdP_Dc2YMUUR-kOeGlhCg7_Lb3CoS8RpcKTJA33zlFm8Xj-3yZrNZPz_PZKhGsYTFpCyYltCSDCuoGykYxIK1oIe8g688ir2olaAtKENFlrClrKIRQUnZQFIplU3R__iu8C8FLxYWOELWz0YM2nBI-COLDej6s5xXllPFBUA_nv-Cd7z34038YOWPa7fjW7X1vLfyNfAHynXqj
CitedBy_id crossref_primary_10_3390_coatings12010024
Cites_doi 10.1016/j.physleta.2018.06.026
10.1088/0253-6102/70/3/361
10.1016/j.apt.2016.10.008
10.1016/j.rinp.2018.02.065
10.1016/j.aej.2016.11.006
10.1016/j.cjph.2017.11.022
10.1016/j.cnsns.2011.05.042
10.1016/j.ijthermalsci.2013.10.007
10.1016/j.rinp.2017.11.004
10.1016/j.molliq.2016.07.052
10.1016/j.ijheatmasstransfer.2015.01.099
10.1108/HFF-10-2018-0606
10.1002/num.20460
10.1016/j.ijheatmasstransfer.2009.02.006
10.1016/j.ijheatfluidflow.2009.02.001
10.1016/j.molliq.2018.10.038
10.1016/j.rinp.2017.01.005
10.1016/j.ijheatmasstransfer.2006.09.034
10.1016/j.jmmm.2015.02.046
10.1016/j.jmmm.2016.02.020
10.1088/0253-6102/69/6/655
10.1016/j.rinp.2018.01.006
10.1016/j.ijheatmasstransfer.2016.04.113
10.1016/j.ijheatmasstransfer.2017.05.042
10.1016/j.camwa.2006.12.066
10.1016/j.rinp.2017.12.047
10.1016/j.cjph.2017.05.007
10.1016/j.molliq.2017.01.074
10.1016/j.ijheatmasstransfer.2012.12.009
10.1016/j.renene.2017.08.059
10.1063/1.1756684
10.1016/j.rinp.2017.08.026
10.1016/j.ijheatmasstransfer.2014.10.041
10.1016/j.ijheatmasstransfer.2011.07.021
10.1016/j.compfluid.2014.08.001
10.1016/j.rinp.2017.08.060
10.1016/j.cjph.2017.03.006
10.1016/j.ijmecsci.2017.12.005
10.1016/j.rinp.2017.07.062
10.1088/0253-6102/68/3/387
10.1016/j.ijheatmasstransfer.2016.06.059
10.3390/sym11020276
10.1016/j.jmmm.2015.08.100
10.1016/j.ces.2012.08.029
10.1016/j.apt.2016.07.002
10.1016/j.apt.2018.06.009
10.1063/1.1736319
10.1016/j.molliq.2016.04.108
10.1016/j.jmmm.2016.02.017
10.1115/1.2150834
10.1108/HFF-02-2014-0027
10.1016/j.molliq.2016.06.083
10.1016/j.molliq.2018.05.103
10.1016/j.ijthermalsci.2011.02.019
10.1016/j.cnsns.2009.09.002
10.1016/j.aej.2017.07.007
ContentType Journal Article
Copyright 2019 Chinese Physical Society and IOP Publishing Ltd
Copyright_xml – notice: 2019 Chinese Physical Society and IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/0253-6102/71/12/1485
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate An Optimal Analysis for 3D Flow of Prandtl Nanofluid with Convectively Heated Surface
EISSN 1572-9494
ExternalDocumentID 10_1088_0253_6102_71_12_1485
ctp_71_12_1485
GroupedDBID -SA
-S~
02O
042
1JI
1WK
2B.
2C.
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92Q
93N
AAGCD
AAJIO
AALHV
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
FRP
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
N5L
NS0
NT-
NT.
P2P
PJBAE
Q--
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c292t-b52eeab03a7a89a69f2a0bcba4da3b03c478fc1bafc0cd32968a5ccfeeda55f23
IEDL.DBID IOP
ISSN 0253-6102
IngestDate Tue Jul 01 01:36:04 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Aug 21 03:34:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-b52eeab03a7a89a69f2a0bcba4da3b03c478fc1bafc0cd32968a5ccfeeda55f23
PageCount 8
ParticipantIDs crossref_citationtrail_10_1088_0253_6102_71_12_1485
crossref_primary_10_1088_0253_6102_71_12_1485
iop_journals_10_1088_0253_6102_71_12_1485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Communications in theoretical physics
PublicationTitleAlternate Commun. Theor. Phys
PublicationYear 2019
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Akbarzadeh (ctp_71_12_1485bib27) 2018; 29
Kuznetsov (ctp_71_12_1485bib51) 2014; 77
Hayat (ctp_71_12_1485bib50) 2017; 230
Eid (ctp_71_12_1485bib20) 2017; 7
Alamri (ctp_71_12_1485bib28) 2019; 273
Hussain (ctp_71_12_1485bib36) 2017; 7
Kakac (ctp_71_12_1485bib6) 2009; 52
Sheikholeslami (ctp_71_12_1485bib21) 2018; 135
Ellahi (ctp_71_12_1485bib14) 2015; 81
Hayat (ctp_71_12_1485bib52) 2017; 12
Shehzad (ctp_71_12_1485bib18) 2016; 222
Hayat (ctp_71_12_1485bib37) 2016; 408
Seth (ctp_71_12_1485bib35) 2017; 28
Hayat (ctp_71_12_1485bib12) 2015; 385
Muhammad (ctp_71_12_1485bib22) 2018; 70
Hayat (ctp_71_12_1485bib41) 2018; 8
Hsiao (ctp_71_12_1485bib32) 2017; 112
Jang (ctp_71_12_1485bib2) 2004; 84
Hayat (ctp_71_12_1485bib16) 2016; 100
Hayat (ctp_71_12_1485bib56) 2016; 221
Hassan (ctp_71_12_1485bib26) 2018; 382
Hayat (ctp_71_12_1485bib43) 2016; 27
Dehghan (ctp_71_12_1485bib54) 2010; 26
Chamkha (ctp_71_12_1485bib13) 2015; 25
Hayat (ctp_71_12_1485bib17) 2016; 27
Ariel (ctp_71_12_1485bib60) 2007; 54
Abu-Nada (ctp_71_12_1485bib7) 2009; 30
Hayat (ctp_71_12_1485bib48) 2018; 9
Makinde (ctp_71_12_1485bib49) 2011; 50
Rashidi (ctp_71_12_1485bib24) 2018; 115
Rahimi (ctp_71_12_1485bib31) 2017; 56
Lin (ctp_71_12_1485bib15) 2015; 84
Mustafa (ctp_71_12_1485bib8) 2011; 54
Huang (ctp_71_12_1485bib40) 2016; 397
Choi (ctp_71_12_1485bib1) 1995; 66
Hayat (ctp_71_12_1485bib19) 2016; 102
Hayat (ctp_71_12_1485bib57) 2017; 68
Shehzad (ctp_71_12_1485bib23) 2018; 69
Muhammad (ctp_71_12_1485bib42) 2018; 8
Muhammad (ctp_71_12_1485bib58) 2017; 55
Tamoor (ctp_71_12_1485bib44) 2017; 7
Ellahi (ctp_71_12_1485bib25) 2018; 264
Turkyilmazoglu (ctp_71_12_1485bib10) 2013; 59
Saif (ctp_71_12_1485bib59) 2017; 7
Bhattacharya (ctp_71_12_1485bib3) 2004; 95
Buongiorno (ctp_71_12_1485bib4) 2006; 128
Soid (ctp_71_12_1485bib39) 2018; 56
Hsiao (ctp_71_12_1485bib11) 2014; 104
Sheikholeslami (ctp_71_12_1485bib29) 2019; 29
Abd Elmaboud (ctp_71_12_1485bib55) 2015; 27
Ellahi (ctp_71_12_1485bib30) 2019; 11
Tiwari (ctp_71_12_1485bib5) 2007; 50
Hayat (ctp_71_12_1485bib34) 2012; 17
Soomro (ctp_71_12_1485bib46) 2017; 55
Zhang (ctp_71_12_1485bib33) 2016; 220
Hayat (ctp_71_12_1485bib45) 2016; 407
Kumar (ctp_71_12_1485bib47) 2017; 7
Liao (ctp_71_12_1485bib53) 2010; 15
Daniel (ctp_71_12_1485bib38) 2018; 57
Turkyilmazoglu (ctp_71_12_1485bib9) 2012; 84
References_xml – volume: 382
  start-page: 2749
  year: 2018
  ident: ctp_71_12_1485bib26
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.06.026
– volume: 70
  start-page: 361
  year: 2018
  ident: ctp_71_12_1485bib22
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/70/3/361
– volume: 28
  start-page: 375
  year: 2017
  ident: ctp_71_12_1485bib35
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.10.008
– volume: 9
  start-page: 290
  year: 2018
  ident: ctp_71_12_1485bib48
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.02.065
– volume: 56
  start-page: 621
  year: 2017
  ident: ctp_71_12_1485bib31
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2016.11.006
– volume: 56
  start-page: 58
  year: 2018
  ident: ctp_71_12_1485bib39
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2017.11.022
– volume: 17
  start-page: 699
  year: 2012
  ident: ctp_71_12_1485bib34
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.05.042
– volume: 77
  start-page: 126
  year: 2014
  ident: ctp_71_12_1485bib51
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2013.10.007
– volume: 7
  start-page: 4388
  year: 2017
  ident: ctp_71_12_1485bib20
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.11.004
– volume: 222
  start-page: 446
  year: 2016
  ident: ctp_71_12_1485bib18
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.07.052
– volume: 84
  start-page: 903
  year: 2015
  ident: ctp_71_12_1485bib15
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.01.099
– volume: 29
  start-page: 1079
  year: 2019
  ident: ctp_71_12_1485bib29
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-10-2018-0606
– volume: 26
  start-page: 448
  year: 2010
  ident: ctp_71_12_1485bib54
  publication-title: Numer. Meth. Partial Diff. Eq.
  doi: 10.1002/num.20460
– volume: 52
  start-page: 3187
  year: 2009
  ident: ctp_71_12_1485bib6
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.02.006
– volume: 30
  start-page: 669
  year: 2009
  ident: ctp_71_12_1485bib7
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2009.02.001
– volume: 273
  start-page: 292
  year: 2019
  ident: ctp_71_12_1485bib28
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.10.038
– volume: 7
  start-page: 498
  year: 2017
  ident: ctp_71_12_1485bib44
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.01.005
– volume: 50
  start-page: 2002
  year: 2007
  ident: ctp_71_12_1485bib5
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– volume: 385
  start-page: 222
  year: 2015
  ident: ctp_71_12_1485bib12
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.02.046
– volume: 407
  start-page: 321
  year: 2016
  ident: ctp_71_12_1485bib45
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.02.020
– volume: 69
  start-page: 655
  year: 2018
  ident: ctp_71_12_1485bib23
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/69/6/655
– volume: 8
  start-page: 1017
  year: 2018
  ident: ctp_71_12_1485bib41
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.01.006
– volume: 100
  start-page: 566
  year: 2016
  ident: ctp_71_12_1485bib16
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.04.113
– volume: 112
  start-page: 983
  year: 2017
  ident: ctp_71_12_1485bib32
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.042
– volume: 54
  start-page: 920
  year: 2007
  ident: ctp_71_12_1485bib60
  publication-title: Comp. Math. Appl.
  doi: 10.1016/j.camwa.2006.12.066
– volume: 8
  start-page: 365
  year: 2018
  ident: ctp_71_12_1485bib42
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.12.047
– volume: 55
  start-page: 1561
  year: 2017
  ident: ctp_71_12_1485bib46
  publication-title: Chinese J. Phys.
  doi: 10.1016/j.cjph.2017.05.007
– volume: 230
  start-page: 608
  year: 2017
  ident: ctp_71_12_1485bib50
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.01.074
– volume: 59
  start-page: 167
  year: 2013
  ident: ctp_71_12_1485bib10
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.12.009
– volume: 115
  start-page: 400
  year: 2018
  ident: ctp_71_12_1485bib24
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.08.059
– volume: 84
  start-page: 4316
  year: 2004
  ident: ctp_71_12_1485bib2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1756684
– volume: 7
  start-page: 3502
  year: 2017
  ident: ctp_71_12_1485bib36
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.08.026
– volume: 81
  start-page: 449
  year: 2015
  ident: ctp_71_12_1485bib14
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.10.041
– volume: 54
  start-page: 5588
  year: 2011
  ident: ctp_71_12_1485bib8
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2011.07.021
– volume: 104
  start-page: 1
  year: 2014
  ident: ctp_71_12_1485bib11
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2014.08.001
– volume: 7
  start-page: 3465
  year: 2017
  ident: ctp_71_12_1485bib47
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.08.060
– volume: 55
  start-page: 963
  year: 2017
  ident: ctp_71_12_1485bib58
  publication-title: Chinese J. Phys.
  doi: 10.1016/j.cjph.2017.03.006
– volume: 135
  start-page: 532
  year: 2018
  ident: ctp_71_12_1485bib21
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.12.005
– volume: 7
  start-page: 2821
  year: 2017
  ident: ctp_71_12_1485bib59
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.07.062
– volume: 68
  start-page: 387
  year: 2017
  ident: ctp_71_12_1485bib57
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/68/3/387
– volume: 102
  start-page: 723
  year: 2016
  ident: ctp_71_12_1485bib19
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.06.059
– volume: 11
  start-page: 276
  year: 2019
  ident: ctp_71_12_1485bib30
  publication-title: Symmetry
  doi: 10.3390/sym11020276
– volume: 397
  start-page: 213
  year: 2016
  ident: ctp_71_12_1485bib40
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.08.100
– volume: 84
  start-page: 182
  year: 2012
  ident: ctp_71_12_1485bib9
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.08.029
– volume: 27
  start-page: 1992
  year: 2016
  ident: ctp_71_12_1485bib17
  publication-title: Adv. Powder Tech.
  doi: 10.1016/j.apt.2016.07.002
– volume: 29
  start-page: 2243
  year: 2018
  ident: ctp_71_12_1485bib27
  publication-title: Adv. Powder Tech.
  doi: 10.1016/j.apt.2018.06.009
– volume: 95
  start-page: 6492
  year: 2004
  ident: ctp_71_12_1485bib3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736319
– volume: 220
  start-page: 665
  year: 2016
  ident: ctp_71_12_1485bib33
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.04.108
– volume: 408
  start-page: 99
  year: 2016
  ident: ctp_71_12_1485bib37
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.02.017
– volume: 66
  start-page: 99
  year: 1995
  ident: ctp_71_12_1485bib1
  publication-title: Enhancing thermal conductivity of fluids with nanoparticles, USA, ASME, FED 231/MD
– volume: 128
  start-page: 240
  year: 2006
  ident: ctp_71_12_1485bib4
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2150834
– volume: 25
  start-page: 422
  year: 2015
  ident: ctp_71_12_1485bib13
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-02-2014-0027
– volume: 221
  start-page: 1121
  year: 2016
  ident: ctp_71_12_1485bib56
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.06.083
– volume: 27
  start-page: 1992
  year: 2016
  ident: ctp_71_12_1485bib43
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.07.002
– volume: 264
  start-page: 607
  year: 2018
  ident: ctp_71_12_1485bib25
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.05.103
– volume: 12
  year: 2017
  ident: ctp_71_12_1485bib52
  publication-title: Plos One
– volume: 27
  start-page: 969
  year: 2015
  ident: ctp_71_12_1485bib55
  publication-title: Ser. B
– volume: 50
  start-page: 1326
  year: 2011
  ident: ctp_71_12_1485bib49
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2011.02.019
– volume: 15
  start-page: 2003
  year: 2010
  ident: ctp_71_12_1485bib53
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2009.09.002
– volume: 57
  start-page: 2187
  year: 2018
  ident: ctp_71_12_1485bib38
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2017.07.007
SSID ssj0002761
Score 2.2034764
Snippet In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 1485
SubjectTerms MHD
nanoparticles
optimal homotopy analysis method (OHAM)
Prandtl fluid
three-dimensional flow
Title An Optimal Analysis for 3D Flow of Prandtl Nanofluid with Convectively Heated Surface
URI https://iopscience.iop.org/article/10.1088/0253-6102/71/12/1485
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-ELz4WBXf5ODFQ3c3jz5yFHVZBR8HF_ZWkzQBsbaL20X01ztps4sKKuKtlJkmnTQzX5rJNwgdWUalsDYLDFEq4MRtEurYBJbDegh6HknpDgpfXUf9Ab8chkNf57Q-C1OOvOtvw2VDFNyY0CfEJR2I0gxWPF3aiUmH0A4A-nAeLbIkilwJg4ub25krpnFNmDrTmJ6d--Ypn2LTPLT_IdT0VtH9tJNNhslje1Kptn77wt_4j7dYQysehuKTRnwdzZmihVY9JMV-wo9baKnOENXjDTQ4KfAN-Jcnp-aZTDAgXszOcC8vX3Bp8S0EvqzKMbjs0uaThwy737z41GW21341f8V9cP6uicmzldpsokHv_O60H_iaDIGmglaBCqkxUnWZjGUiZCQslV2lleSZZHBb8zixmihpdVdnjIookaHWFkKxDENL2RZaKMrCbCMsRaYiKq0hVnFhuOCEZjZWnGaaasN3EJuORqo9Ybmrm5Gn9cZ5kqTOhqmzYRqTlNDU2XAHBTOtUUPY8Yv8MQxR6mfu-EfZ3T_I7qFlwFaiyXzZRwvV88QcAH6p1GH9jb4D5CXi8w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RSAuFAqI8vSBC4ds1o88fKy2rLY82j2wUm-WnxIibFbdrKry6xkn3hUgAULcomgmccbxfGN75jPA68CZliG4zFNjMkHjJqGtfBYEzoew5aXWsVD443k5W4h3l8XlHkx2tTDtKrn-EV4ORMGDCVNCXJ0jSnOc8YxZXtGcshwD-iJfubAPtwpe8kigf3Yx37ljVvWkqTutbf3cb570Ez7tYxt-gJvpIbhtQ4csky-jTWdG9tsvHI7_-SX34V4KR8nJoPIA9vzyCA5TaErSwF8fwe0-U9SuH8LiZEku0M98jWqJ0YRg5Ev4KZk27TVpA5kjALquIei629BsPjsSl3vJJGa49_61uSEzBIH4is1V0NY_gsX07afJLEtnM2SWSdZlpmDeazPmutK11KUMTI-NNVo4zfG2FVUdLDU62LF1nMmy1oW1ASFZF0Vg_DEcLNulfwJES2dKpoOnwQjphRSUuVAZwZxl1otj4NseUTYRl8fzMxrVb6DXtYp2VNGOqqKKMhXteAzZTms1EHf8Rf4NdpNKI3j9R9mn_yD7Cu7MT6fqw9n5-2dwF8MtOSTDPIeD7mrjX2BI05mX_S_7HTx-6Fc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+Analysis+for+3D+Flow+of+Prandtl+Nanofluid+with+Convectively+Heated+Surface&rft.jtitle=Communications+in+theoretical+physics&rft.au=Ullah%2C+Malik+Zaka&rft.au=Alghamdi%2C+Metib&rft.date=2019-12-01&rft.issn=0253-6102&rft.eissn=1572-9494&rft.volume=71&rft.issue=12&rft.spage=1485&rft_id=info:doi/10.1088%2F0253-6102%2F71%2F12%2F1485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_71_12_1485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6102&client=summon