An Optimal Analysis for 3D Flow of Prandtl Nanofluid with Convectively Heated Surface
In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandt...
Saved in:
Published in | Communications in theoretical physics Vol. 71; no. 12; pp. 1485 - 1492 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0253-6102 1572-9494 |
DOI | 10.1088/0253-6102/71/12/1485 |
Cover
Loading…
Abstract | In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandtl liquid is taken electrically conducted through applied magnetic field. Suitable non-dimensional variables lead to strong nonlinear ordinary differential system. The obtained nonlinear differential systems are solved through optimal homotopic technique. Physical quantities like skin friction coefficients and Nusselt number are explored via plots. It is observed that effects of Hartman parameter and Biot number on temperature and concentration are quite similar. Both temperature and concentration are enhanced for larger values of Hartman parameter and Biot number. |
---|---|
AbstractList | In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandtl liquid is taken electrically conducted through applied magnetic field. Suitable non-dimensional variables lead to strong nonlinear ordinary differential system. The obtained nonlinear differential systems are solved through optimal homotopic technique. Physical quantities like skin friction coefficients and Nusselt number are explored via plots. It is observed that effects of Hartman parameter and Biot number on temperature and concentration are quite similar. Both temperature and concentration are enhanced for larger values of Hartman parameter and Biot number. In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching surface makes the flow. Thermophoretic and Brownian motion impacts are explored. Heat transfer for convective procedure is considered. Prandtl liquid is taken electrically conducted through applied magnetic field. Suitable non-dimensional variables lead to strong nonlinear ordinary differential system. The obtained nonlinear differential systems are solved through optimal homotopic technique. Physical quantities like skin friction coefficients and Nusselt number are explored via plots. It is observed that effects of Hartman parameter and Biot number on temperature and concentration are quite similar. Both temperature and concentration are enhanced for larger values of Hartman parameter and Biot number . |
Author | Ullah, Malik Zaka Alghamdi, Metib |
Author_xml | – sequence: 1 givenname: Malik Zaka surname: Ullah fullname: Ullah, Malik Zaka email: malikzakas@gmail.com organization: Department of Mathematics, Faculty of Science, King Abdulaziz University , Saudi Arabia – sequence: 2 givenname: Metib surname: Alghamdi fullname: Alghamdi, Metib organization: Department of Mathematics, Faculty of Science, King Khalid University , Saudi Arabia |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wDhJ5t9dqdYKxQradbiTSTAlJiVJW_r2zlBx4UJXBy7nu3C-CRpZZyVCt5TcUVLXKWFFlpSUsLSiKWUpzeviAo1pUbGkyZt8hMY_lSs0CWFLCGFVScdoM7N4vYv6EwyeWTCnoANWzuPsAS-MO2Kn8KsH20WDX8A6Zfa6w0cdP_Dc2YMUUR-kOeGlhCg7_Lb3CoS8RpcKTJA33zlFm8Xj-3yZrNZPz_PZKhGsYTFpCyYltCSDCuoGykYxIK1oIe8g688ir2olaAtKENFlrClrKIRQUnZQFIplU3R__iu8C8FLxYWOELWz0YM2nBI-COLDej6s5xXllPFBUA_nv-Cd7z34038YOWPa7fjW7X1vLfyNfAHynXqj |
CitedBy_id | crossref_primary_10_3390_coatings12010024 |
Cites_doi | 10.1016/j.physleta.2018.06.026 10.1088/0253-6102/70/3/361 10.1016/j.apt.2016.10.008 10.1016/j.rinp.2018.02.065 10.1016/j.aej.2016.11.006 10.1016/j.cjph.2017.11.022 10.1016/j.cnsns.2011.05.042 10.1016/j.ijthermalsci.2013.10.007 10.1016/j.rinp.2017.11.004 10.1016/j.molliq.2016.07.052 10.1016/j.ijheatmasstransfer.2015.01.099 10.1108/HFF-10-2018-0606 10.1002/num.20460 10.1016/j.ijheatmasstransfer.2009.02.006 10.1016/j.ijheatfluidflow.2009.02.001 10.1016/j.molliq.2018.10.038 10.1016/j.rinp.2017.01.005 10.1016/j.ijheatmasstransfer.2006.09.034 10.1016/j.jmmm.2015.02.046 10.1016/j.jmmm.2016.02.020 10.1088/0253-6102/69/6/655 10.1016/j.rinp.2018.01.006 10.1016/j.ijheatmasstransfer.2016.04.113 10.1016/j.ijheatmasstransfer.2017.05.042 10.1016/j.camwa.2006.12.066 10.1016/j.rinp.2017.12.047 10.1016/j.cjph.2017.05.007 10.1016/j.molliq.2017.01.074 10.1016/j.ijheatmasstransfer.2012.12.009 10.1016/j.renene.2017.08.059 10.1063/1.1756684 10.1016/j.rinp.2017.08.026 10.1016/j.ijheatmasstransfer.2014.10.041 10.1016/j.ijheatmasstransfer.2011.07.021 10.1016/j.compfluid.2014.08.001 10.1016/j.rinp.2017.08.060 10.1016/j.cjph.2017.03.006 10.1016/j.ijmecsci.2017.12.005 10.1016/j.rinp.2017.07.062 10.1088/0253-6102/68/3/387 10.1016/j.ijheatmasstransfer.2016.06.059 10.3390/sym11020276 10.1016/j.jmmm.2015.08.100 10.1016/j.ces.2012.08.029 10.1016/j.apt.2016.07.002 10.1016/j.apt.2018.06.009 10.1063/1.1736319 10.1016/j.molliq.2016.04.108 10.1016/j.jmmm.2016.02.017 10.1115/1.2150834 10.1108/HFF-02-2014-0027 10.1016/j.molliq.2016.06.083 10.1016/j.molliq.2018.05.103 10.1016/j.ijthermalsci.2011.02.019 10.1016/j.cnsns.2009.09.002 10.1016/j.aej.2017.07.007 |
ContentType | Journal Article |
Copyright | 2019 Chinese Physical Society and IOP Publishing Ltd |
Copyright_xml | – notice: 2019 Chinese Physical Society and IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/0253-6102/71/12/1485 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
DocumentTitleAlternate | An Optimal Analysis for 3D Flow of Prandtl Nanofluid with Convectively Heated Surface |
EISSN | 1572-9494 |
ExternalDocumentID | 10_1088_0253_6102_71_12_1485 ctp_71_12_1485 |
GroupedDBID | -SA -S~ 02O 042 1JI 1WK 2B. 2C. 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92Q 93N AAGCD AAJIO AALHV AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE FRP HAK HVGLF IJHAN IOP IZVLO JCGBZ KOT M45 N5L NS0 NT- NT. P2P PJBAE Q-- Q02 RIN RNS RO9 ROL RPA S3P SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c292t-b52eeab03a7a89a69f2a0bcba4da3b03c478fc1bafc0cd32968a5ccfeeda55f23 |
IEDL.DBID | IOP |
ISSN | 0253-6102 |
IngestDate | Tue Jul 01 01:36:04 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 21 03:34:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-b52eeab03a7a89a69f2a0bcba4da3b03c478fc1bafc0cd32968a5ccfeeda55f23 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1088_0253_6102_71_12_1485 crossref_primary_10_1088_0253_6102_71_12_1485 iop_journals_10_1088_0253_6102_71_12_1485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Communications in theoretical physics |
PublicationTitleAlternate | Commun. Theor. Phys |
PublicationYear | 2019 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Akbarzadeh (ctp_71_12_1485bib27) 2018; 29 Kuznetsov (ctp_71_12_1485bib51) 2014; 77 Hayat (ctp_71_12_1485bib50) 2017; 230 Eid (ctp_71_12_1485bib20) 2017; 7 Alamri (ctp_71_12_1485bib28) 2019; 273 Hussain (ctp_71_12_1485bib36) 2017; 7 Kakac (ctp_71_12_1485bib6) 2009; 52 Sheikholeslami (ctp_71_12_1485bib21) 2018; 135 Ellahi (ctp_71_12_1485bib14) 2015; 81 Hayat (ctp_71_12_1485bib52) 2017; 12 Shehzad (ctp_71_12_1485bib18) 2016; 222 Hayat (ctp_71_12_1485bib37) 2016; 408 Seth (ctp_71_12_1485bib35) 2017; 28 Hayat (ctp_71_12_1485bib12) 2015; 385 Muhammad (ctp_71_12_1485bib22) 2018; 70 Hayat (ctp_71_12_1485bib41) 2018; 8 Hsiao (ctp_71_12_1485bib32) 2017; 112 Jang (ctp_71_12_1485bib2) 2004; 84 Hayat (ctp_71_12_1485bib16) 2016; 100 Hayat (ctp_71_12_1485bib56) 2016; 221 Hassan (ctp_71_12_1485bib26) 2018; 382 Hayat (ctp_71_12_1485bib43) 2016; 27 Dehghan (ctp_71_12_1485bib54) 2010; 26 Chamkha (ctp_71_12_1485bib13) 2015; 25 Hayat (ctp_71_12_1485bib17) 2016; 27 Ariel (ctp_71_12_1485bib60) 2007; 54 Abu-Nada (ctp_71_12_1485bib7) 2009; 30 Hayat (ctp_71_12_1485bib48) 2018; 9 Makinde (ctp_71_12_1485bib49) 2011; 50 Rashidi (ctp_71_12_1485bib24) 2018; 115 Rahimi (ctp_71_12_1485bib31) 2017; 56 Lin (ctp_71_12_1485bib15) 2015; 84 Mustafa (ctp_71_12_1485bib8) 2011; 54 Huang (ctp_71_12_1485bib40) 2016; 397 Choi (ctp_71_12_1485bib1) 1995; 66 Hayat (ctp_71_12_1485bib19) 2016; 102 Hayat (ctp_71_12_1485bib57) 2017; 68 Shehzad (ctp_71_12_1485bib23) 2018; 69 Muhammad (ctp_71_12_1485bib42) 2018; 8 Muhammad (ctp_71_12_1485bib58) 2017; 55 Tamoor (ctp_71_12_1485bib44) 2017; 7 Ellahi (ctp_71_12_1485bib25) 2018; 264 Turkyilmazoglu (ctp_71_12_1485bib10) 2013; 59 Saif (ctp_71_12_1485bib59) 2017; 7 Bhattacharya (ctp_71_12_1485bib3) 2004; 95 Buongiorno (ctp_71_12_1485bib4) 2006; 128 Soid (ctp_71_12_1485bib39) 2018; 56 Hsiao (ctp_71_12_1485bib11) 2014; 104 Sheikholeslami (ctp_71_12_1485bib29) 2019; 29 Abd Elmaboud (ctp_71_12_1485bib55) 2015; 27 Ellahi (ctp_71_12_1485bib30) 2019; 11 Tiwari (ctp_71_12_1485bib5) 2007; 50 Hayat (ctp_71_12_1485bib34) 2012; 17 Soomro (ctp_71_12_1485bib46) 2017; 55 Zhang (ctp_71_12_1485bib33) 2016; 220 Hayat (ctp_71_12_1485bib45) 2016; 407 Kumar (ctp_71_12_1485bib47) 2017; 7 Liao (ctp_71_12_1485bib53) 2010; 15 Daniel (ctp_71_12_1485bib38) 2018; 57 Turkyilmazoglu (ctp_71_12_1485bib9) 2012; 84 |
References_xml | – volume: 382 start-page: 2749 year: 2018 ident: ctp_71_12_1485bib26 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.06.026 – volume: 70 start-page: 361 year: 2018 ident: ctp_71_12_1485bib22 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/70/3/361 – volume: 28 start-page: 375 year: 2017 ident: ctp_71_12_1485bib35 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.10.008 – volume: 9 start-page: 290 year: 2018 ident: ctp_71_12_1485bib48 publication-title: Results Phys. doi: 10.1016/j.rinp.2018.02.065 – volume: 56 start-page: 621 year: 2017 ident: ctp_71_12_1485bib31 publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2016.11.006 – volume: 56 start-page: 58 year: 2018 ident: ctp_71_12_1485bib39 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.11.022 – volume: 17 start-page: 699 year: 2012 ident: ctp_71_12_1485bib34 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.05.042 – volume: 77 start-page: 126 year: 2014 ident: ctp_71_12_1485bib51 publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2013.10.007 – volume: 7 start-page: 4388 year: 2017 ident: ctp_71_12_1485bib20 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.11.004 – volume: 222 start-page: 446 year: 2016 ident: ctp_71_12_1485bib18 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.07.052 – volume: 84 start-page: 903 year: 2015 ident: ctp_71_12_1485bib15 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.01.099 – volume: 29 start-page: 1079 year: 2019 ident: ctp_71_12_1485bib29 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-10-2018-0606 – volume: 26 start-page: 448 year: 2010 ident: ctp_71_12_1485bib54 publication-title: Numer. Meth. Partial Diff. Eq. doi: 10.1002/num.20460 – volume: 52 start-page: 3187 year: 2009 ident: ctp_71_12_1485bib6 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.02.006 – volume: 30 start-page: 669 year: 2009 ident: ctp_71_12_1485bib7 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2009.02.001 – volume: 273 start-page: 292 year: 2019 ident: ctp_71_12_1485bib28 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.10.038 – volume: 7 start-page: 498 year: 2017 ident: ctp_71_12_1485bib44 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.01.005 – volume: 50 start-page: 2002 year: 2007 ident: ctp_71_12_1485bib5 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – volume: 385 start-page: 222 year: 2015 ident: ctp_71_12_1485bib12 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.02.046 – volume: 407 start-page: 321 year: 2016 ident: ctp_71_12_1485bib45 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.02.020 – volume: 69 start-page: 655 year: 2018 ident: ctp_71_12_1485bib23 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/69/6/655 – volume: 8 start-page: 1017 year: 2018 ident: ctp_71_12_1485bib41 publication-title: Results Phys. doi: 10.1016/j.rinp.2018.01.006 – volume: 100 start-page: 566 year: 2016 ident: ctp_71_12_1485bib16 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.04.113 – volume: 112 start-page: 983 year: 2017 ident: ctp_71_12_1485bib32 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.042 – volume: 54 start-page: 920 year: 2007 ident: ctp_71_12_1485bib60 publication-title: Comp. Math. Appl. doi: 10.1016/j.camwa.2006.12.066 – volume: 8 start-page: 365 year: 2018 ident: ctp_71_12_1485bib42 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.12.047 – volume: 55 start-page: 1561 year: 2017 ident: ctp_71_12_1485bib46 publication-title: Chinese J. Phys. doi: 10.1016/j.cjph.2017.05.007 – volume: 230 start-page: 608 year: 2017 ident: ctp_71_12_1485bib50 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.01.074 – volume: 59 start-page: 167 year: 2013 ident: ctp_71_12_1485bib10 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.12.009 – volume: 115 start-page: 400 year: 2018 ident: ctp_71_12_1485bib24 publication-title: Renewable Energy doi: 10.1016/j.renene.2017.08.059 – volume: 84 start-page: 4316 year: 2004 ident: ctp_71_12_1485bib2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1756684 – volume: 7 start-page: 3502 year: 2017 ident: ctp_71_12_1485bib36 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.08.026 – volume: 81 start-page: 449 year: 2015 ident: ctp_71_12_1485bib14 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.10.041 – volume: 54 start-page: 5588 year: 2011 ident: ctp_71_12_1485bib8 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.07.021 – volume: 104 start-page: 1 year: 2014 ident: ctp_71_12_1485bib11 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2014.08.001 – volume: 7 start-page: 3465 year: 2017 ident: ctp_71_12_1485bib47 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.08.060 – volume: 55 start-page: 963 year: 2017 ident: ctp_71_12_1485bib58 publication-title: Chinese J. Phys. doi: 10.1016/j.cjph.2017.03.006 – volume: 135 start-page: 532 year: 2018 ident: ctp_71_12_1485bib21 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.12.005 – volume: 7 start-page: 2821 year: 2017 ident: ctp_71_12_1485bib59 publication-title: Results Phys. doi: 10.1016/j.rinp.2017.07.062 – volume: 68 start-page: 387 year: 2017 ident: ctp_71_12_1485bib57 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/68/3/387 – volume: 102 start-page: 723 year: 2016 ident: ctp_71_12_1485bib19 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.06.059 – volume: 11 start-page: 276 year: 2019 ident: ctp_71_12_1485bib30 publication-title: Symmetry doi: 10.3390/sym11020276 – volume: 397 start-page: 213 year: 2016 ident: ctp_71_12_1485bib40 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.08.100 – volume: 84 start-page: 182 year: 2012 ident: ctp_71_12_1485bib9 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.08.029 – volume: 27 start-page: 1992 year: 2016 ident: ctp_71_12_1485bib17 publication-title: Adv. Powder Tech. doi: 10.1016/j.apt.2016.07.002 – volume: 29 start-page: 2243 year: 2018 ident: ctp_71_12_1485bib27 publication-title: Adv. Powder Tech. doi: 10.1016/j.apt.2018.06.009 – volume: 95 start-page: 6492 year: 2004 ident: ctp_71_12_1485bib3 publication-title: J. Appl. Phys. doi: 10.1063/1.1736319 – volume: 220 start-page: 665 year: 2016 ident: ctp_71_12_1485bib33 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.04.108 – volume: 408 start-page: 99 year: 2016 ident: ctp_71_12_1485bib37 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.02.017 – volume: 66 start-page: 99 year: 1995 ident: ctp_71_12_1485bib1 publication-title: Enhancing thermal conductivity of fluids with nanoparticles, USA, ASME, FED 231/MD – volume: 128 start-page: 240 year: 2006 ident: ctp_71_12_1485bib4 publication-title: J. Heat Transfer doi: 10.1115/1.2150834 – volume: 25 start-page: 422 year: 2015 ident: ctp_71_12_1485bib13 publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-02-2014-0027 – volume: 221 start-page: 1121 year: 2016 ident: ctp_71_12_1485bib56 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.06.083 – volume: 27 start-page: 1992 year: 2016 ident: ctp_71_12_1485bib43 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.07.002 – volume: 264 start-page: 607 year: 2018 ident: ctp_71_12_1485bib25 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.05.103 – volume: 12 year: 2017 ident: ctp_71_12_1485bib52 publication-title: Plos One – volume: 27 start-page: 969 year: 2015 ident: ctp_71_12_1485bib55 publication-title: Ser. B – volume: 50 start-page: 1326 year: 2011 ident: ctp_71_12_1485bib49 publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2011.02.019 – volume: 15 start-page: 2003 year: 2010 ident: ctp_71_12_1485bib53 publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2009.09.002 – volume: 57 start-page: 2187 year: 2018 ident: ctp_71_12_1485bib38 publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2017.07.007 |
SSID | ssj0002761 |
Score | 2.2034764 |
Snippet | In this paper, the magnetohydrodynamic 3D flow of Prandtl nanoliquid subject to convectively heated extendable surface has been discussed. A linear stretching... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1485 |
SubjectTerms | MHD nanoparticles optimal homotopy analysis method (OHAM) Prandtl fluid three-dimensional flow |
Title | An Optimal Analysis for 3D Flow of Prandtl Nanofluid with Convectively Heated Surface |
URI | https://iopscience.iop.org/article/10.1088/0253-6102/71/12/1485 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-ELz4WBXf5ODFQ3c3jz5yFHVZBR8HF_ZWkzQBsbaL20X01ztps4sKKuKtlJkmnTQzX5rJNwgdWUalsDYLDFEq4MRtEurYBJbDegh6HknpDgpfXUf9Ab8chkNf57Q-C1OOvOtvw2VDFNyY0CfEJR2I0gxWPF3aiUmH0A4A-nAeLbIkilwJg4ub25krpnFNmDrTmJ6d--Ypn2LTPLT_IdT0VtH9tJNNhslje1Kptn77wt_4j7dYQysehuKTRnwdzZmihVY9JMV-wo9baKnOENXjDTQ4KfAN-Jcnp-aZTDAgXszOcC8vX3Bp8S0EvqzKMbjs0uaThwy737z41GW21341f8V9cP6uicmzldpsokHv_O60H_iaDIGmglaBCqkxUnWZjGUiZCQslV2lleSZZHBb8zixmihpdVdnjIookaHWFkKxDENL2RZaKMrCbCMsRaYiKq0hVnFhuOCEZjZWnGaaasN3EJuORqo9Ybmrm5Gn9cZ5kqTOhqmzYRqTlNDU2XAHBTOtUUPY8Yv8MQxR6mfu-EfZ3T_I7qFlwFaiyXzZRwvV88QcAH6p1GH9jb4D5CXi8w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RSAuFAqI8vSBC4ds1o88fKy2rLY82j2wUm-WnxIibFbdrKry6xkn3hUgAULcomgmccbxfGN75jPA68CZliG4zFNjMkHjJqGtfBYEzoew5aXWsVD443k5W4h3l8XlHkx2tTDtKrn-EV4ORMGDCVNCXJ0jSnOc8YxZXtGcshwD-iJfubAPtwpe8kigf3Yx37ljVvWkqTutbf3cb570Ez7tYxt-gJvpIbhtQ4csky-jTWdG9tsvHI7_-SX34V4KR8nJoPIA9vzyCA5TaErSwF8fwe0-U9SuH8LiZEku0M98jWqJ0YRg5Ev4KZk27TVpA5kjALquIei629BsPjsSl3vJJGa49_61uSEzBIH4is1V0NY_gsX07afJLEtnM2SWSdZlpmDeazPmutK11KUMTI-NNVo4zfG2FVUdLDU62LF1nMmy1oW1ASFZF0Vg_DEcLNulfwJES2dKpoOnwQjphRSUuVAZwZxl1otj4NseUTYRl8fzMxrVb6DXtYp2VNGOqqKKMhXteAzZTms1EHf8Rf4NdpNKI3j9R9mn_yD7Cu7MT6fqw9n5-2dwF8MtOSTDPIeD7mrjX2BI05mX_S_7HTx-6Fc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+Analysis+for+3D+Flow+of+Prandtl+Nanofluid+with+Convectively+Heated+Surface&rft.jtitle=Communications+in+theoretical+physics&rft.au=Ullah%2C+Malik+Zaka&rft.au=Alghamdi%2C+Metib&rft.date=2019-12-01&rft.issn=0253-6102&rft.eissn=1572-9494&rft.volume=71&rft.issue=12&rft.spage=1485&rft_id=info:doi/10.1088%2F0253-6102%2F71%2F12%2F1485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_71_12_1485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6102&client=summon |