Differential cellular communication inference framework for large-scale single-cell RNA-sequencing data

Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell–cell communication, which plays a significant role in many biological processes. Despite the availability of various computational tools for inferring cellular communication, quan...

Full description

Saved in:
Bibliographic Details
Published inNAR genomics and bioinformatics Vol. 7; no. 2; p. lqaf084
Main Authors Cesaro, Giulia, Baruzzo, Giacomo, Tussardi, Gaia, Di Camillo, Barbara
Format Journal Article
LanguageEnglish
Published England 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell–cell communication, which plays a significant role in many biological processes. Despite the availability of various computational tools for inferring cellular communication, quantifying variations across different experimental conditions at both intercellular and intracellular levels remains challenging. Moreover, available methods are in general limited in terms of flexibility in analyzing different experimental designs and the ability to visualize results in an easily interpretable way. Here, we present a generalizable computational framework designed to infer and support differential cellular communication analysis across two experimental conditions from large-scale single-cell transcriptomics data. The scSeqCommDiff tool employs a statistical and network-based computational approach for characterizing altered cellular cross-talk in a fast and memory-efficient way. The framework is complemented with CClens, a user-friendly Shiny app to facilitate interactive analysis of inferred cell–cell communication. Validation through spatial transcriptomics data, comparison with other tools, and application to large-scale datasets (including a cell atlas) confirms the reliability, scalability, and efficiency of the framework. Moreover, the application to a single-nucleus transcriptomics dataset shows the validity and ability of the proposed workflow to support and unravel alterations in cell–cell interactions among patients with amyotrophic lateral sclerosis and healthy subjects.
AbstractList Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell-cell communication, which plays a significant role in many biological processes. Despite the availability of various computational tools for inferring cellular communication, quantifying variations across different experimental conditions at both intercellular and intracellular levels remains challenging. Moreover, available methods are in general limited in terms of flexibility in analyzing different experimental designs and the ability to visualize results in an easily interpretable way. Here, we present a generalizable computational framework designed to infer and support differential cellular communication analysis across two experimental conditions from large-scale single-cell transcriptomics data. The scSeqCommDiff tool employs a statistical and network-based computational approach for characterizing altered cellular cross-talk in a fast and memory-efficient way. The framework is complemented with CClens, a user-friendly Shiny app to facilitate interactive analysis of inferred cell-cell communication. Validation through spatial transcriptomics data, comparison with other tools, and application to large-scale datasets (including a cell atlas) confirms the reliability, scalability, and efficiency of the framework. Moreover, the application to a single-nucleus transcriptomics dataset shows the validity and ability of the proposed workflow to support and unravel alterations in cell-cell interactions among patients with amyotrophic lateral sclerosis and healthy subjects.
Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell-cell communication, which plays a significant role in many biological processes. Despite the availability of various computational tools for inferring cellular communication, quantifying variations across different experimental conditions at both intercellular and intracellular levels remains challenging. Moreover, available methods are in general limited in terms of flexibility in analyzing different experimental designs and the ability to visualize results in an easily interpretable way. Here, we present a generalizable computational framework designed to infer and support differential cellular communication analysis across two experimental conditions from large-scale single-cell transcriptomics data. The scSeqCommDiff tool employs a statistical and network-based computational approach for characterizing altered cellular cross-talk in a fast and memory-efficient way. The framework is complemented with CClens, a user-friendly Shiny app to facilitate interactive analysis of inferred cell-cell communication. Validation through spatial transcriptomics data, comparison with other tools, and application to large-scale datasets (including a cell atlas) confirms the reliability, scalability, and efficiency of the framework. Moreover, the application to a single-nucleus transcriptomics dataset shows the validity and ability of the proposed workflow to support and unravel alterations in cell-cell interactions among patients with amyotrophic lateral sclerosis and healthy subjects.Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell-cell communication, which plays a significant role in many biological processes. Despite the availability of various computational tools for inferring cellular communication, quantifying variations across different experimental conditions at both intercellular and intracellular levels remains challenging. Moreover, available methods are in general limited in terms of flexibility in analyzing different experimental designs and the ability to visualize results in an easily interpretable way. Here, we present a generalizable computational framework designed to infer and support differential cellular communication analysis across two experimental conditions from large-scale single-cell transcriptomics data. The scSeqCommDiff tool employs a statistical and network-based computational approach for characterizing altered cellular cross-talk in a fast and memory-efficient way. The framework is complemented with CClens, a user-friendly Shiny app to facilitate interactive analysis of inferred cell-cell communication. Validation through spatial transcriptomics data, comparison with other tools, and application to large-scale datasets (including a cell atlas) confirms the reliability, scalability, and efficiency of the framework. Moreover, the application to a single-nucleus transcriptomics dataset shows the validity and ability of the proposed workflow to support and unravel alterations in cell-cell interactions among patients with amyotrophic lateral sclerosis and healthy subjects.
Author Di Camillo, Barbara
Tussardi, Gaia
Baruzzo, Giacomo
Cesaro, Giulia
Author_xml – sequence: 1
  givenname: Giulia
  orcidid: 0000-0001-7971-963X
  surname: Cesaro
  fullname: Cesaro, Giulia
– sequence: 2
  givenname: Giacomo
  orcidid: 0000-0001-6129-5007
  surname: Baruzzo
  fullname: Baruzzo, Giacomo
– sequence: 3
  givenname: Gaia
  orcidid: 0009-0009-7173-2683
  surname: Tussardi
  fullname: Tussardi, Gaia
– sequence: 4
  givenname: Barbara
  orcidid: 0000-0001-8415-4688
  surname: Di Camillo
  fullname: Di Camillo, Barbara
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40585304$$D View this record in MEDLINE/PubMed
BookMark eNpNkctLw0AQxhep2Fp79Sh79JJ2X3kdS31CURA9h8l2NkQ3m3Y3QfzvTW0VmcMMH78ZPuY7JyPXOiTkkrM5Z7lcOPAVlAu7A8MydUImIpE8ykWSjf7NYzIL4Z0xJmIVK8bPyFixOIslUxNS3dTGoEfX1WCpRmt7C57qtml6V2vo6tbR2v0gGqnx0OBn6z-oaT0dyAqjoMEiDbWrLEb7C_TlaRkF3PXDyqDSDXRwQU4N2ICzY5-St7vb19VDtH6-f1wt15EWueiikiMKabgeSokceMx5yhQwzhRPUw6GQ4IIkOTZxoBOSp4kg2IkF6YELafk-nB369vBQOiKpg57U-Cw7UMhhYizVCgZD-jVEe3LBjfF1tcN-K_i9zkDMD8A2rcheDR_CGfFPoDiEEBxDEB-A3PLfAs
Cites_doi 10.1126/sciadv.abf1356
10.1016/j.coisb.2017.07.004
10.3390/biom11030437
10.1038/s41551-021-00770-5
10.1038/s41598-022-07959-x
10.1042/BST20210863
10.4324/9780203771587
10.1016/j.cell.2021.06.018
10.1038/s41576-023-00685-8
10.1016/j.immuni.2019.11.014
10.1016/j.ccell.2022.10.008
10.1038/s41598-021-98241-z
10.1101/507871
10.1038/s42003-021-02986-2
10.1016/j.neuron.2012.02.017
10.1038/s41596-024-01045-4
10.1016/j.cell.2024.02.031
10.7554/eLife.27041
10.1186/s13059-015-0844-5
10.1038/s41467-022-30755-0
10.1101/gr.278001.123
10.3390/cancers14194957
10.1093/bioinformatics/btaa482
10.1001/jamaneurol.2013.234
10.21037/atm.2017.03.62
10.1128/EC.00041-08
10.3390/biology12101307
10.1093/bioinformatics/btac447
10.1093/nar/gkaa183
10.1038/s41587-023-01782-z
10.1109/PDP66500.2025.00045
10.1016/j.coisb.2021.03.007
10.1093/bioadv/vbac092
10.1038/s41467-023-36800-w
10.18632/aging.101195
10.1038/s41477-023-01544-4
10.1038/s41467-021-21246-9
10.1080/00031305.2017.1375990
10.1073/pnas.94.20.10925
10.2174/1381612826666200115095937
10.1038/s41467-021-25960-2
10.1038/s41576-020-00292-x
10.1093/bioinformatics/btac036
10.1093/bioinformatics/btab370
10.1038/s41556-024-01469-w
10.1093/cercor/bhu317
10.1093/nar/28.1.27
10.1007/s00702-009-0271-4
10.1016/j.bbi.2020.11.038
10.1038/s41467-021-21244-x
10.4103/1673-5374.324840
10.1101/2023.06.13.544751
10.18637/jss.v055.i14
10.1038/s43587-023-00514-x
10.1186/s13059-022-02783-y
10.1016/j.bbadis.2006.05.002
10.1016/j.csbj.2023.01.008
10.1038/s41586-022-05060-x
10.1038/s41593-024-01796-z
10.1126/science.abl4896
10.1093/bib/bbac234
10.1038/s41467-020-18873-z
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/nargab/lqaf084
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2631-9268
ExternalDocumentID 40585304
10_1093_nargab_lqaf084
Genre Journal Article
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABXVV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
BBNVY
BENPR
BHPHI
CCPQU
CITATION
EBS
EMOBN
GROUPED_DOAJ
HCIFZ
IAO
KSI
M7P
M~E
PHGZM
PHGZT
PIMPY
PQGLB
RPM
TOX
CGR
CUY
CVF
ECM
EIF
IGS
IHR
INH
ITC
NPM
7X8
ID FETCH-LOGICAL-c292t-b1ee23f1c1c1429a1511704a01041771af1a6eeaa698dfac6b166a6ef312fbac3
ISSN 2631-9268
IngestDate Fri Jul 11 16:56:44 EDT 2025
Mon Jul 21 05:59:02 EDT 2025
Tue Jul 15 05:56:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2025. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-b1ee23f1c1c1429a1511704a01041771af1a6eeaa698dfac6b166a6ef312fbac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6129-5007
0000-0001-8415-4688
0000-0001-7971-963X
0009-0009-7173-2683
OpenAccessLink https://academic.oup.com/nargab/article-pdf/7/2/lqaf084/63526388/lqaf084.pdf
PMID 40585304
PQID 3225872435
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3225872435
pubmed_primary_40585304
crossref_primary_10_1093_nargab_lqaf084
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle NAR genomics and bioinformatics
PublicationTitleAlternate NAR Genom Bioinform
PublicationYear 2025
References Almet (2025062715125311100_B11) 2021; 26
Jin (2025062715125311100_B18) 2024; 20
Ding (2025062715125311100_B61) 2021; 92
Xin (2025062715125311100_B44) 2022; 38
Baruzzo (2025062715125311100_B30) 2025
Solovey (2025062715125311100_B21) 2020; 36
Kane (2025062715125311100_B35) 2013; 55
Kanehisa (2025062715125311100_B49) 2000; 28
Raredon (2025062715125311100_B16) 2022; 12
Squair (2025062715125311100_B40) 2021; 12
Page (2025062715125311100_B38) 1999
Hu (2025062715125311100_B24) 2021; 7
You (2025062715125311100_B51) 2023; 12
Jin (2025062715125311100_B23) 2021; 12
Cowen (2025062715125311100_B6) 2008; 7
Lagger (2025062715125311100_B19) 2023; 3
Cherry (2025062715125311100_B15) 2021; 5
Wang (2025062715125311100_B17)
Cihankaya (2025062715125311100_B1) 2022; 17
Wilk (2025062715125311100_B42) 2023; 42
Angerer (2025062715125311100_B29) 2017; 4
Foerster (2025062715125311100_B55) 2013; 70
Han (2025062715125311100_B9) 2023; 9
Hou (2025062715125311100_B13) 2020; 11
Browaeys (2025062715125311100_B27)
Armingol (2025062715125311100_B12) 2024; 25
Kuppe (2025062715125311100_B43) 2022; 608
Regev (2025062715125311100_B8) 2017; 6
Lerma-Martin (2025062715125311100_B45) 2024; 27
Dimitrov (2025062715125311100_B25) 2024; 26
Jassal (2025062715125311100_B50) 2020; 48
Cabello-Aguilar (2025062715125311100_B36) 2020; 48
Zhao (2025062715125311100_B48) 2023; 14
Luo (2025062715125311100_B33) 2023; 33
Pineda (2025062715125311100_B46) 2024; 187
Cillo (2025062715125311100_B14) 2020; 52
Liu (2025062715125311100_B32) 2022; 23
Salcher (2025062715125311100_B47) 2022; 40
Armingol (2025062715125311100_B64) 2020; 22
Matrone (2025062715125311100_B60) 2023; 21
Garden (2025062715125311100_B2) 2012; 73
Romano (2025062715125311100_B53) 2021; 11
Cesaro (2025062715125311100_B4) 2022; 2
Nisar (2025062715125311100_B3) 2020; 26
Interlandi (2025062715125311100_B28) 2022; 5
Baruzzo (2025062715125311100_B34) 2022; 38
Andrés-Benito (2025062715125311100_B54) 2017; 9
Dimitrov (2025062715125311100_B31) 2022; 13
Favuzzi (2025062715125311100_B58) 2021; 184
Peng (2025062715125311100_B63) 2022; 23
Nagai (2025062715125311100_B22) 2021; 37
Gao (2025062715125311100_B26) 2022; 14
Jin (2025062715125311100_B10) 2022; 50
Steinacker (2025062715125311100_B59) 2009; 116
Schiavone (2025062715125311100_B5) 2017; 5
Cohen (2025062715125311100_B39) 1998
Saba (2025062715125311100_B62) 2016; 26
Finak (2025062715125311100_B37) 2015; 16
Van (2025062715125311100_B52) 2006; 1762
Noël (2025062715125311100_B20) 2021; 12
Hemerková (2025062715125311100_B57) 2021; 11
Poss (2025062715125311100_B56) 1997; 94
Eddelbuettel (2025062715125311100_B41) 2018; 72
Jones (2025062715125311100_B7) 2022; 376
References_xml – volume: 7
  start-page: eabf1356
  year: 2021
  ident: 2025062715125311100_B24
  article-title: CytoTalk: de novo construction of signal transduction networks using single-cell transcriptomic data
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abf1356
– volume: 4
  start-page: 85
  year: 2017
  ident: 2025062715125311100_B29
  article-title: Single cells make big data: new challenges and opportunities in transcriptomics
  publication-title: Curr OpinSyst Biol
  doi: 10.1016/j.coisb.2017.07.004
– year: 1999
  ident: 2025062715125311100_B38
  publication-title: The PageRank Citation Ranking: Bringing Order to the Web
– volume: 11
  start-page: 437
  year: 2021
  ident: 2025062715125311100_B57
  article-title: Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: antioxidant metalloenzymes and therapeutic strategies
  publication-title: Biomolecules
  doi: 10.3390/biom11030437
– volume: 5
  start-page: 1228
  year: 2021
  ident: 2025062715125311100_B15
  article-title: Computational reconstruction of the signalling networks surrounding implanted biomaterials from single-cell transcriptomics
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-021-00770-5
– volume: 12
  start-page: 1
  year: 2022
  ident: 2025062715125311100_B16
  article-title: Computation and visualization of cell–cell signaling topologies in single-cell systems data using Connectome
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-07959-x
– volume: 50
  start-page: 297
  year: 2022
  ident: 2025062715125311100_B10
  article-title: Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20210863
– volume-title: Statistical Power Analysis for the Behavioral Sciences
  year: 1998
  ident: 2025062715125311100_B39
  doi: 10.4324/9780203771587
– volume: 184
  start-page: 4048
  year: 2021
  ident: 2025062715125311100_B58
  article-title: GABA-receptive microglia selectively sculpt developing inhibitory circuits
  publication-title: Cell
  doi: 10.1016/j.cell.2021.06.018
– volume: 25
  start-page: 381
  year: 2024
  ident: 2025062715125311100_B12
  article-title: The diversification of methods for studying cell–cell interactions and communication
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-023-00685-8
– volume: 52
  start-page: 183
  year: 2020
  ident: 2025062715125311100_B14
  article-title: Immune landscape of viral- and carcinogen-driven head and neck cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.11.014
– volume: 40
  start-page: 1503
  year: 2022
  ident: 2025062715125311100_B47
  article-title: High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.10.008
– volume: 11
  start-page: 18761
  year: 2021
  ident: 2025062715125311100_B53
  article-title: TDP-43 regulates GAD1 mRNA splicing and GABA signaling in drosophila CNS
  publication-title: SciRep
  doi: 10.1038/s41598-021-98241-z
– ident: 2025062715125311100_B17
  article-title: iTALK: an R package to characterize and illustrate intercellular communication
  doi: 10.1101/507871
– volume: 5
  start-page: 21
  year: 2022
  ident: 2025062715125311100_B28
  article-title: InterCellar enables interactive analysis and exploration of cell−cell communication in single-cell transcriptomic data
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-02986-2
– volume: 73
  start-page: 886
  year: 2012
  ident: 2025062715125311100_B2
  article-title: Intercellular (Mis)communication in neurodegenerative disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.02.017
– volume: 20
  start-page: 180
  year: 2024
  ident: 2025062715125311100_B18
  article-title: CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics
  publication-title: Nat Protoc
  doi: 10.1038/s41596-024-01045-4
– volume: 187
  start-page: 1971
  year: 2024
  ident: 2025062715125311100_B46
  article-title: Single-cell dissection of the human motor and prefrontal cortices in ALS and FTLD
  publication-title: Cell
  doi: 10.1016/j.cell.2024.02.031
– volume: 6
  start-page: e27041
  year: 2017
  ident: 2025062715125311100_B8
  article-title: The human cell atlas
  publication-title: eLife
  doi: 10.7554/eLife.27041
– volume: 16
  start-page: 278
  year: 2015
  ident: 2025062715125311100_B37
  article-title: MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0844-5
– volume: 13
  start-page: 3224
  year: 2022
  ident: 2025062715125311100_B31
  article-title: Comparison of methods and resources for cell–cell communication inference from single-cell RNA-seq data
  publication-title: NatCommun
  doi: 10.1038/s41467-022-30755-0
– volume: 33
  start-page: 1788
  year: 2023
  ident: 2025062715125311100_B33
  article-title: ESICCC as a systematic computational framework for evaluation, selection, and integration of cell–cell communication inference methods
  publication-title: Genome Res
  doi: 10.1101/gr.278001.123
– volume: 14
  start-page: 4957
  year: 2022
  ident: 2025062715125311100_B26
  article-title: CellCallEXT: analysis of ligand–receptor and transcription factor activities in cell–cell communication of tumor immune microenvironment
  publication-title: Cancers
  doi: 10.3390/cancers14194957
– volume: 36
  start-page: 4296
  year: 2020
  ident: 2025062715125311100_B21
  article-title: COMUNET: a tool to explore and visualize intercellular communication
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa482
– volume: 70
  start-page: 1009
  year: 2013
  ident: 2025062715125311100_B55
  article-title: An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2013.234
– volume: 5
  start-page: 222
  year: 2017
  ident: 2025062715125311100_B5
  article-title: Therapeutic targeting of dysregulated cellular communication
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2017.03.62
– volume: 7
  start-page: 747
  year: 2008
  ident: 2025062715125311100_B6
  article-title: Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00041-08
– volume: 12
  start-page: 1307
  year: 2023
  ident: 2025062715125311100_B51
  article-title: Microglia and astrocytes in amyotrophic lateral sclerosis: disease-associated states, pathological roles, and therapeutic potential
  publication-title: Biology
  doi: 10.3390/biology12101307
– volume: 38
  start-page: 4117
  year: 2022
  ident: 2025062715125311100_B44
  article-title: LRLoop: a method to predict feedback loops in cell–cell communication
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac447
– volume: 48
  start-page: e55
  year: 2020
  ident: 2025062715125311100_B36
  article-title: SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa183
– volume: 42
  start-page: 470
  year: 2023
  ident: 2025062715125311100_B42
  article-title: Comparative analysis of cell–cell communication at single-cell resolution
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-023-01782-z
– volume-title: 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), Turin
  year: 2025
  ident: 2025062715125311100_B30
  article-title: quickSparseM: a library for memory- and time-efficient computation on large, sparse matrices with application to omics data
  doi: 10.1109/PDP66500.2025.00045
– volume: 26
  start-page: 12
  year: 2021
  ident: 2025062715125311100_B11
  article-title: The landscape of cell–cell communication through single-cell transcriptomics
  publication-title: Curr Opin Syst Biol
  doi: 10.1016/j.coisb.2021.03.007
– volume: 2
  start-page: vbac092
  year: 2022
  ident: 2025062715125311100_B4
  article-title: MAST: a hybrid multi-agent spatio-temporal model of tumor microenvironment informed using a data-driven approach
  publication-title: Bioinform Adv
  doi: 10.1093/bioadv/vbac092
– volume: 14
  start-page: 1128
  year: 2023
  ident: 2025062715125311100_B48
  article-title: Inferring neuron–neuron communications from single-cell transcriptomics through NeuronChat
  publication-title: NatCommun
  doi: 10.1038/s41467-023-36800-w
– volume: 9
  start-page: 823
  year: 2017
  ident: 2025062715125311100_B54
  article-title: Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration
  publication-title: Aging
  doi: 10.18632/aging.101195
– volume: 9
  start-page: 2095
  year: 2023
  ident: 2025062715125311100_B9
  article-title: Time series single-cell transcriptional atlases reveal cell fate differentiation driven by light in Arabidopsis seedlings
  publication-title: Nat Plants
  doi: 10.1038/s41477-023-01544-4
– volume: 12
  start-page: 1088
  year: 2021
  ident: 2025062715125311100_B23
  article-title: Inference and analysis of cell–cell communication using CellChat
  publication-title: NatCommun
  doi: 10.1038/s41467-021-21246-9
– volume: 72
  start-page: 28
  year: 2018
  ident: 2025062715125311100_B41
  article-title: Extending R with C++: a brief introduction to Rcpp
  publication-title: Am Stat
  doi: 10.1080/00031305.2017.1375990
– volume: 94
  start-page: 10925
  year: 1997
  ident: 2025062715125311100_B56
  article-title: Reduced stress defense in heme oxygenase 1-deficient cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.20.10925
– volume: 26
  start-page: 429
  year: 2020
  ident: 2025062715125311100_B3
  article-title: Exploring dysregulated signaling pathways in cancer
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612826666200115095937
– volume: 12
  start-page: 5692
  year: 2021
  ident: 2025062715125311100_B40
  article-title: Confronting false discoveries in single-cell differential expression
  publication-title: NatCommun
  doi: 10.1038/s41467-021-25960-2
– volume: 22
  start-page: 71
  year: 2020
  ident: 2025062715125311100_B64
  article-title: Deciphering cell–cell interactions and communication from gene expression
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-020-00292-x
– volume: 38
  start-page: 1920
  year: 2022
  ident: 2025062715125311100_B34
  article-title: Identify, quantify and characterize cellular communication from single cell RNA sequencing data with scSeqComm
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac036
– volume: 37
  start-page: 4263
  year: 2021
  ident: 2025062715125311100_B22
  article-title: CrossTalkeR: analysis and visualization of ligand–receptor networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab370
– volume: 26
  start-page: 1613
  year: 2024
  ident: 2025062715125311100_B25
  article-title: LIANA+ provides an all-in-one framework for cell–cell communication inference
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-024-01469-w
– volume: 48
  start-page: D498
  year: 2020
  ident: 2025062715125311100_B50
  article-title: The reactome pathway knowledgebase
  publication-title: Nucleic Acids Res
– volume: 26
  start-page: 1512
  year: 2016
  ident: 2025062715125311100_B62
  article-title: Altered functionality, morphology, and vesicular glutamate transporter expression of cortical motor neurons from a presymptomatic mouse model of amyotrophic lateral sclerosis
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhu317
– volume: 28
  start-page: 27
  year: 2000
  ident: 2025062715125311100_B49
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 116
  start-page: 1169
  year: 2009
  ident: 2025062715125311100_B59
  article-title: Concentrations of beta-amyloid precursor protein processing products in cerebrospinal fluid of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration
  publication-title: J Neural Transm
  doi: 10.1007/s00702-009-0271-4
– volume: 92
  start-page: 139
  year: 2021
  ident: 2025062715125311100_B61
  article-title: Glutaminase in microglia: a novel regulator of neuroinflammation
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2020.11.038
– volume: 12
  start-page: 1089
  year: 2021
  ident: 2025062715125311100_B20
  article-title: Dissection of intercellular communication using the transcriptome-based framework ICELLNET
  publication-title: NatCommun
  doi: 10.1038/s41467-021-21244-x
– volume: 17
  start-page: 1015
  year: 2022
  ident: 2025062715125311100_B1
  article-title: Significance of intercellular communication for neurodegenerative diseases
  publication-title: Neural Regen Res
  doi: 10.4103/1673-5374.324840
– ident: 2025062715125311100_B27
  article-title: MultiNicheNet: a flexible framework for differential cell–cell communication analysis from multi-sample multi-condition single-cell transcriptomics data
  doi: 10.1101/2023.06.13.544751
– volume: 55
  start-page: 1
  year: 2013
  ident: 2025062715125311100_B35
  article-title: Scalable Strategies for Computing with Massive Data
  publication-title: J Stat Softw
  doi: 10.18637/jss.v055.i14
– volume: 3
  start-page: 1446
  year: 2023
  ident: 2025062715125311100_B19
  article-title: scDiffCom: a tool for differential analysis of cell–cell interactions provides a mouse atlas of aging changes in intercellular communication
  publication-title: Nat Aging
  doi: 10.1038/s43587-023-00514-x
– volume: 23
  start-page: 218
  year: 2022
  ident: 2025062715125311100_B32
  article-title: Evaluation of cell–cell interaction methods by integrating single-cell RNA sequencing data with spatial information
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02783-y
– volume: 1762
  start-page: 1068
  year: 2006
  ident: 2025062715125311100_B52
  article-title: The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2006.05.002
– volume: 21
  start-page: 923
  year: 2023
  ident: 2025062715125311100_B60
  article-title: The paradigm of amyloid precursor protein in amyotrophic lateral sclerosis: the potential role of the 682YENPTY687 motif
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2023.01.008
– volume: 608
  start-page: 766
  year: 2022
  ident: 2025062715125311100_B43
  article-title: Spatial multi-omic map of human myocardial infarction
  publication-title: Nature
  doi: 10.1038/s41586-022-05060-x
– volume: 27
  start-page: 2354
  year: 2024
  ident: 2025062715125311100_B45
  article-title: Cell type mapping reveals tissue niches and interactions in subcortical multiple sclerosis lesions
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-024-01796-z
– volume: 376
  start-page: eabl4896
  year: 2022
  ident: 2025062715125311100_B7
  article-title: The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans
  publication-title: Science
  doi: 10.1126/science.abl4896
– volume: 23
  start-page: bbac234
  year: 2022
  ident: 2025062715125311100_B63
  article-title: Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac234
– volume: 11
  start-page: 381
  year: 2020
  ident: 2025062715125311100_B13
  article-title: Predicting cell-to-cell communication networks using NATMI
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18873-z
SSID ssj0002545401
Score 2.293035
Snippet Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell–cell communication, which plays a...
Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell-cell communication, which plays a...
Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell-cell communication, which plays a...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage lqaf084
SubjectTerms Cell Communication - genetics
Computational Biology - methods
Gene Expression Profiling - methods
Humans
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Software
Transcriptome
Title Differential cellular communication inference framework for large-scale single-cell RNA-sequencing data
URI https://www.ncbi.nlm.nih.gov/pubmed/40585304
https://www.proquest.com/docview/3225872435
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZ-7KX0bFf2bqgwcoeitpItmX7MUu7lcHCCC30zUiONAKps9X2S_6G_dG7sxTbGRl0I2CMjC-J7kO6O313R8j7WIkwtknKAmkDFmohWSqEZrkCW0TEymqB-c5fZ_LqJvxyG90OBr96rKW60mf5Zm9eyf9oFcZAr5gl-w-abYXCANyDfuEKGobrg3R84bubVBj2xhB8wynN-zkfDdvKVZK1Wx5WQy1cIQWclaAic4rxgpVhKOF0Ppswz6_GKILPXWsN2Nlkjl2XMZfZVXfWy7Uvvlr1iPNTUyqXQfN5Wa-Wndev7uvNxj-Axfhu3RE8yhLR2jxS3RsXy5OpOJmMpxiJcedE_oykH7AQUUescuuakAEHQLhuOmdmz5hfmOMe_sTe5d6VwiqwJbCGm9VPZceu49xuZe0_dryWh-hO4IPMScj8-4_IoQCnQ_RiP7ivgysN5i168O2vbauABudOxLkXsWvl_MV1aUyY6yPyxPsedOKA9JQMTPGMfO-DiG5BRHdARFsQ0RZEFHROeyCiPRDRXRBRBNFzcvPp8np6xXz3DZaLVFRMc2NEYHkOHzBaFJiGPB6HCh14HsdcWa6kMUrJNFlYlUvNpYQRG3BhtcqDF-SgWBfmFaE2iRT6IVxHeRhKnYZ6LAz2UlgkabTgQ_JhO1vZD1dkJduvmiF5t53MDNZB_EuqMOu6zHBjSmIB1v-QvHSz3MoCpwSs0nH4-sHf84Y87qB7TA6q-9q8Beuz0iNy-PFy9m0-aqI3owYivwHSX4_3
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+cellular+communication+inference+framework+for+large-scale+single-cell+RNA-sequencing+data&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Cesaro%2C+Giulia&rft.au=Baruzzo%2C+Giacomo&rft.au=Tussardi%2C+Gaia&rft.au=Di%C2%A0Camillo%2C+Barbara&rft.date=2025-06-01&rft.issn=2631-9268&rft.eissn=2631-9268&rft.volume=7&rft.issue=2&rft_id=info:doi/10.1093%2Fnargab%2Flqaf084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nargab_lqaf084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon